

## Towards an Internalization of the Groupoid Model of Type Theory

Joint work with Matthieu Sozeau (Inria Paris)

Nicolas Tabareau Ascola, Nantes

#### Groupoids as enriched sets

Moving away from identity types, we can realize a richer model:

| Proof-irrelevance            | Irrelevant Equality |
|------------------------------|---------------------|
| Propositional extensionality | Logical equivalence |
| Functional extensionality    | Pointwise equality  |
| Univalence                   | Isomorphism         |



#### Groupoids as enriched sets

- The Groupoid Model Hofmann and Streicher '94, '98
- UnivalentFoundations–Voevodsky, Awodey, Warren, ...
- Takeuti-Gandy for Type Theory (Setoids) Barras & Coquand, 2013



#### Goal of our work

- clarify what can be done intentionally with groupoids, clarify the need for identity types
- formalize the interpretation in a modular way
   > replace groupoids by higher dimensional
   structure in the future

=> require the use of universe polymorphism



#### Groupoid vs Setoids

The setoid model (at the basis of e.g. OTT), assumes a proof-irrelevant equality:

$$\begin{split} &\Sigma A: \texttt{Type}.\Sigma \sim : A \to A \to \texttt{Prop}. \\ &\Sigma \sim_{equiv} : \forall \ x \ y, \texttt{Equivalence} \ (x \sim y) \ \texttt{eq}. \\ &\Sigma \ irrel: \forall \ x \ y \ (p \ q: x \sim y), p = q \dots \end{split}$$



#### Groupoid vs Setoids

In Hofmann and Streicher: [T] : GPD. GPD come with a relevant equality:

$$\Sigma A : \mathsf{Type}.\Sigma \sim : A \to A \to \mathsf{Type}.$$
$$\Sigma \sim_{equiv} : \forall \ x \ y, \mathsf{Equivalence} \ (x \sim y) \ \mathsf{eq} \dots$$

But morphisms representing identities are still identified up to propositional equality (eq :  $\Pi A, A \rightarrow Prop$ ).



#### Intensional vs extensional metatheory

In Hofmann and Streicher, the model is built in an *extensional* metatheory, so eq is reflective there.

In *intensional* type theory, we rather represent groupoids with an additional notion of (2-)equality.

$$\begin{split} \Sigma A: \mathsf{Type}.\Sigma \sim_1 : A \to A \to \mathsf{Type}.\\ \Sigma \sim_2 : \forall \{x \; y\} \; (p \; q : x \sim_1 y), \mathsf{Type}.\\ \Sigma \sim_{2-equiv} : \forall \; x \; y, \mathsf{Equivalence} \; (x \sim_1 y) \; \sim_2 \ldots. \end{split}$$

E.g:  $\llbracket Prop \rrbracket := (Prop, iff, irrel, ...).$ 



#### $\infty$ -Groupoids

Ideally, we'd like to model  $\infty$ -groupoids, avoiding the need for truncation.

The groupoid case limits us:

- we need functional extensionality
- we need identity types to express it

A truly infinite-dimensional extension would lift these (using e.g, globular sets, operads, cubical sets).



### Our groupoid model

Stays agnostic w.r.t. future extension, entirely in categorical language (i.e. Dybjer's CwFs):

- Interprets MLTT with one universe, Π, Σ, Id-types (no type polymorphism) into CIC (actually the ECC fragment + Id-types for truncations).
- Validates extensional equality principles + "Isomorphic types are equal":

```
\Gamma \vdash i: \texttt{Elt} \ A \equiv \texttt{Elt} \ B
```

 $\Gamma \vdash \texttt{equiv} \ i: \texttt{Id} \ \mathcal{U} \ A \ B$ 



#### Defining groupoids, internally.



### Defining groupoids: Relations

Start with computational, proof-relevant relations:

Definition HomSet (T : Type) :=  $T \rightarrow T \rightarrow$  Type.

Using classes and universe polymorphism, we get notations for 1-and 2-dimensional equalities:

Class HomSet<sub>1</sub>  $T := \{eq_1 : HomSet T\}$ . Infix " $\sim_1$ " := eq<sub>1</sub> (at level 80). Class HomSet<sub>2</sub> {T} (Hom : HomSet T) := {eq<sub>2</sub> :  $\forall \{x \ y : T\}$ , HomSet (Hom x y)}. Infix " $\sim_2$ " := eq<sub>2</sub> (at level 80).



### Defining groupoids: Relations

Given a HomSet, we define type classes for equivalences:

Class Identity  $\{A\}$  (Hom : HomT A) := identity :  $\forall x$ , Hom x x. Class Inverse  $\{A\}$  (Hom : HomT A) :=

inverse :  $\forall x \ y:A, Hom \ x \ y \rightarrow Hom \ y \ x.$ 

Class Composition  $\{A\}$  (Hom : HomT A) := composition :  $\forall \{x \ y \ z:A\}, Hom \ x \ y \to Hom \ y \ z \to Hom \ x \ z.$ 

#### Pre-categories

#### In a PreCategory, coherences are given up-to ~2.

Class PreCategory 
$$T := \{ \text{Hom}_1 :> \text{HomSet}_1 \ T; \text{Hom}_2 :> \text{HomSet}_2 \ eq_1; \\ \text{Id} :> \text{Identity } eq_1; \text{Comp} :> \text{Composition } eq_1; \\ \text{Equivalence}_2 :> \forall \times y, (\text{Equivalence } (eq_2 \ (x:=x) \ (y:=y))); \\ \text{id}_R : \forall \times y \ (f : x \sim_1 y), \ f \circ \text{identity } x \sim_2 f ; \\ \text{id}_L : \forall \times y \ (f : x \sim_1 y), \text{ identity } y \circ f \sim_2 f ; \\ \text{assoc} : \forall \times y \ z \ w \ (f: x \sim_1 y) \ (g: y \sim_1 z) \ (h: z \sim_1 w), \\ (h \circ g) \circ f \sim_2 h \circ (g \circ f); \\ \text{comp} : \forall \times y \ z \ (f \ f': x \sim_1 y) \ (g \ g': y \sim_1 z), \\ f \sim_2 f' \rightarrow g \sim_2 g' \rightarrow g \circ f \sim_2 g' \circ f' \}.$$



#### Pre-groupoids

A PreGroupoid is a PreCategory where all I-Homs are invertible and subject to additional compatibility laws for inverses.

Class PreGroupoid  $T := \{ C :> PreCategory T ; Inv :> Inverse eq_1 ;$   $inv_R : \forall x y (f: x \sim_1 y), f \circ f^{-1} \sim_2 identity y ;$   $inv_L : \forall x y (f: x \sim_1 y), f^{-1} \circ f \sim_2 identity x ;$  $inv : \forall x y (f f': x \sim_1 y), f \sim_2 f' \rightarrow f^{-1} \sim_2 f'^{-1} \}.$ 



#### Groupoids and Contractibility

Groupoids are then PreGroupoids where

equality at dimension 2 is irrelevant

This irrelevance is defined using a notion of contractibility expressed with (relevant) Identity Types.

Class Contr (A : Type) := { center : A ; contr :  $\forall y : A$ , center = y }.



#### Groupoids and Contractibility

By analogy to homotopy type theory, we note IsType<sub>1</sub> the property of being a groupoid.

Class IsType<sub>1</sub>  $T := \{ G :> PreGroupoid T ;$ is\_Trunc\_2 :  $\forall (x y : T) (e e' : x \sim_1 y)$  $(E E' : e \sim_2 e'), Contr (E = E') \}.$ 

In the same way, we define IsType<sub>0</sub> when equality is irrelevant at dimension 1.

Class  $IsType_0 T := \{ S :> IsType_1 T ;$ is\_Trunc\_1 :  $\forall (x y : T) (e e' : x \sim_1 y)$ , Contr  $(e = e')\}.$ 



## Functors and natural transformations.



#### Functors and natural transformations

#### Groupoid morphisms are functors:

Class Functor {
$$T \ U$$
 : Type<sub>1</sub>} ( $f$  : [ $T$ ]  $\rightarrow$  [ $U$ ]) : Type :=  
{map :  $\forall \{x \ y\}, x \sim_1 y \rightarrow f \ x \sim_1 f \ y$ ;  
map<sub>comp</sub> :  $\forall \{x \ y \ z\}$  ( $e:x \sim_1 y$ ) ( $e':y \sim_1 z$ ),  
map ( $e' \circ e$ )  $\sim_2$  map  $e' \circ$  map  $e$ ;  
map<sub>2</sub> :  $\forall \{x \ y:[T]\}$  { $e \ e' : x \sim_1 y$ }, ( $e \sim_2 e'$ )  $\rightarrow$  map  $e \sim_2$  map  $e'$  }.  
Definition Fun\_Type ( $T \ U$  : Type<sub>1</sub>) := { $f : [T] \rightarrow [U]$  & Functor  $f$ }.

 $T \longrightarrow U$  are functors from T to U  $M \star N$  is the application of the functor M to N



#### Functors and natural transformations

need compatibility at level 2

Groupoid morphisms are functors:

Class Functor { $T \ U$  : Type<sub>1</sub>} ( $f : [T] \rightarrow [U]$ ) : Type := { map :  $\forall \{x \ y\}, x \sim_1 y \rightarrow f \ x \sim_1 f \ y$ ; map<sub>compt</sub>  $\forall \{x \ y \ z\}$  ( $e:x \sim_1 y$ ) ( $e':y \sim_1 z$ ), map ( $e' \circ e$ )  $\sim_2$  map  $e' \circ$  map e; map<sub>2</sub> :  $\forall \{x \ y:[T]\}$  { $e \ e' : x \sim_1 y$ }, ( $e \sim_2 e'$ )  $\rightarrow$  map  $e \sim_2$  map e' }. Definition Fun\_Type ( $T \ U :$  Type<sub>1</sub>) := { $f : [T] \rightarrow [U]$  & Functor f}.

 $T \longrightarrow U$  are functors from T to U  $M \star N$  is the application of the functor M to N



#### Natural transformations

### Equivalence between functors is given by natural transformations

Class NaturalTrans  $T \ U \{f g : T \longrightarrow U\} (\alpha : \forall t : [T], f \star t \sim_1 g \star t)$   $:= \alpha_{map} : \forall \{t t'\} (e : t \sim_1 t'), \alpha t' \circ map f e \sim_2 map g e \circ \alpha t.$ Definition nat\_trans  $T \ U$ : HomSet  $(T \longrightarrow U)$  $:= \lambda f g, \{\alpha : \forall t : [T], f \star t \sim_1 g \star t \& NaturalTrans \alpha\}.$ 



#### The function space groupoid structure

## Functors, natural transformations and modifications form a **PreGroupoid**.

## It requires functional extensionality to prove the truncation property of Groupoids.



## The (Pre-)Groupoid of Groupoids.



#### Homotopy equivalences

Equivalence between groupoids is given by equivalences.

Class Iso\_struct  $T \ U \ (f : [T \longrightarrow U]) :=$ { adjoint :  $[U \longrightarrow T]$  ; section :  $f \circ$  adjoint  $\sim_2$  identity U ; retraction : adjoint  $\circ f \sim_2$  identity T}.



#### Homotopy equivalences

Actually, we use the triangle identity to get adjoint equivalences (it turns it into an hProp).

```
Class Equiv_struct T \ U \ (f : T \longrightarrow U) :=
{ iso : Iso_struct f;
triangle : \forall t, section \star (f \star t) \sim_2 map f \ (retraction \star t)}.
```



#### The (Pre-)Groupoid of Groupoids

We can define the **PreGroupoid** of **Groupoids** and homotopy equivalences.

It does not form a Groupoid.

But Setoids do form a groupoid.

Definition  $Type_0^1$ :  $Type_1 := (Type_0; Equiv_{Type_0})$ .

Remark: Groupoids appear both in the type and the term => requires universe polymorphism.



#### Rewriting.



#### Rewriting: Transport

Transport is given by functoriality:

Definition transport  $A(F:[A \longrightarrow Type_1^1]) \{x \ y:[A]\} (e:x \sim_1 y)$ :  $(F \star x) \longrightarrow (F \star y) := [map \ F \ e].$ 

The equational theory is derivable from the groupoid laws, e.g.:

Definition transport<sub>eq</sub>  $A(F:[A \longrightarrow Type_1^1]) \{x \ y:[A]\}$  $\{e \ e':x \sim_1 y\} (H:e \sim_2 e')$ : transport  $F \ e \sim_1$  transport  $F \ e' := [map_2 F \ H].$ 



#### Dependent Functions.



#### **Dependent Functors**

As for functions, dependent functions are interpreted as functors, but of a dependent kind.

Class Functor<sup>II</sup> 
$$T (U : [T \longrightarrow \text{Type}_{1}^{1}]) (f : \forall t, [U * t]) : \text{Type} := \{ \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} : \forall \{x \ y\} (e: x \sim_{1} y), \text{transport } U e * (f \ x) \sim_{1} f \ y; \\ \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} : \forall x, \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} (\text{identity } x) \sim_{2} \text{transport}_{\text{id}} U * (f \ x); \\ \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} : \forall x \ y \ z (e : x \sim_{1} y) (e' : y \sim_{1} z), \\ \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} (e' \circ e) \sim_{2} \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} e' \circ \text{transport}_{\text{map}} U_{-} (\max_{\substack{\Pi \\ \text{rd}}}^{\Pi} e) \circ \\ (\text{transport}_{\text{comp}} U e e' * _{-}); \\ \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} e \sim_{2} \max_{\substack{\Pi \\ \text{rd}}}^{\Pi} e' \circ (\text{transport}_{\text{eq}} U H * (f \ x)) \}.$$



#### **Dependent Functors**

As for functions, dependent functions are interpreted as functors, but of a dependent kind.

Class Functor<sup>II</sup>  $T (U : [T \longrightarrow Type_1^{1}]) (f : \forall t, [U * t]) : Type := {$  $map<sup>II</sup> : <math>\forall \{x \ y\} (e: x \sim_1 y), \text{transport } U e * (f \ x) \sim_1 f \ y;$ map<sup>II</sup> :  $\forall x, \text{map}^{II} (\text{identity } x) \sim_2 \text{transport}_{\text{id}} U * (f \ x);$ map<sup>II</sup> :  $\forall x \ y \ z \ (e : x \sim_1 y), (e' : y \sim_1 z),$ map<sup>II</sup>  $(e' \circ e) \sim_2 \text{map}^{II} \ e' \ \text{transport}_{\text{map}} U_- (\text{map}^{II} \ e) \circ$   $(\text{transport}_{\text{comp}} \ U \ e \ e' \ \star_-);$ map<sup>II</sup> :  $\forall x \ y \ (e \ e': x \sim_1 y) (H: \ e \sim_2 e'),$ map<sup>II</sup>  $e \sim_2 \text{map}^{II} \ \circ \ (\text{transport}_{eq} \ U \ H \ \star (f \ x)) \}.$ 

provides a dependent version of transport



#### **Dependent Natural Transformations**

Equality between **dependent** functors is given by **dependent** natural transformations.

Class NaturalTrans<sup>II</sup>  $T (U:[T \longrightarrow \text{Type}_{1}^{1}]) \{f g: \Pi_{T} U\}$   $(\alpha : \forall t, f \star t \sim_{1} g \star t) :=$   $\alpha_{\text{map}^{\Pi}} : \forall \{t t'\} e, \alpha t' \circ \text{map}^{\Pi} f e \sim_{2} \text{map}^{\Pi} g e \circ \text{transport}_{\text{map}} U e (\alpha t).$ Definition nat\_trans<sup>II</sup>  $T (U:[T \longrightarrow \text{Type}_{1}^{1}]) (f g: \Pi_{T} U)$  $:= \{\alpha : \forall t : [T], f \star t \sim_{1} g \star t \& \text{NaturalTrans}^{\Pi} \alpha\}.$ 



#### **Dependent Natural Transformations**

Equality between **dependent** functors is given by **dependent** natural transformations.

Class NaturalTrans<sup>II</sup>  $T (U:[T \longrightarrow \text{Type}_1^1]) \{f g: \Pi_T U\}$   $(\alpha : \forall t, f \star t \sim_1 g \star t) :=$   $\alpha_{\text{map}^{\Pi}} : \forall \{t t'\} e, \alpha t' \circ \text{map}^{\Pi} f e \sim_2 \text{map}^{\Pi} g e \circ \text{transport}_{\text{map}} U e (\alpha t).$ Definition nat\_trans<sup>II</sup>  $T (U:[T \longrightarrow \text{Type}_1^1]) (f g: \Pi_T U)$  $:= \{\alpha : \forall t : [T], f \star t \sim_1 g \star t \& \text{NaturalTrans}^{\Pi} \alpha\}.$ 

#### Dependent functors form a Groupoid.



#### Dependent Sums.



#### Dependent Sums

In the interpretation of  $\Sigma$  types, we pay for the fact that we are missing the 2-dimensional nature of groupoids.

We must restrict to codomains in setoids.

Definition  $\Sigma_T T (U : [T \longrightarrow Type_0^1]) := \{t : [T] \& [U \star t]\}.$ 



## The interpretation of Type Theory.



# Takeuti-Gandy style interpretaion

Following Dybjer, Hofmann&Streicher, Coquand et al., we interpret:

- Context  $\Gamma$  as a Groupoid
- Type  $\Gamma \vdash A$  as a functor from  $\Gamma$  to the Groupoid of setoids
- Context extension  $\Gamma, x : A \vdash$  is given by dependent sums
- Term  $\Gamma \vdash x : A$  as a functor from  $\Gamma$  to A



# Takeuti-Gandy style interpretaion

Following Dybjer, Hofmann&Streicher, Coquand et al., we interpret:

- Context Γ as a ∞-Groupoid
- Type Γ⊢A as a functor from Γ to the ∞-Groupoid of ∞-Groupoid
- Context extension  $\Gamma, x : A \vdash$  is given by dependent sums
- Term  $\Gamma \vdash x : A$  as a  $\infty$ -functor from  $\Gamma$  to A



#### 2 views on Dependent Types

A dependent type  $\Gamma, x : A \vdash B$  is interpreted in two equivalent ways:

- As a functor from  $\Sigma A$  to setoids
- As a type family over A (corresponding to a family of sets in constructive mathematics). A type family can be seen as a fibration from B to A.

Definition TypFam { $\Gamma$  : Context} (A: Typ  $\Gamma$ ) := [ $\Pi$  ( $\lambda \gamma$ , ( $A \star \gamma$ )  $_{\upharpoonright s} \longrightarrow \text{Type}_0^1$ ; TypFam<sub>comp</sub> \_)].



#### 2 views on Dependent Types

Those 2 views can be related using a dependent closure at the level of types.

In the interpretation of typing judgments, this connection is used to switch between the fibration and the morphism points of view.



#### The translation

#### Using those notions, we can define the translation of TT

Definition Var { $\Gamma$ } (A:Typ  $\Gamma$ ) : Tm  $\uparrow A := (\lambda \ t, \pi_2 \ t; \text{Var}_{comp} \ A)$ . Definition Prod  $\{\Gamma\}$  (A:Typ  $\Gamma$ ) (F:TypFam A) : Typ  $\Gamma := (\lambda s, \Pi_0 (F \star s); \operatorname{Prod}_{comp} A F).$ Definition App { $\Gamma$ } {A:Typ  $\Gamma$ } {F:TypFam A}  $(c:Tm (Prod F)) (a:Tm A) : Tm (F \{\{a\}\}) :=$  $(\lambda s, (c \star s) \star (a \star s); App_{comp} c a).$ Definition Lam  $\{\Gamma\}$  {A:Typ  $\Gamma\}$  {B:TypDep A} (b:Tm B) : Tm (Prod ( $\Lambda B$ )) := ( $\lambda \gamma$ , ( $\lambda t$ ,  $b \star (\gamma ; t)$ ; \_); Lam<sub>comp</sub> b). Definition Sigma  $\{\Gamma\}$  (A:Typ  $\Gamma$ ) (F:TypFam A) : Typ  $\Gamma := (\lambda \gamma; [\Gamma], \Sigma (F \star \gamma); \text{Sigma}_{\text{comp}} A F).$ Definition Beta { $\Gamma$ } {A:Typ  $\Gamma$ } {F:TypDep A} (b:Tm F) (a:Tm A) : [Lam  $b \star a$ ] = [ $b \circ \text{SubExtId } a$ ] := eq\_refl\_.



#### The translation

#### Using those notions, we can define the translation of TT

Definition Var { $\Gamma$ } (A:Typ  $\Gamma$ ) : Tm  $\uparrow A := (\lambda t, \pi_2 t; Var_{comp} A)$ .

#### Definition Prod $\{\Gamma\}$ (A:Typ $\Gamma$ ) (F:TypFam A) : Typ $\Gamma$ := Not Completely formalised

Definition App { $\Gamma$ } {A:Typ  $\Gamma$ } {F:TypFam A} (c:Tm (Prod F)) (a:Tm A) : Tm (F {{a}}) := Need more automated) reasoning using relevant rewriting

Definition Lam { $\Gamma$ } {(see  $next_ptakk$ )(b:Tm B) : Tm (Prod ( $\Lambda$  B)) := ( $\lambda \gamma$ , ( $\lambda t$ ,  $b \star (\gamma ; t)$ ; \_); Lam<sub>comp</sub> b).

Definition Sigma {I} (A:Typ I) (F:TypFam A) : Typ  $\Gamma := (\lambda \gamma: [\Gamma], \Sigma (F \star \gamma); Sigma_{comp} A F).$ 

**Definition** Beta { $\Gamma$ } {A:Typ  $\Gamma$ } {F:TypDep A} (b:Tm F) (a:Tm A) : [Lam  $b \star a$ ] = [ $b \circ$  SubExtId a] := eq\_refl\_.



#### Identity Types

The meaning of the identity types is given by induction on types instead of by an inductive type.

Definition Id { $\Gamma$ } (A: Typ  $\Gamma$ ) (a b : Tm A) : Typ  $\Gamma := (\lambda \gamma, (a \star \gamma \sim_1 b \star \gamma; \_); Id_{comp} A a b).$ 



### Identity Types

The meaning of the identity types is given by induction on types instead of by an inductive type.

Definition Id { $\Gamma$ } (A: Typ  $\Gamma$ ) (a b : Tm A) : Typ  $\Gamma := (\lambda \gamma, (a \star \gamma \sim_1 b \star \gamma; \_); Id_{comp} A a b).$ 

We can interpret the J eliminator of MLTT on Id using functoriality of P and products.

The J equality rule holds up to  $\sim_2$  in the model.



#### Univalent Type Theory

As equality between setoids is given by (adjoint) equivalence, we get a type theory with a univalent universe.

The precise formulation is still work in progress.





- Groupoids can be internalised but this requires functional extensionality and the use of identity types for contractibility.
- We have a (partially) formalised interpretation of a type theory with a univalent universe.
- Should scale to higher-order models (ie. cubical sets)

