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Generalized Rewriting

I Equational reasoning x = y |- x + 1 ==> y + 1

I Logical reasoning x <-> y |- (x /\ y) ==> (x /\ x)

I Rewriting y ~> z |- x ~> y ==> x ~> z

I Abstract data types, quotients/setoids
s, t : list, x =set y |- union x y =set x

==> union x x =set x
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Rewriting in Type Theory

Moving from substitution to congruence.

I Built-in substitution: Leibniz equality.
Π A (P : A → Type) (x y : A), P x → x = y → P y .

3 Applies to any context
5 Large proof term: repeats the context that depends on x
5 Restricted to equality, one rewrite at a time

I Congruence.
Π A B (f : A → B) (x y : A), x = y → f x = f y

5 Applies at the toplevel only
3 Small proof term: mentions the changed terms only
3 Generalizes to n-ary, parallel rewriting
5 Still restricted to equality

One can build a set of combinators to rewrite in depth: HOL
conversions [Paulson 83].
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Generalized Rewriting in Type Theory

Basin [NuPRL, 94], Sacerdoti Coen [Coq, 04]

I Generalized to any relation
Proper (iff ++> iff) not , Π P Q, P ↔ Q → ¬ P ↔ ¬ Q

I Multiple signatures for a given constant
Proper (impl −→ impl) not

Requires proof search:

I Heuristic in NuPRL based on subrelations (impl ⊂ iff)

I Complete procedure in Coq.

Both are monolithic algorithms with a primitive notion of
signature: a list of atomic relations (with variance).
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A New Look at Generalized Rewriting

Sozeau [JFR 2009]

I Extensible signatures (shallow embedding)

all : ∀ A : Type, (A → Prop) → Prop

Π A, Proper (pointwise relation A iff ++> iff) (@all A)

I An algebraic presentation, supporting higher-order functions
(rewriting under binders) and polymorphism:

Π A B C R0 R1 R2,
Proper ((R1 ++> R2) ++> (R0 ++> R1) ++> (R0 ++> R2))

(@compose A B C )

I Generic morphism declarations.

I Support for subrelations, quotienting the signatures.

I Rewriting on operators/functions, parallel rewrites. . .
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Proper

Class Proper {A} (R : relation A) (m : A) : Prop :=
proper : R m m.

Instance reflexive proper ‘(Reflexive A R) (x : A) : Proper R x .

Definition respectful {A B : Type}
(R : relation A) (R’ : relation B) : relation (A → B) :=
fun f g ⇒ ∀ x y , R x y → R’ (f x) (g y).

Notation ” R ++> R’ ” := (respectful R R’) (right associativity).

Notation ” R −→ R’ ” := (R -1 ++> R’) (right associativity).

Instance not P : Proper (iff ++> iff) not.
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Impredicativity helped

All fine with relations in Prop, how about Type-valued relations?

Proper : ΠA : Typei, (A→ A→ Typej)→ A→ Typej .

Need to show, under A : Typei:

Proper ((A→ A→ Typej)→ A→ Typej)
(iso rel A −→ eq A −→ iso)
(Proper A)

Inconsistency: Typemax(i,j+1) 6≤ Typei
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Universe Polymorphism

With full universe polymorphism (Sozeau & Tabareau [ITP’14]):

Properi j : ΠA : Typei, (A→ A→ Typej)→ A→ Typej

We can show, under A : Typei:

Properi′ j′ ((A→ A→ Typej)→ A→ Typej)
(iso rel A −→ eq A −→ iso)
(Properi j A)

With constraint: max(i, j + 1) ≤ i′.
Actually, a non-polymorphic crelation(A : Typei) := A→→ Typej
is already problematic: no relation equivalence or subrelation
definition possible.
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Computational relations

Generalized rewriting now handles:

I The function space “relation”: rewrite x to y in C =
? : C[x] → C[y]

I Isomorphism of types

I Computationally relevant relations, e.g. CoRN’s appartness
relation on reals.

I Hom-types of categories which are not Prop-based setoids,
e.g. groupoids.
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Automated rewriting

An efficiency concern: autorewrite does repeat rewrite.

I Crawls through the whole goal each time.

I Applies transitivity of rewriting at the top-level only, resulting
in large proof-terms.

We want to allow the specification of precise rewriting strategies
(e.g. bottomup, innermost, repeated...) that avoid this.

I Traversal of the goal specified by the user.

I Applies transitivity of rewriting at inner points of the term,
resulting in shorter proof-terms.
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Rewriting strategies

I Based on ELAN’s rewriting strategies

I Implemented using the LogicT monad (failure/success
continuations) for efficient backtracking and clear semantics.

I Using the existing generalized rewriting framework to produce
Proper constraints and build the rewriting proofs.

Interface: rewrite strat strategy (in t)?
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Rewriting strategies

s, t, u ::= (<-)? c (right to left?) lemma
| fail | id failure | identity
| refl reflexivity
| progress s progress
| try s failure catch
| s ; u composition
| s || t left-biased choice
| repeat s iteration (+)
| subterm(s)? s one or all subterms
| innermost s innermost first
| hints hintdb apply first matching hint
| eval redexpr apply reduction
| fold c fold expression
| pattern p pattern matching
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Derived strategies

try s = s || id
any s = fix u.try (s ; u)
repeat s = s ; any s
bottomup s = fix bu.((progress (subterms bu)) || s) ; try bu
topdown s = fix td.(s || (progress (subterms td))) ; try td
innermost s = fix i.((subterm i) || s)
outermost s = fix o.(s || (subterm o))
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An example

Suppose the theory of monoids on T.
A goal: x y : T |- x • ((ε • y) • ε).

I autorewrite with monoids will do two rewrites with both
unit laws, the proof term will be roughtly twice the goal size.

I rewrite_strat (topdown (repeat (hints monoids)))

will first rewrite ε • y to y and directly after, y • ε to y,
resulting in a proof term of size roughly that of the initial
goal, and will be twice as fast as well.
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Advantages

I Improved performance by replacing autorewrite tactic used
in Ring with: topdown (hints Esimpl)

I Avoid mixing of rewrite with Ltac constructs, e.g.:
(rewrite l1 || ... || progress rewrite ln) becomes
rewrite strat (l1 || ... || progress ln) which traverses the
term just once.

I Another common pattern:

match goal with

|- context [t] => rewrite l

end

=

rewrite_strat (topdown (pattern t; term l))
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Future work

I Debug & release

I Benchmarks
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The End
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