
Nicolas Tabareau

Ascola, Nantes

Towards an Internalization of the
Groupoid Model of Type Theory	

!

Joint work with Matthieu Sozeau (Inria Paris)

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Groupoids as enriched sets

2

Moving away from identity types, we can realize a
richer model:

Proof-irrelevance Irrelevant Equality

Propositional extensionality Logical equivalence

Functional extensionality Pointwise equality

Univalence Isomorphism

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Groupoids as enriched sets

3

• The Groupoid Model – Hofmann and Streicher ’94, ’98  

• UnivalentFoundations–Voevodsky, Awodey, Warren, …  

• Takeuti-Gandy for Type Theory (Setoids) – Barras &
Coquand, 2013

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Goal of our work

4

• clarify what can be done intentionally with  
groupoids, clarify the need for identity types 

• formalize the interpretation in a modular way  
=> replace groupoids by higher dimensional
structure in the future  
=> require the use of universe polymorphism 

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Groupoid vs Setoids

5

Groupoids vs setoids

The setoid model (at the basis of e.g. OTT), assumes a
proof-irrelevant equality:

⌃A : Type.⌃ ⇠ : A ! A ! Prop.

⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq.
⌃ irrel : 8 x y (p q : x ⇠ y), p = q . . .

In Hofmann and Streicher: JT K : GPD. GPD come with a relevant
equality:

⌃A : Type.⌃ ⇠ : A ! A ! Type.

⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq . . .

But morphisms representing identities are still identified up to
propositional equality (eq : ⇧A,A ! A ! Prop).

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 5

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Groupoid vs Setoids

6

Groupoids vs setoids

The setoid model (at the basis of e.g. OTT), assumes a
proof-irrelevant equality:

⌃A : Type.⌃ ⇠ : A ! A ! Prop.

⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq.
⌃ irrel : 8 x y (p q : x ⇠ y), p = q . . .

In Hofmann and Streicher: JT K : GPD. GPD come with a relevant
equality:

⌃A : Type.⌃ ⇠ : A ! A ! Type.

⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq . . .

But morphisms representing identities are still identified up to
propositional equality (eq : ⇧A,A ! A ! Prop).

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 5

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Intensional vs extensional metatheory

7

Intensional vs extensional metatheory

In Hofmann and Streicher, the model is built in an extensional

metatheory, so eq is reflective there.

In intensional type theory, we rather represent groupoids with an
additional notion of (2-)equality.

⌃A : Type.⌃ ⇠1 : A ! A ! Type.

⌃ ⇠2 : 8 {x y} (p q : x ⇠1 y), Type.

⌃ ⇠2�equiv: 8 x y,Equivalence (x ⇠1 y) ⇠2

E.g: JPropK := (Prop, i↵, irrel, . . .).

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 6

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

∞-Groupoids

8

Ideally, we’d like to model ∞-groupoids, avoiding the need
for truncation. 	

!
The groupoid case limits us:	
!

• we need functional extensionality  

• we need identity types to express it  

A truly infinite-dimensional extension would lift these	

(using e.g, globular sets, operads, cubical sets).

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Our groupoid model

9

Stays agnostic w.r.t. future extension, entirely in
categorical language (i.e. Dybjer’s CwFs):	

!

• Interprets MLTT with one universe, Π, Σ, Id-types (no
type polymorphism) into CIC (actually the ECC
fragment + Id-types for truncations).  

• Validates extensional equality principles +
“Isomorphic types are equal”:

Our groupoid model

I Stays agnostic w.r.t. future extension, entirely in categorical
language (i.e. Dybjer’s CwFs).

I Interprets MLTT with one universe, ⇧, ⌃, Id-types (no type
polymorphism) into CIC (actually the ECC fragment +
Id-types for truncations).

I Validates extensional equality principles + one additional rule:

� ` i : Elt A ⌘ Elt B

� ` equiv i : Id U A B

“Isomorphic types are equal”

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 8

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

10

Defining 	
groupoids,
internally.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Defining groupoids: Relations

11

Start with computational, proof-relevant relations:

Using classes and universe polymorphism, we get
notations for 1-and 2-dimensional equalities:

Definining groupoids: relations

Start with computational, proof-relevant relations:

Definition HomSet (T : Type) := T ! T ! Type.

Using classes and universe polymorphism, we get notations for 1-
and 2-dimensional equalities:

Class HomSet
1

T := {eq
1

: HomSet T}.
Infix ”⇠

1

” := eq

1

(at level 80).

Class HomSet
2

{T} (Hom : HomSet T) :=
{eq

2

: 8 {x y : T}, HomSet (Hom x y)}.
Infix ”⇠

2

” := eq

2

(at level 80).

Given a HomSet, we define type classes: Identity, Inverse (noted
f

�1) and Composition. An Equivalence packs these.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 11

Definining groupoids: relations

Start with computational, proof-relevant relations:

Definition HomSet (T : Type) := T ! T ! Type.

Using classes and universe polymorphism, we get notations for 1-
and 2-dimensional equalities:

Class HomSet
1

T := {eq
1

: HomSet T}.
Infix ”⇠

1

” := eq

1

(at level 80).

Class HomSet
2

{T} (Hom : HomSet T) :=
{eq

2

: 8 {x y : T}, HomSet (Hom x y)}.
Infix ”⇠

2

” := eq

2

(at level 80).

Given a HomSet, we define type classes: Identity, Inverse (noted
f

�1) and Composition. An Equivalence packs these.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 11

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Defining groupoids: Relations

12

Given a HomSet, we define type classes for
equivalences:

4 Univalence For Free, not yet

now2 This formalization is a great benchmark for universe polymorphism as it stresses the
universe system by constructing a hierarchy of types embedded in nested structures.

3 The translation

3.1 Definition of weak-2-groupoids

We formalize weak-2-groupoids using type classes. Contrarily to what is done in the usual
Setoid translation, the basic notion of morphisms is given as inhabitants of a relation in
Type:

Definition HomT (A : Type) := A æ A æ Type.

Homs are relation, that is inhabitants of type HomT T for a particular T , and morphisms
are inhabitants of a hom.

Given a hom, we define type classes that represents that the Hom-set of morphisms
on a Type A is reflexive (which corresponds to the identity morphism), symmetric (which
corresponds to the existence of an inverse morphism for every morphism) and transitive
(which corresponds to morphisms composition).

Class Identity {A} (Hom : HomT A) :=
identity : ’ x , Hom x x .

Class Inverse {A} (Hom : HomT A) :=
inverse : ’ x y :A, Hom x y æ Hom y x .

Class Composition {A} (Hom : HomT A) :=
composition : ’ {x y z :A}, Hom x y æ Hom y z æ Hom x z .

Notation ”g ° f” := (composition f g) (at level 50).

Class Equivalence T (Eq : HomT T):= {

Equivalence Identity :> Identity Eq ;
Equivalence Inverse :> Inverse Eq ;
Equivalence Composition :> Composition Eq

}.

In a 2-groupoid, all 2-morphisms are invertible and higher equalities are trivial. Thus
the set of 2-Homs denoted by ≥2 corresponds to an equivalence relation.

Class HomT T (Hom : HomT T) := {eq : ’ {x y : T}, HomT (Hom x y)}.
Infix ”≥” := eq (at level 80).

Class Category T (Hom : HomT T) (Hom2 : HomT Hom) := {

Category Identity :> Identity Hom;
Category Composition :> Composition Hom;

id R : ’ x y (f : Hom x y), f ¶ (identity x) ≥ f ;
id L : ’ x y (f : Hom x y), (identity y) ¶ f ≥ f ;
assoc : ’ x y z w (f : Hom x y) (g : Hom y z) (h: Hom z w),

(h ¶ g) ¶ f ≥ h ¶ (g ¶ f);
comp : ’ x y z (f f ’ : Hom x y) (g g’ : Hom y z),

2 Available at http://tabareau.fr/univalence_for_free.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Pre-categories

13

In a PreCategory, coherences are given up-to ∼2.	

Pre-categories

In a PreCategory, coherences are given up-to ⇠2. Ordinary
categories additionally require that ⇠2 is trivial.

Class PreCategory T := { Hom
1

:> HomSet
1

T ; Hom
2

:> HomSet
2

eq

1

;
Id :> Identity eq

1

; Comp :> Composition eq

1

;
Equivalence

2

:> 8 x y, (Equivalence (eq
2

(x :=x) (y :=y)));
idR : 8 x y (f : x ⇠

1

y), f � identity x ⇠
2

f ;
idL : 8 x y (f : x ⇠

1

y), identity y � f ⇠
2

f ;
assoc : 8 x y z w (f : x ⇠

1

y) (g : y ⇠
1

z) (h: z ⇠
1

w),

(h � g) � f ⇠
2

h � (g � f);
comp : 8 x y z (f f’: x ⇠

1

y) (g g’: y ⇠
1

z),
f ⇠

2

f’ ! g ⇠
2

g’ ! g � f ⇠
2

g’ � f’ }.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 12

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Pre-groupoids

14

A PreGroupoid is a PreCategory where all 1-Homs are 	
!!invertible and subject to additional compatibility laws for 	
!!inverses.

Pre-groupoids

A PreGroupoid is a PreCategory where all 1-Homs are invertible
and subject to additional compatibility laws for inverses.

Class PreGroupoid T := { C :> PreCategory T ; Inv :> Inverse eq

1

;
invR : 8 x y (f : x ⇠

1

y), f � f�1 ⇠
2

identity y ;
invL : 8 x y (f : x ⇠

1

y), f�1 � f ⇠
2

identity x ;
inv : 8 x y (f f’: x ⇠

1

y), f ⇠
2

f’ ! f�1 ⇠
2

f’�1}.

Groupoids are then pre-groupoids where equality at dimension 2 is
irrelevant. This irrelevance is defined using a notion of
contractibility expressed with (relevant) identity types.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 13

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Groupoids and Contractibility

15

Groupoids are then PreGroupoids where	

!

equality at dimension 2 is irrelevant	

!
This irrelevance is defined using a notion of contractibility
expressed with (relevant) Identity Types.

Contractibility

Class Contr (A : Type) := {
center : A ;
contr : 8 y : A, center = y}.

By analogy to homotopy type theory, we note IsType1 the property
of being a groupoid.

Class IsType1 T := { G :> PreGroupoid T ;
is Trunc 2 : 8 (x y : T) (e e’ : x ⇠

1

y)
(E E’ : e ⇠

2

e’), Contr (E = E’)}.
In the same way, we define IsType0 when equality is irrelevant at
dimension 1.

Class IsType0 T := { S :> IsType1 T ;
is Trunc 1 : 8 (x y : T) (e e’ : x ⇠

1

y) , Contr (e = e’)}.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 14

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Groupoids and Contractibility

16

Contractibility

Class Contr (A : Type) := {
center : A ;
contr : 8 y : A, center = y}.

By analogy to homotopy type theory, we note IsType1 the property
of being a groupoid.

Class IsType1 T := { G :> PreGroupoid T ;
is Trunc 2 : 8 (x y : T) (e e’ : x ⇠

1

y)
(E E’ : e ⇠

2

e’), Contr (E = E’)}.
In the same way, we define IsType0 when equality is irrelevant at
dimension 1.

Class IsType0 T := { S :> IsType1 T ;
is Trunc 1 : 8 (x y : T) (e e’ : x ⇠

1

y) , Contr (e = e’)}.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 14

Contractibility

Class Contr (A : Type) := {
center : A ;
contr : 8 y : A, center = y}.

By analogy to homotopy type theory, we note IsType1 the property
of being a groupoid.

Class IsType1 T := { G :> PreGroupoid T ;
is Trunc 2 : 8 (x y : T) (e e’ : x ⇠

1

y)
(E E’ : e ⇠

2

e’), Contr (E = E’)}.
In the same way, we define IsType0 when equality is irrelevant at
dimension 1.

Class IsType0 T := { S :> IsType1 T ;
is Trunc 1 : 8 (x y : T) (e e’ : x ⇠

1

y) , Contr (e = e’)}.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 14

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

17

Functors and natural
transformations.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Functors and natural transformations

18

Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 16

Groupoid morphisms are functors:

are functors from T to U

Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 16

Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 16

is the application of the functor M to N

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Functors and natural transformations

18

Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 16

Groupoid morphisms are functors:

are functors from T to U

Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 16

Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 16

is the application of the functor M to N

need compatibility at level 2

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

19

Equivalence between functors is given by natural
transformations

Natural transformations	

Natural transformations

Equivalence between functors is given by natural transformations:

Class NaturalTrans T U {f g : T �! U} (↵ : 8 t : [T], f ? t ⇠
1

g ? t)
:= ↵map : 8 {t t’} (e : t ⇠

1

t’), ↵ t’ � map f e ⇠
2

map g e � ↵ t.

Definition nat trans T U : HomSet (T �! U)
:= � f g, {↵ : 8 t : [T], f ? t ⇠

1

g ? t & NaturalTrans ↵}.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 17

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

The function space groupoid structure
	

20

Functors, natural transformations and modifications form a
PreGroupoid. 	

!
!

It requires functional extensionality to prove the truncation
property of Groupoids.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

21

The (Pre-)Groupoid of 	

Groupoids.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Homotopy equivalences

22

Equivalence between groupoids is given by equivalences.

Homotopy equivalences

Equivalence between groupoids is given by adjoint equivalences.

Class Iso struct T U (f : [T �! U]) :=
{ adjoint : [U �! T] ;

section : f � adjoint ⇠
2

identity U ;
retraction : adjoint � f ⇠

2

identity T}.

This type class defines usual equivalences. We need the triangle
identity to get adjoint equivalences (it turns it into an hProp).

Class Equiv struct T U (f : T �! U) :=
{ iso : Iso struct f ;

triangle : 8 t, section ? (f ? t) ⇠
2

map f (retraction ? t)}.
Definition Equiv A B := {f : A �! B & Equiv struct f }.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 20

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Homotopy equivalences

23

Actually, we use the triangle identity to get adjoint
equivalences (it turns it into an hProp).

Homotopy equivalences

Equivalence between groupoids is given by adjoint equivalences.

Class Iso struct T U (f : [T �! U]) :=
{ adjoint : [U �! T] ;

section : f � adjoint ⇠
2

identity U ;
retraction : adjoint � f ⇠

2

identity T}.

This type class defines usual equivalences. We need the triangle
identity to get adjoint equivalences (it turns it into an hProp).

Class Equiv struct T U (f : T �! U) :=
{ iso : Iso struct f ;

triangle : 8 t, section ? (f ? t) ⇠
2

map f (retraction ? t)}.
Definition Equiv A B := {f : A �! B & Equiv struct f }.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 20

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

24

We can define the PreGroupoid of Groupoids and
homotopy equivalences. 	

!
It does not form a Groupoid.	

!

But Setoids do form a groupoid.

The (Pre-)Groupoid of Groupoids	

Remark: Groupoids appear both in the type and the term	

 => requires universe polymorphism.

Groupoid of types

I We can define the pre-groupoid Type11 of groupoids and
homotopy equivalences. It does not form a groupoid.

I Setoids (inhabitants of Type0) do form a groupoid:

Definition Type1
0

: Type1 := (Type0 ; EquivType0).

EquivType0 is a proof that Equiv and Equiv eq form a
groupoid (using funext again).

Note that Type1 appears both in the type and in the term
(through the proof).

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 22

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

25

Rewriting.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Rewriting: Transport	

26

Transport

Definition transport A (F :[A �! Type1
1

]) {x y :[A]} (e:x ⇠
1

y)
: (F ? x) �! (F ? y) := [map F e].

The equational theory is derivables from the groupoid laws, e.g.:

Definition transporteq A (F :[A �! Type1
1

]) {x y :[A]}
{e e’:x ⇠

1

y} (H:e ⇠
2

e’)
: transport F e ⇠

1

transport F e’ := [map

2

F H].

We also use transportid, transportcomp and transportmap for
compatibilities with identities, composition and for the functoriality
of transport.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 24

Transport

Definition transport A (F :[A �! Type1
1

]) {x y :[A]} (e:x ⇠
1

y)
: (F ? x) �! (F ? y) := [map F e].

The equational theory is derivables from the groupoid laws, e.g.:

Definition transporteq A (F :[A �! Type1
1

]) {x y :[A]}
{e e’:x ⇠

1

y} (H:e ⇠
2

e’)
: transport F e ⇠

1

transport F e’ := [map

2

F H].

We also use transportid, transportcomp and transportmap for
compatibilities with identities, composition and for the functoriality
of transport.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 24

The equational theory is derivable from the groupoid
laws, e.g.:

Transport is given by functoriality:

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

27

Dependent Functions.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Dependent Functors	

28

As for functions, dependent functions are interpreted as
functors, but of a dependent kind.

Dependent Product

As for functions, dependent functions are interpreted as functors,
but of a dependent kind.

Class Functor⇧ T (U : [T �! Type1
1

]) (f : 8 t, [U ? t]) : Type := {
map

⇧ : 8 {x y} (e: x ⇠
1

y), transport U e ? (f x) ⇠
1

f y ;
map

⇧

id : 8 x, map

⇧ (identity x) ⇠
2

transportid U ? (f x);
map

⇧

comp : 8 x y z (e : x ⇠
1

y) (e’ : y ⇠
1

z),
map

⇧ (e’ � e) ⇠
2

map

⇧ e’ � transportmap U (map

⇧ e) �
(transportcomp U e e’ ?);

map

⇧

2

: 8 x y (e e’: x ⇠
1

y) (H: e ⇠
2

e’),
map

⇧ e ⇠
2

map

⇧ e’ � (transporteq U H ? (f x))}.
Definition ⇧

T

T (U:[T �! Type1
1

]) :=
{f : 8 t, [U ? t] & Functor⇧ U f }.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 26

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Dependent Functors	

28

As for functions, dependent functions are interpreted as
functors, but of a dependent kind.

Dependent Product

As for functions, dependent functions are interpreted as functors,
but of a dependent kind.

Class Functor⇧ T (U : [T �! Type1
1

]) (f : 8 t, [U ? t]) : Type := {
map

⇧ : 8 {x y} (e: x ⇠
1

y), transport U e ? (f x) ⇠
1

f y ;
map

⇧

id : 8 x, map

⇧ (identity x) ⇠
2

transportid U ? (f x);
map

⇧

comp : 8 x y z (e : x ⇠
1

y) (e’ : y ⇠
1

z),
map

⇧ (e’ � e) ⇠
2

map

⇧ e’ � transportmap U (map

⇧ e) �
(transportcomp U e e’ ?);

map

⇧

2

: 8 x y (e e’: x ⇠
1

y) (H: e ⇠
2

e’),
map

⇧ e ⇠
2

map

⇧ e’ � (transporteq U H ? (f x))}.
Definition ⇧

T

T (U:[T �! Type1
1

]) :=
{f : 8 t, [U ? t] & Functor⇧ U f }.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 26

provides a dependent version of transport

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Dependent Natural Transformations

29

Equality between dependent functors is given by
dependent natural transformations.

Dependent natural transformations

Equality between dependent functors is given by dependent natural
transformations and equality at level 2 is given by dependent
modifications.

Class NaturalTrans⇧ T (U:[T �! Type1
1

]) {f g : ⇧
T

U}
(↵ : 8 t, f ? t ⇠

1

g ? t) :=
↵map⇧ : 8 {t t’} e, ↵ t’ � map

⇧ f e ⇠
2

map

⇧ g e � transportmap U e (↵ t).

Definition nat trans⇧ T (U:[T �! Type1
1

]) (f g : ⇧
T

U)
:= {↵ : 8 t : [T], f ? t ⇠

1

g ? t & NaturalTrans⇧ ↵}.

Definition modification⇧ T U (f g : ⇧
T

U) : HomSet (f ⇠
1

g)
:= � ↵ � , 8 t : [T], ↵ ? t ⇠

2

� ? t.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 27

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Dependent Natural Transformations

29

Equality between dependent functors is given by
dependent natural transformations.

Dependent natural transformations

Equality between dependent functors is given by dependent natural
transformations and equality at level 2 is given by dependent
modifications.

Class NaturalTrans⇧ T (U:[T �! Type1
1

]) {f g : ⇧
T

U}
(↵ : 8 t, f ? t ⇠

1

g ? t) :=
↵map⇧ : 8 {t t’} e, ↵ t’ � map

⇧ f e ⇠
2

map

⇧ g e � transportmap U e (↵ t).

Definition nat trans⇧ T (U:[T �! Type1
1

]) (f g : ⇧
T

U)
:= {↵ : 8 t : [T], f ? t ⇠

1

g ? t & NaturalTrans⇧ ↵}.

Definition modification⇧ T U (f g : ⇧
T

U) : HomSet (f ⇠
1

g)
:= � ↵ � , 8 t : [T], ↵ ? t ⇠

2

� ? t.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 27

Dependent functors form a Groupoid.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

30

Dependent Sums.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Dependent Sums

31

In the interpretation of Σ types, we pay for the fact that we
are missing the 2-dimensional nature of groupoids.	

!
We must restrict to codomains in setoids.

Dependent Sum

In the interpretation of ⌃ types, we pay for the fact that we are
missing the 2-dimensional nature of Type11. We must restrict to
codomains in Type10.

Definition ⌃

T

T (U : [T �! Type1
0

]) := {t : [T] & [U ? t]}.

Definition ⌃

Eq

T (U : [T �! Type1
0

]) : HomSet (⌃
T

U) :=
� m n, {P : [m] ⇠

1

[n] & transport (U�s) P ? (⇡
2

m) ⇠
1

⇡
2

n}.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 30

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

32

The interpretation of	

Type Theory.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Takeuti-Gandy style
interpreation

33

Following Dybjer, Hofmann&Streicher, Coquand et al.,	

we interpret:	

!

• Context Γ as a Groupoid 

• Type Γ⊢A as a functor from Γ to the Groupoid of
setoids 

• Context extension Γ, x : A ⊢ is given by dependent sums 

• Term Γ ⊢ x : A as a functor from Γ to A  

!

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Takeuti-Gandy style
interpreation

33

Following Dybjer, Hofmann&Streicher, Coquand et al.,	

we interpret:	

!

• Context Γ as a ∞-Groupoid 

• Type Γ⊢A as a functor from Γ to the ∞-Groupoid of  
∞-Groupoid 

• Context extension Γ, x : A ⊢ is given by dependent sums 

• Term Γ ⊢ x : A as a ∞-functor from Γ to A  

!

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

34

A dependent type Γ, x : A ⊢ B is interpreted in two
equivalent ways:	

!

• As a functor from Σ A to setoids 

• As a type family over A (corresponding to a family of
sets in constructive mathematics). A type family can be
seen as a fibration from B to A.

Dependent types

A dependent type �, x : A ` B is interpreted in two equivalent
ways:

I As a type TypDep A := Typ (⌃ A) over the dependent sum
of � and A

I As a type family TypFam A over A (corresponding to a family
of sets in constructive mathematics). A type family can be
seen as a fibration from B to A.

Definition TypFam {� : Context} (A: Typ �) :=
[⇧ (� �, (A ? �) �s �! Type1

0

; TypFamcomp)].

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 35

2 views on Dependent Types

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

2 views on Dependent Types

35

Those 2 views can be related using a dependent closure at
the level of types. 	

!
In the interpretation of typing judgments, this connection is
used to switch between the fibration and the morphism
points of view.	

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

The translation

36

Using those notions, we can define the translation of TTThe definitions

Definition Var {�} (A:Typ �) : Tm ⇥A := (� t, ⇡
2

t; Varcomp A).

Definition Prod {�} (A:Typ �) (F :TypFam A)
: Typ � := (� s, ⇧

0

(F ? s); Prodcomp A F).

Definition App {�} {A:Typ �} {F :TypFam A}
(c:Tm (Prod F)) (a:Tm A) : Tm (F {{a}}) :=
(� s, (c ? s) ? (a ? s); Appcomp c a).

Definition Lam {�} {A:Typ �} {B:TypDep A} (b:Tm B)
: Tm (Prod (⇤ B)) := (� �, (� t, b ? (� ; t) ;); Lamcomp b).

Definition Sigma {�} (A:Typ �) (F :TypFam A)
: Typ � := (� �: [�], ⌃ (F ? �); Sigmacomp A F).

Definition Beta {�} {A:Typ �} {F :TypDep A} (b:Tm F) (a:Tm A)
: [Lam b ? a] = [b � SubExtId a] := eq refl .

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 41

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

The translation

36

Using those notions, we can define the translation of TT

Definition Var {�} (A:Typ �) : Tm ⇥A := (� t, ⇡
2

t; Varcomp A).

Definition Prod {�} (A:Typ �) (F :TypFam A)
: Typ � := (� s, ⇧

0

(F ? s); Prodcomp A F).

Definition App {�} {A:Typ �} {F :TypFam A}
(c:Tm (Prod F)) (a:Tm A) : Tm (F {{a}}) :=
(� s, (c ? s) ? (a ? s); Appcomp c a).

Definition Lam {�} {A:Typ �} {B:TypDep A} (b:Tm B)
: Tm (Prod (⇤ B)) := (� �, (� t, b ? (� ; t) ;); Lamcomp b).

Definition Sigma {�} (A:Typ �) (F :TypFam A)
: Typ � := (� �: [�], ⌃ (F ? �); Sigmacomp A F).

Definition Beta {�} {A:Typ �} {F :TypDep A} (b:Tm F) (a:Tm A)
: [Lam b ? a] = [b � SubExtId a] := eq refl .

Not Completely formalised 	

!

Need more automated reasoning using relevant rewriting
(see next talk!) 	

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Identity Types

37

Identity types

Definition Id {�} (A: Typ �) (a b : Tm A)
: Typ � := (� �, (a ? � ⇠

1

b ? � ;); Idcomp A a b).

The introduction rule just lifts the identity of the underlying setoid:

Definition Refl � (A: Typ �) (a : Tm A)
: Tm (Id a a) := (� �, identity (a ? �); Reflcomp).

We can interpret the J eliminator of MLTT on Id using
functoriality of P and products (⇧comp).

Definition J � (A:Typ �) (a b:Tm A)
(P:TypFam (Sigma (⇤ (Id (a � Sub) (Var A)))))
(e:Tm (Id a b))
(p:Tm (P{{Pair ⇥ (Refl a)}}))

: Tm (P{{Pair ⇥e}}) :=
⇧comp (� �, (map (P ? �) (J Pair e P �)); Jcomp) ? p.

The J equality rule holds up to ⇠2 in the model.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 42

The meaning of the identity types is given 	

by induction on types instead of by an inductive type.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Identity Types

37

Identity types

Definition Id {�} (A: Typ �) (a b : Tm A)
: Typ � := (� �, (a ? � ⇠

1

b ? � ;); Idcomp A a b).

The introduction rule just lifts the identity of the underlying setoid:

Definition Refl � (A: Typ �) (a : Tm A)
: Tm (Id a a) := (� �, identity (a ? �); Reflcomp).

We can interpret the J eliminator of MLTT on Id using
functoriality of P and products (⇧comp).

Definition J � (A:Typ �) (a b:Tm A)
(P:TypFam (Sigma (⇤ (Id (a � Sub) (Var A)))))
(e:Tm (Id a b))
(p:Tm (P{{Pair ⇥ (Refl a)}}))

: Tm (P{{Pair ⇥e}}) :=
⇧comp (� �, (map (P ? �) (J Pair e P �)); Jcomp) ? p.

The J equality rule holds up to ⇠2 in the model.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 42

The meaning of the identity types is given 	

by induction on types instead of by an inductive type.

We can interpret the J eliminator of MLTT on Id using
functoriality of P and products.	

!
The J equality rule holds up to ∼2 in the model.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Univalent Type Theory

38

As equality between setoids is given by (adjoint) equivalence,
we get a type theory with a univalent universe.	

!
!
The precise formulation is still work in progress.

Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Doggy Bag

39

• Groupoids can be internalised but this requires
functional extensionality and the use of identity
types for contractibility.  

• We have a (partially) formalised interpretation
of a type theory with a univalent universe.  

• Should scale to higher-order models  
(ie. cubical sets)  

