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The weak ω-groupoid structure of types

The groupoid structure of types (Hofmann-Streicher).

neutral : p � 1 = p,
assoc : p � (q � r) = (p � q) � r ,
involution : (p−1)−1 = p

Weak ω-groupoid structure of types (Garner et al, Lumsdaine).
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The synthetic approach

Problem: Quite di�cult to formalize ω-groupoids.

Synthetic approach : Groupoid laws are proved when needed.

Question: Do proof terms matter ?
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Outline

1 Parametricity with identity types.
Canonicity of identity functions:
The identity function is the only term inhabiting ∀X .X → X .

2 Polymorphic loop spaces.
Canonicity of re�exivities in loop spaces:
The re�exivity is the only term inhabiting a polymorphic loop space.

3 Syntactic approach of groupoid laws.
Canonicity of groupoid laws:
There is only one implementation of a given groupoid law.
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Dependent parametricity theory in a nutshell
Logical predicates:

f ∈ |∀x : A.B| ≡ ∀x : A, xR : x ∈ |A|.(f x) ∈ |B|

Contexts:
JΓ, x : AK ≡ JΓK, x : A, xR : x ∈ |A|

Abstraction theorem:

Γ ` M : A
JΓK ` JMK : M ∈ |A|

Full de�nition:

Jλx : A.MK = λx : A, xR : x ∈ |A|.JMK
JM NK = JMKN JNK

JxK = xR

J∀x : A.BK = λf : ∀x : A.B.∀x : A, xR : x ∈ |A|.(f x) ∈ |B|
JTypeK = λα : Type .α→ Type

we have M ∈ |A| ≡ JAKM.
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The simplest �Theorem for free�
In standard type theories, the type ID

∀X : Type .X → X

is not provably uniquely inhabited. Ie. you cannot prove :

∀f : ID,X : Type, x : X .f X x = x

But you can prove it is �unique in the syntax�:

Theorem (Canonicity of the type of the identity)

If ` M : ID, then there exists :

` πM : ∀X x .M X x = x

proof.
The abstraction theorem gives :

` JMK : M ∈ |∀X : Type .X → X |
which undolds to a proof of :

∀X : Type,XR : X → Type, x : X . XR x → XR (f X x)

We conclude by instantiating XR := λy : X .y = x .
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Identity types and parametricity

Type constructor:
M : A N : A
M =A N : Type

Introduction:
M : A

1M : M =A M

Elimination:
x : A, p : M = x ` P : Type

B : P[M/x , 1M/p]

N : A U : M = N

J(B,N,U) : P[N/x ,U/p]

Computation:
J(B,M, 1) ≡ B

Transport:

U : M = N B : P[M/x ]

U∗(B) : P[N/x ]

Translation of identity types:

U ∈ |M = N| ≡ U∗(JMK) = JNK

Translation of re�exivity: J1MK ≡ 1JMK

J1MK : 1M ∈ |M = M|
: (1M)∗(JMK) = JMK
: JMK = JMK

Translation of elimination:

JJ(B,N,U)K = J(J(JBK,N,U), JNK, JUK)

Translation of computations:

JJ(B,M, 1)K ≡ J(J(JBK,M, 1), JMK, J1K)

≡ J(JBK, JMK, J1K)

≡ J(JBK, JMK, 1)

≡ JBK
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Loop spaces

Ωn : ∀X ,X → Type

Ω0(X , x) := X

Ωn+1(X , x) := Ωn(x = x , 1)

ωn : ∀X x .Ωn(X , x)

ωn(X , x) ≡ 1...1x

}
n times

Theorem (Canonicity of ωn in Ωn)

If ` M : ∀X x .Ωn(X , x), then there exists :

` πM : ∀X x .M X x = ωn(X , x)

proof. We can prove :

p ∈ |Ωn(X , x)|[λy : X .y = x/XR ]→ p = ωn(X , x)

by induction over n and by doing some algebra.
We conclude using JMK : ∀X XR x xR .(M X x) ∈ |Ωn(X , x)|.
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Syntactic characterisation of groupoid laws

Inspired by Guillaume Brunerie's notes.

Contractible context:

X : Type, x : X , x1 : C1, p1 : M1 = x1, . . . , xn : Cn, pn : Mn = xn

where xi does not occur in Mi .

Let MLID be a minimal fragment of type theory, with:

Identity types (intro, elim, computation),
and restricted to contractible contexts.

No function spaces, universes, sigma types, nor inductive families.

A groupoid law is a type ∀Γ.C such that :

Γ ìd C : Type

with Γ a contractible context.

Lemma (Groupoid laws in �X : Type, x : X � are loop spaces)

If X : Type, x : X ìd M : C, there exists n such that

M ≡ ωn(X , x) C ≡ Ωn(X , x)
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Theorem (Groupoid laws are inhabited)

If Γ ìd C : Type is a groupoid law, there exists Γ ìd ΘΓ.C : C.

Example:
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If Γ ìd C : Type is a groupoid law, there exists Γ ìd ΘΓ.C : C.
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Unicity of the canonical inhabitant

Theorem (Canonicity of proofs of groupoid laws)

If ∀Γ.C is a groupoid law and ` M : ∀Γ.C and ` M ′ : ∀Γ.C then there

exists : ` πM,M′ : ∀~γ : Γ.(M ~γ) = (M ′ ~γ)

Example vertical composition:

forall X (x y : X) (p : x = y) (q : x = y) (α : p = q)
(z : X) (β : q = r), p = r.

We want to prove that

forall X x y p q α z β, M X x y p q α z β = M' X x y p q α z β

By successive inductions, it is enough to prove that :

forall X x, M X x x 1 1 1 x 1 = M' X x x 1 1 1 x 1

But LHS and RHS are an inhabitant of Ω2(X , x) !
Using the canonicity for loop spaces, they are equal to ω2(X , x).
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Conclusion

Open problems :

Comparing models of MLID with de�nitions of groupoids.

Compatibility with axioms:
UIP / K 3
Proof-irrelevance 3
Extensionality 3
Excluded middle 7
Univalence ???
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