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Parametricity of identity types



The weak w-groupoid structure of types

@ The groupoid structure of types (Hofmann-Streicher).

p P

X x \‘;l/y x w z

e neutral :p-1=p,
e assoc:p(q r)=(p*q)-r,
e involution: (p~!)1=p
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The weak w-groupoid structure of types

@ The groupoid structure of types (Hofmann-Streicher).

p P

X x \F;l/y x \_y/ z

e neutral :p-1=p,
e assoc:p(q r)=(p*q)-r,
e involution: (p~!)1=p

@ Weak w-groupoid structure of types (Garner et al, Lumsdaine).

((p-@)-r)-s

L]
(p(qn)s ./ \.(p-q)-<r-s>

p((aD)s) “patrs)
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The synthetic approach

@ Problem: Quite difficult to formalize w-groupoids.
@ Synthetic approach : Groupoid laws are proved when needed.

pefinition left_action {X} {x y: X}
(p:x=y){z:X}{g:y=2z}
{fr:y=z}(e:q=r)

:p@g =p@r.
induction o; induction q; induction p; reflexivity.
Defined.

Lemma assoc
X} {xyzu:x}
(p:x=y)(q:y=2)(r:z=u):
(pe@g)@r=palqer).
induction r; induction q; induction p.
reflexivity.
Defined.

Lemma pentagon :

forall X (x y z u v: X),
forall (p : x = y)
(q:y=2)
(r:z=u)
(s : u=v),

(right_action (assoc p q r) s)
@ (assoc p (g @r) s)
@ (left_action p (assoc q r s))
= (assoc (p@q) rs) @ (assoc p g (r@s)).
intros.
induction s; induction r; induction q; induction p.
simpl.
reflexivity.
Defined.

Question: Do proof terms matter ?
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Outline

@ Parametricity with identity types.
Canonicity of identity functions:
The identity function is the only term inhabiting VX. X — X.

@ Polymorphic loop spaces.
Canonicity of reflexivities in loop spaces:
The reflexivity is the only term inhabiting a polymorphic loop space.

© Syntactic approach of groupoid laws.
Canonicity of groupoid laws:
There is only one implementation of a given groupoid law.
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Dependent parametricity theory in a nutshell
Logical predicates:

fel|vx:AB|=Vx:Axg:xe€|AlL(fx) € |B]

Contexts:
[Fox Al =[], x:Axg:x €A

Abstraction theorem:

r-M:A
[FTF[M]:M e |A]
Full definition:

[M:AM] = Mx:Axr:x€l|A.[M]

[MN] = [MIN]N]

] = xr

[Vx:A.B] = M :¥x:ABYx:Axg:x€lA/.(fx)e|B|

[Type] = Aa: Type.a — Type

we have M € |A| = [A] M.
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The simplest “Theorem for free”
In standard type theories, the type ID

VX : Type . X — X
is not provably uniquely inhabited. le. you cannot prove :
VfID, X : Type,x : X.f X x =x

But you can prove it is “unique in the syntax™
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The simplest “Theorem for free”
In standard type theories, the type ID
VX : Type X = X

is not provably uniquely inhabited. le. you cannot prove :

VfID, X : Type,x : X.f X x =x
But you can prove it is “unique in the syntax™
Theorem (Canonicity of the type of the identity)
If = M : ID, then there exists :

Fay VX x.MXx =x

proof.
The abstraction theorem gives :
FIM]: M e VX : Type X — X|
which undolds to a proof of :
VX : Type, Xg : X — Type,x : X. Xgx = Xg (f X x)

We conclude by instantiating Xg := Ay : X.y = x. [
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|dentity types and parametricity

Type constructor:
M:A N:A
M =4 N : Type

Introduction:
M: A
]-M M =A M

Elimination:

x:Ap:M=xkF P:Type

B : P[M/x,1m/p]
N:A U:M=N
J(B,N,U): P[N/x,U/p]

Computation:
J(B,M,1)=B

Transport:
U:M=N B : P[M/x]
U.(B) : P[N/x]
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ldentity types and parametrici’%y

ranslation of identity types:

Type constructor:

tuctor: Uem=n u.(IM)) = [N]
M =a N Type Translation of reflexivity: [1n] = 1pumy
Introduction:
M: A [tm] = 1me|M=M]|
Iy :M=aM b (Im)«([M]) = [M]
Elimination: 2 [M] = [M]

x:Ap:M=xkF P:Type
B : P[M/x,1m/p]

N:A U:M=N [(B, N, U)] = J(([BI, N, U), [N], [U])
J(B,N,U): P[N/x, U/p]

Translation of elimination:

) Translation of computations:
Computation:

(B, M,1) =B pB,m 1] = JU(BI, M, 1), [M], [1])
Transport: = J([BI. [M].[1])
U:M=N  B:P[M/x] = J([8],[M],1)

U.(B) : P[N/x] = [B]
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Loop spaces

2Ty
S X
Qo (o2
Q, VX, X — Type
Qo(X,x) = X
Qpi1(X,x) = Qux=x,1)
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Loop spaces

° ./\.
X X o AX
Q o,
2, VX, X = Type wp VX x.Q2,(X, x)
Qo(X = X
(X, x) wa(X,x)= 1. } n times
Qpi1(X,x) = Qux=x,1) 1x

Theorem (Canonicity of w, in ,)
If= M : VX x.Q,(X, x), then there exists :

F oy VXXM X x = wa(X, x)
proof. We can prove :
p € |Qa(X, x)|[Ay : X.y = x/Xr] = p = wa(X, x)

by induction over n and by doing some algebra.
We conclude using [M] : VX Xg x xg.(M X x) € [Q2,(X,x)|. O
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Syntactic characterisation of groupoid laws

@ Inspired by Guillaume Brunerie's notes.
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Syntactic characterisation of groupoid laws

@ Inspired by Guillaume Brunerie's notes.

@ Contractible context:

X :Type, x: X, x3: C, pr: My =x1, ..., xXa: Cp, Pn:

where x; does not occur in M;.
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Syntactic characterisation of groupoid laws

@ Inspired by Guillaume Brunerie's notes.

@ Contractible context:
X :Type, x: X, x1:C, pr: My =x1, ..., xp: Cp, pn: M, =x,
where x; does not occur in M;.

@ Let MLID be a minimal fragment of type theory, with:

o Identity types (intro, elim, computation),
o and restricted to contractible contexts.

No function spaces, universes, sigma types, nor inductive families.
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Syntactic characterisation of groupoid laws

@ Inspired by Guillaume Brunerie's notes.

@ Contractible context:
X :Type, x: X, x1:C, pr: My =x1, ..., xp: Cp, pn: M, =x,
where x; does not occur in M;.

@ Let MLID be a minimal fragment of type theory, with:

o Identity types (intro, elim, computation),
o and restricted to contractible contexts.

No function spaces, universes, sigma types, nor inductive families.
@ A groupoid law is a type VI.C such that :
kg C: Type

with I a contractible context.
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Syntactic characterisation of groupoid laws

@ Inspired by Guillaume Brunerie's notes.

@ Contractible context:
X :Type, x: X, x1:C, pr: My =x1, ..., xp: Cp, pn: M, =x,
where x; does not occur in M;.

@ Let MLID be a minimal fragment of type theory, with:

o Identity types (intro, elim, computation),
o and restricted to contractible contexts.

No function spaces, universes, sigma types, nor inductive families.
@ A groupoid law is a type VI.C such that :
kg C: Type

with I a contractible context.

Lemma (Groupoid laws in “X : Type, x : X" are loop spaces)
If X : Type,x : X kqa M : C, there exists n such that

M = wa(X, x) C =Qu(X,x)
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,p entagon.v

Lemma pentagon X (x : X)

y(p:x=y)
z(q:y=2)
uf(r:z=u

vis:u=v):
(right_action (assoc p g r) s}
@ (assoc p (g @ r) s)
@ (left_action p (assoc g r s))

= (assoc (p@q) rs) @ (assoc pg (r@s)).

induction s.
induction
induction
induction
simpl.
reflexivity.
Defined.

Ta=

Ready, proving pentagon

10 / 12

1
X
X
¥
p:
z
q
u
r
v
s

S OX N X XX X
0]
N

subgoal
: Type
X

I
-

[l
=

0]
=

(1/1)

(right_action (assoc pgqr) s @
assoc p (g @r) s) @

left_action p (assoc g r s) =

assoc (p@q) rs @assocpq (ra@s)
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,p entagon.v

Lemma pentagon X (x : X)

y(p:x=y)
z(q:y=2)
uf(r:z=u

vis:u=v):
(right_action (assoc p g r) s}
@ (assoc p (g @ r) s)
@ (left_action p (assoc g r s))

= (assoc (p@q) rs) @ (assec pg (r@s)).

induction s.
induction
induction
induction
simpl.

reflexivity.
Defined.

Ta=

Ready, proving pentagon
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1 subgoal
X : Type
X @ X
y - X
p:x=Yy
z X
qg:y=1z
u: X
r:z=u

(1/1)

(right_action (assoc pgqr) 1@
assoc p (g @r) 1) @

left_action p (assoc g r 1) =

assoc (p@q) r1@assocpq(ra@l)

.Line: 44 Char: 13 Coql@rted
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,p entagon.v

Lemma pentagon X (x : X) 1 subgoal
yip:x=y) X : Type
z(g:y=2z) X 1 X
uf(r:z=u y @ X
vis:u=v): p:x=Yy
(right_action (assoc p g r) s} z: X
@ (assoc p (g @r) s) q:y=2z
@ (left_action p (assoc g r s)) (1/1)
= (assoc (p@q) rs) @ (assec pg (r@s)). (right_action (assoc p g 1) 1@
induction s. assoc p (g@1) 1) @
induction r. left_action p (assoc g 1 1) =
induction gq. assoc (p@qg) 11@assocpq(l@l)
induction p.
simpl.
reflexivity.
Defined.
Ready, proving pentagon .Line: 45 Char: 13 Coql@rted
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,p entagon.v

Lemma pentagon X (x : X) 1 subgoal

yip:x=y) X : Type

z(g:y=2z) X 1 X

uf(r:z=u y @ X

vis:u=v): p:x=Yy

(right_action (assoc p g r) s} (1/1)
@ (assoc p (g @r) s) (right_action (assoc p 1 1) 1@
@ (left_action p (assoc g r s)) assoc p (1@1) 1) @
= (assoc (p@q) rs) @ (assec pg (r@s)). left_action p (assoc 11 1) =
induction s. assoc (p@1) 11 @assocpl (1@1)
induction r.
induction g.
induction p.
simpl.
reflexivity.
Defined.
Ready, proving pentagon .Line: 46 Char: 13 Coqldest@l
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,p entagon.v

Lemma pentagon X (x : X) 1 subgoal
yip:x=y) X : Type
z(g:y=2z) X 1 X
uf(r:z=u (1/1)
vis:u=v): (right_action (assoc 111) 1@

(right_action (assoc p g r) s} assoc 1 (1@1) 1) @

@ (assoc p (g @r) s) left_action 1 (assoc 11 1) =

@ (left_action p (assoc g r s)) assoc (1@1) 11@assoc 11 (1@1)

= (assoc (p@g) rs) @ (assoc p g (r@s)).

induction s.

induction r.

induction g.

induction p.

simpl.

reflexivity.

Defined.

Ready, proving pentagon .Line: 47 Char: 13 Coqldest@
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,pentag:)n.v
Lemma pentagon X (x : X) 1 subgoal
yip:x=y) X : Type
z(g:y=2z) X 1 X
uf(r:z=u (1/1)
vis:u=v): 1=1

(right_action (assoc p g r) s}
@ (assoc p (g @r) s)
@ (left_action p (assoc g r s))
= (assoc (p@g) rs) @ (assoc p g (r@s)).
induction
induction
induction
induction
simpl.
reflexivity.
Defined.

= oA

Ready, proving pentagon .Line: 48Char: 7 Coqldest@l
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Theorem (Groupoid laws are inhabited)

IfT Kq C : Type is a groupoid law, there exists I g Or.c : C.

Example:

ExX4T3ITLOC YO

:I_O!,p entagon.v

Lemma pentagon X (x : X)
y(p:x=y)
z(q:y=2)
uf(r:z=u
vis:u=v):
(right_action (assoc p g r) s}
@ (assoc p (g @r) s)
@ (left_action p (assoc g r s))
= (assoc (p@g) rs) @ (assoc p g (r@s)).
induction s.
induction r.
induction g.
induction p.
simpl.
reflexivity.
Defined.

Ready .Line: 50Char: 9 Coqldest@l
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Unicity of the canonical inhabitant

Theorem (Canonicity of proofs of groupoid laws)

IfVT.C is a groupoid law and = M : ¥I'.C and = M’ :NT.C then there
exists : =y VY T(MF) = (M'7)

Example vertical composition:

forallX(xy:X)(p: x=y)(q: x=y) (a:p=9q)
(z %) (B:q=1)p=r

We want to prove that
forallXxypqazf MXxypqazf3=MNXxypqazf
By successive inductions, it is enough to prove that :
forall X x,MXxx111x1=MXxx111x1

But LHS and RHS are an inhabitant of Q,(X,x) !

Using the canonicity for loop spaces, they are equal to wy (X, x).
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Conclusion

Open problems :

@ Comparing models of MLID with definitions of groupoids.
@ Compatibility with axioms:

UIP / K

Proof-irrelevance

Extensionality

Excluded middle X

Univalence 7
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