
Toward a Theory of Contexts of Assumptions in

Logical Frameworks

Amy Felty

University of Ottawa
Inria Sophia Antipolis Méditerranée

TYPES Meeting, May 12, 2014

Joint work with
Alberto Momigliano and Brigitte Pientka

1



Motivation: Comparing Systems

We focus on logical frameworks that support the use of
higher-order abstract syntax.

I Commonalities:
F encode object-level binders with meta-level binders
F support for alpha-renaming and substitution
F encode axioms and inference rules using hypothetical and

parametric judgments
I Differences:

F how a system supports reasoning about hypothetical and
parametric derivations, which requires support for contexts to
keep track of hypotheses

F other features. . .

2



Comparing Systems (continued)

Case studies we consider are in the domain of meta-theory of
programming languages.

Systems we have studied include:
I based on type theory: Twelf, Beluga
I based on proof theory: Abella, Hybrid

We are also designing an Open challenge problem Repository for
systems supporting reasoning with BInders (ORBI), for sharing
HOAS benchmark problems. (Can be thought of as an
intermediate language between OTT and TPTP.)

We want to relate one framework to another with the aim of
transferring theorems and proofs (some similar goals to the
ProofCert project).

3



Outline

1 Motivating Examples

2 Contexts as Structured Sequences

3 Structural Rules

4 Reasoning with Contexts: Generalized Contexts vs. Context
Relations

5 Current and Future Work

4



A First Example: Polymorphic λCalculus
Grammar: Types and Terms (does not enforce scope)

Types A,B ::= α Terms M ::= x
| arr A B | lam x .M | app M N
| all α.A | tlam α.M | tapp M A

Alternative: Well-Formed Terms Martin-Löf Style (enforces scope)

is tm x
tmv

...
is tm M

is tm (lam x .M)
tmx ,tmv

l

is tp α
tpv

...
is tm M

is tm (tlamα.M)
tmα,tpv

tl

is tm M1 is tm M2

is tm (app M1 M2)
tma

is tm M is tp A

is tm (tapp M A)
tmta

5



A Second Example (with Implicit Contexts)

Rules for “algorithmic” equality for the untyped λcalculus:

is tm x
x

aeq x x aev
...

aeq M N

aeq (lam x .M) (lam x .N)
aex ,aevl

aeq M1 N1 aeq M2 N2

aeq (app M1 M2) (app N1 N2)
aea

+ Context-free representation scales from grammars to judgments

- Can we tell open vs. closed object?

- Meta-reasoning about such judgments requires explicit
structured contexts.

- Explicit structural properties of assumptions are also important.

6



Explicit Contexts

Examples of contexts occurring in the above examples:

Type Context Γ ::= · | Γ, is tp α
Term/Type Context Γ ::= · | Γ, is tp α | Γ, is tm x
Equality Context Γ ::= · | Γ, is tm x , aeq x x

In the latter, note that we are introducing the variable x together with the

assumption aeq x x .

Issue: The use of ’,’ is ambiguous.

Our view: Contexts are structured sequences. We use ’;’ to separate
atoms inside a “block.”

Equality Context Γ ::= · | Γ, is tm x ; aeq x x

7



Contexts as Structured Sequences
A context is a sequence of declarations D where a declaration is
a block of individual atomic assumptions separated by ’;’, which
binds tighter than ’,’.

Atom A
Block of declaration D ::= A | D;A
Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds |||| S

A schema classify a context, where ’||||’ describes alternatives.

Sαx ::= is tp α |||| is tm x
Sxa ::= is tm x ; aeq x x

There are typing rules relating context and schemas (not shown
here).

Convention: Φαx describes a context with schema Sαx .
8



Polymorphic λCalculus Revisited

(with Explicit Contexts)

is tm x ∈ Φαx

Φαx ` is tm x
tmv

Φαx , is tm x ` is tm M

Φαx ` is tm (lam x .M)
tml

Φαx ` is tm M1 Φαx ` is tm M2

Φαx ` is tm (app M1 M2)
tma

Φαx , is tp α ` is tm M

Φαx ` is tm (tlamα.M)
tmtl

Φαx ` is tm M Φαx ` is tp A

Φαx ` is tm (tapp M A)
tmta

9



Structural Rules

More fine-grained view of structural rules, which can be applied
inside a block or to a whole context.

Slightly unusual presentation of rules based on

operations on declarations:

I Let rmA : S → S ′ be a total function taking D ∈ S and
returning D ′ ∈ S ′ where D ′ is D with A removed, if A ∈ D;
otherwise D ′ = D.

I Let permπ : S → S ′ be a total function which permutes the
elements of D ∈ S according to π to obtain D ′ ∈ S ′.

10



Example Operations on Declarations

Sαx ::= is tp α |||| is tm x
Sxa ::= is tm x ; aeq x x

Sα ::= is tp α
Sx ::= is tm x

rmaeq x x : Sxa → Sx = λd .case d of is tm y ; aeq y y 7→ is tm y

rmis tm x : Sαx → Sα = λd .case d of | is tp α 7→ is tp α
| is tm y 7→ ·

(Note that the latter “removes” whole declarations.)

11



Structural Properties of Declarations

Declaration Weakening:

Γ, rmA(D), Γ′ ` J

Γ,D, Γ′ ` J
d-wk

Declaration Strengthening:

Γ,D, Γ′ ` J

Γ, rmA(D), Γ′ ` J
d-str(†)

with the proviso (†) that A is irrelevant to J (e.g., subordination)

Declaration Exchange

Γ,D, Γ′ ` J

Γ, permπ(D), Γ′ ` J
d-exc

12



Structural Properties of Contexts

We extended those operations to act on contexts (rm∗A, perm∗π):

Context Weakening

rm∗A(Γ) ` J

Γ ` J
c-wk

Context Strengthening

Γ ` J
rm∗A(Γ) ` J

c-str(†)

Context Exchange

Γ ` J
perm∗π(Γ) ` J

c-exc

13



Example Revisited
Recall:

Sαx ::= is tp α |||| is tm x
Sα ::= is tp α
rmis tm x : Sαx → Sα

For the rule for well formed type application, we wrote:

Φαx ` is tm M Φαx ` is tp A

Φαx ` is tm (tapp M A)
tmta

Note that we also know rm∗is tm x(Φαx) ` is tp A

Furthermore, we really have the following rule, where Γ is any
context that can be strengthened to a context satisfying schema
Sαx (and then further strengthened in the right premise).

Γ ` is tm M Γ ` is tp A

Γ ` is tm (tapp M A)
tmta

14



Reasoning and Contexts
Rules for “declarative” equality for the untyped λcalculus:

Sxd ::= is tm x ; deq x x

deq x x ∈ Φxd

Φxd ` deq x x
dev

Φxd , is tm x ; deq x x ` deq M N

Φxd ` deq (lam x .M) (lam x .N)
del

Φxd ` deq M1 N1 Φxd ` deq M2 N2

Φxd ` deq (app M1 M2) (app N1 N2)
dea

Φxd ` deq M M
der

Φxd ` deq N M

Φxd ` deq M N
des

Φxd ` deq M L Φxd ` deq L N

Φxd ` deq M N
det

Attempt (Completeness)

If Γ1 ` deq M N, then Γ2 ` aeq M N.

This statement does not contain enough information about how the
two contexts Γ1 and Γ2 are related.

15



Two Approaches

Attempt (Completeness)

If Γ1 ` deq M N, then Γ2 ` aeq M N.

1 Context relations approach (R). Assume that Γ1 and Γ2 satisfy
the appropriate schemas, and then specify how they are related.

Sxd ::= is tm x ; deq x x Sxa ::= is tm x ; aeq x x

(This approach is used by Abella and Hybrid.)

2 Generalized context approach (G). Use a single context in the
theorem that contains all assumptions in the relevant judgments.

Sda ::= is tm x ; deq x x ; aeq x x

(This approach is used by Twelf and Beluga.)

16



Generalized Contexts

Sda ::= is tm x ; deq x x ; aeq x x

Theorem (Completeness, G Version)

If Φda ` deq M N, then Φda ` aeq M N.

Proof of lambda case:
Γ, is tm x ; deq x x ` deq M N

Γ ` deq (lam x .M) (lam x .N)
del

Φda ` deq (lam x .M) (lam x .N) by assumption
Φda, is tm x ; deq x x ` deq M N by del
Φda, is tm x ; deq x x ; aeq x x ` deq M N by d-wk
Φda, is tm x ; deq x x ; aeq x x ` aeq M N by i.h.
Φda, is tm x ; aeq x x ` aeq M N by d-str
Φda ` aeq (lam x .M) (lam x .N) by ael

17



Context Relations

Sxd ::= is tm x ; deq x x Sxa ::= is tm x ; aeq x x

Theorem (Completeness, R Version)

Assume Φxd ∼ Φxa. If Φxd ` deq M N, then Φxa ` aeq M N.

1 We can define Φxd ∼ Φxa using rm∗. Recall:

Sda ::= is tm x ; deq x x ; aeq x x

Φxd ∼ Φxa iff there is a Φda satisfying Sda such that
Φxd = rm∗aeq x x(Φda) and Φxa = rm∗deq x x(Φda).

2 Alternatively, we can define this relation inductively:

. ∼ .
Φxd ∼ Φxa

Φxd , is tm x ; deq x x ∼ Φxa, is tm x ; aeq x x

18



Context Relations: Lambda Case Revisited

Theorem (Completeness, R Version)

Assume Φxd ∼ Φxa. If Φxd ` deq M N, then Φxa ` aeq M N.

Proof of lambda case:

Γ, is tm x ; deq x x ` deq M N

Γ ` deq (lam x .M) (lam x .N)
del

Φxd ` deq (lam x .M) (lam x .N) by assumption
Φxd , is tm x ; deq x x ` deq M N by del
Φxd , is tm x ; deq x x ∼ Φxa, is tm x ; aeq x x by def ∼
Φxa, is tm x ; aeq x x ` aeq M N by i.h.
Φxa ` aeq (lam x .M) (lam x .N) by ael

19



Promotion

Sxa ::= is tm x ; aeq x x
Sda ::= is tm x ; deq x x ; aeq x x

Proving completeness involves proving admissibility of reflexivity,
symmetry, and transitivity. We consider the G version of reflexivity.

Lemma (Admissibility of Reflexivity, G Version)

If Φxa ` is tm M then Φxa ` aeq M M.

Before using this lemma in the proof of completeness of algorithmic
equality with respect to declarative equality, we must first “promote”
it first to the larger context used in that theorem.

Lemma (Promotion, G Version)

If Φda ` is tm M then Φda ` aeq M M.

20



Proving Promotion

Sxa ::= is tm x ; aeq x x
Sda ::= is tm x ; deq x x ; aeq x x

Lemma (Promotion, G Version)

If Φda ` is tm M then Φda ` aeq M M.

Proof:
Φda ` is tm M by assumption
Φxa ` is tm M by c-str
Φxa ` aeq M M by previous lemma
Φda ` aeq M M by c-wk

In general, proofs of promotion for G versions of theorems require
a combination of strengthening and weakening on contexts.

R versions of promotion involve strengthening and/or weakening
of one or both sides of a context relation.

21



Current and Future Work (1)

What started as work on comparing HOAS systems is bearing
additional fruit.

Translating theorems and proofs between systems
I A possible unification of how contexts are mechanized in type

theory and proof theory tools
I Formally relating G and R versions will likely be an important

step.

Designing ORBI (Open challenge problem Repository for
systems supporting reasoning with BInders)

I A common intermediate language for benchmark sharing that
uses a Beluga-like syntax enriched with directives so that the
ORBI2X tools will compile it into legal Twelf/Beluga,
Abella/Hybrid, etc.

22



Current and Future Work (2)

Tool support
I Many common lemmas such as structural rules and promotion

lemmas. Wouldn’t it be nice to have your logical framework
support this?

I A tool for parsing and translating ORBI syntax to the Coq
version of Hybrid is under development. It is designed to be
easily adapted to output Abella scripts. [Habli & Felty, PXTP
2013].

23



References

Felty, Momigliano, & Pientka, The Next 700 Challenge Problems
for Reasoning with Higher-Order Abstract Syntax
Representations, 2014

I Part 1—A Foundational View
F theory of contexts of assumptions (this talk)
F benchmark problems
F ORBI 0.1

I Part 2—A Survey
F benchmark problems applied to Twelf, Beluga, Hybrid, and

Abella
F comparison and discussion

Open challenge problem Repository for systems reasoning with
BInders: https://github.com/pientka/ORBI/

24

https://github.com/pientka/ORBI/

	Motivating Examples
	Contexts as Structured Sequences
	Structural Rules
	Reasoning with Contexts: Generalized Contexts vs. Context Relations
	Current and Future Work

