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Groupoids as enriched sets

2

Moving away from identity types, we can realize a 
richer model: 

Proof-irrelevance Irrelevant Equality

Propositional extensionality Logical equivalence

Functional extensionality Pointwise equality

Univalence Isomorphism
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Groupoids as enriched sets
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• The Groupoid Model – Hofmann and Streicher ’94, ’98  

• UnivalentFoundations–Voevodsky, Awodey, Warren, …  

• Takeuti-Gandy for Type Theory (Setoids) – Barras & 
Coquand, 2013
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Goal of our work
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• clarify what can be done intentionally with  
groupoids, clarify the need for identity types 

• formalize the interpretation in a modular way  
=> replace groupoids by higher dimensional 
structure in the future  
=> require the use of universe polymorphism 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Groupoid vs Setoids
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Groupoids vs setoids

The setoid model (at the basis of e.g. OTT), assumes a
proof-irrelevant equality:

⌃A : Type.⌃ ⇠ : A ! A ! Prop.

⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq.
⌃ irrel : 8 x y (p q : x ⇠ y), p = q . . .

In Hofmann and Streicher: JT K : GPD. GPD come with a relevant
equality:

⌃A : Type.⌃ ⇠ : A ! A ! Type.

⌃ ⇠equiv : 8 x y,Equivalence (x ⇠ y) eq . . .

But morphisms representing identities are still identified up to
propositional equality (eq : ⇧A,A ! A ! Prop).
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Intensional vs extensional metatheory
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Intensional vs extensional metatheory

In Hofmann and Streicher, the model is built in an extensional

metatheory, so eq is reflective there.

In intensional type theory, we rather represent groupoids with an
additional notion of (2-)equality.

⌃A : Type.⌃ ⇠1 : A ! A ! Type.

⌃ ⇠2 : 8 {x y} (p q : x ⇠1 y), Type.

⌃ ⇠2�equiv: 8 x y,Equivalence (x ⇠1 y) ⇠2 . . . .

E.g: JPropK := (Prop, i↵, irrel, . . .).
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∞-Groupoids

8

Ideally, we’d like to model ∞-groupoids, avoiding the need 
for truncation. 	

!
The groupoid case limits us:	
!

• we need functional extensionality  

• we need identity types to express it  

A truly infinite-dimensional extension would lift these	

(using e.g, globular sets, operads, cubical sets).
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Our groupoid model
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Stays agnostic w.r.t. future extension, entirely in 
categorical language (i.e. Dybjer’s CwFs):	

!

• Interprets MLTT with one universe, Π, Σ, Id-types (no 
type polymorphism) into CIC (actually the ECC 
fragment + Id-types for truncations).  

• Validates extensional equality principles + 
“Isomorphic types are equal”:

Our groupoid model

I Stays agnostic w.r.t. future extension, entirely in categorical
language (i.e. Dybjer’s CwFs).

I Interprets MLTT with one universe, ⇧, ⌃, Id-types (no type
polymorphism) into CIC (actually the ECC fragment +
Id-types for truncations).

I Validates extensional equality principles + one additional rule:

� ` i : Elt A ⌘ Elt B

� ` equiv i : Id U A B

“Isomorphic types are equal”
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Defining 	
groupoids, 
internally.
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Start with computational, proof-relevant relations:

Using classes and universe polymorphism, we get 
notations for 1-and 2-dimensional equalities:

Definining groupoids: relations

Start with computational, proof-relevant relations:

Definition HomSet (T : Type) := T ! T ! Type.

Using classes and universe polymorphism, we get notations for 1-
and 2-dimensional equalities:

Class HomSet
1

T := {eq
1

: HomSet T}.
Infix ”⇠

1

” := eq

1

(at level 80).

Class HomSet
2

{T} (Hom : HomSet T ) :=
{eq

2

: 8 {x y : T}, HomSet (Hom x y)}.
Infix ”⇠

2

” := eq

2

(at level 80).

Given a HomSet, we define type classes: Identity, Inverse (noted
f

�1) and Composition. An Equivalence packs these.
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Defining groupoids: Relations

12

Given a HomSet, we define type classes for 
equivalences:

4 Univalence For Free, not yet

now2 This formalization is a great benchmark for universe polymorphism as it stresses the
universe system by constructing a hierarchy of types embedded in nested structures.

3 The translation

3.1 Definition of weak-2-groupoids

We formalize weak-2-groupoids using type classes. Contrarily to what is done in the usual
Setoid translation, the basic notion of morphisms is given as inhabitants of a relation in
Type:

Definition HomT (A : Type) := A æ A æ Type.

Homs are relation, that is inhabitants of type HomT T for a particular T , and morphisms
are inhabitants of a hom.

Given a hom, we define type classes that represents that the Hom-set of morphisms
on a Type A is reflexive (which corresponds to the identity morphism), symmetric (which
corresponds to the existence of an inverse morphism for every morphism) and transitive
(which corresponds to morphisms composition).

Class Identity {A} (Hom : HomT A) :=
identity : ’ x , Hom x x .

Class Inverse {A} (Hom : HomT A) :=
inverse : ’ x y :A, Hom x y æ Hom y x .

Class Composition {A} (Hom : HomT A) :=
composition : ’ {x y z :A}, Hom x y æ Hom y z æ Hom x z .

Notation ”g ° f” := (composition f g) (at level 50).

Class Equivalence T (Eq : HomT T ):= {

Equivalence Identity :> Identity Eq ;
Equivalence Inverse :> Inverse Eq ;
Equivalence Composition :> Composition Eq

}.

In a 2-groupoid, all 2-morphisms are invertible and higher equalities are trivial. Thus
the set of 2-Homs denoted by ≥2 corresponds to an equivalence relation.

Class HomT T (Hom : HomT T ) := {eq : ’ {x y : T}, HomT (Hom x y)}.
Infix ”≥” := eq (at level 80).

Class Category T (Hom : HomT T ) (Hom2 : HomT Hom) := {

Category Identity :> Identity Hom;
Category Composition :> Composition Hom;

id R : ’ x y (f : Hom x y), f ¶ (identity x ) ≥ f ;
id L : ’ x y (f : Hom x y), (identity y) ¶ f ≥ f ;
assoc : ’ x y z w (f : Hom x y) (g : Hom y z ) (h: Hom z w),

(h ¶ g) ¶ f ≥ h ¶ (g ¶ f );
comp : ’ x y z (f f ’ : Hom x y) (g g’ : Hom y z ),

2 Available at http://tabareau.fr/univalence_for_free.
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In a PreCategory, coherences are given up-to ∼2.	


Pre-categories

In a PreCategory, coherences are given up-to ⇠2. Ordinary
categories additionally require that ⇠2 is trivial.

Class PreCategory T := { Hom
1

:> HomSet
1

T ; Hom
2

:> HomSet
2

eq

1

;
Id :> Identity eq

1

; Comp :> Composition eq

1

;
Equivalence

2

:> 8 x y, (Equivalence (eq
2

(x :=x) (y :=y)));
idR : 8 x y (f : x ⇠

1

y), f � identity x ⇠
2

f ;
idL : 8 x y (f : x ⇠

1

y), identity y � f ⇠
2

f ;
assoc : 8 x y z w (f : x ⇠

1

y) (g : y ⇠
1

z) (h: z ⇠
1

w),

(h � g) � f ⇠
2

h � (g � f );
comp : 8 x y z (f f’: x ⇠

1

y) (g g’: y ⇠
1

z),
f ⇠

2

f’ ! g ⇠
2

g’ ! g � f ⇠
2

g’ � f’ }.
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14

A PreGroupoid is a PreCategory where all 1-Homs are 	
!!invertible and subject to additional compatibility laws for 	
!!inverses.

Pre-groupoids

A PreGroupoid is a PreCategory where all 1-Homs are invertible
and subject to additional compatibility laws for inverses.

Class PreGroupoid T := { C :> PreCategory T ; Inv :> Inverse eq

1

;
invR : 8 x y (f : x ⇠

1

y), f � f�1 ⇠
2

identity y ;
invL : 8 x y (f : x ⇠

1

y), f�1 � f ⇠
2

identity x ;
inv : 8 x y (f f’: x ⇠

1

y), f ⇠
2

f’ ! f�1 ⇠
2

f’�1}.

Groupoids are then pre-groupoids where equality at dimension 2 is
irrelevant. This irrelevance is defined using a notion of
contractibility expressed with (relevant) identity types.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 13
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Groupoids are then PreGroupoids where	

!

equality at dimension 2 is irrelevant	

!
This irrelevance is defined using a notion of contractibility 
expressed with (relevant) Identity Types.

Contractibility

Class Contr (A : Type) := {
center : A ;
contr : 8 y : A, center = y}.

By analogy to homotopy type theory, we note IsType1 the property
of being a groupoid.

Class IsType1 T := { G :> PreGroupoid T ;
is Trunc 2 : 8 (x y : T ) (e e’ : x ⇠

1

y)
(E E’ : e ⇠

2

e’), Contr (E = E’)}.
In the same way, we define IsType0 when equality is irrelevant at
dimension 1.

Class IsType0 T := { S :> IsType1 T ;
is Trunc 1 : 8 (x y : T ) (e e’ : x ⇠

1

y) , Contr (e = e’)}.
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Functors and natural 
transformations.
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Functors and natural transformations

Groupoid morphisms are functors:

Class Functor {T U : Type1} (f : [T] ! [U]) : Type :=
{ map : 8 {x y}, x ⇠

1

y ! f x ⇠
1

f y ;
map

comp

: 8 {x y z} (e:x ⇠
1

y) (e’:y ⇠
1

z),
map (e’ � e) ⇠

2

map e’ � map e ;
map

2

: 8 {x y :[T]} {e e’ : x ⇠
1

y}, (e ⇠
2

e’) ! map e ⇠
2

map e’ }.
Definition Fun Type (T U : Type1) := {f : [T] ! [U] & Functor f }.

T �! U are functors from T to U and M ? N the application of
a function M in the first component of a dependent pair.
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Equivalence between functors is given by natural 
transformations

Natural transformations	

Natural transformations

Equivalence between functors is given by natural transformations:

Class NaturalTrans T U {f g : T �! U} (↵ : 8 t : [T], f ? t ⇠
1

g ? t)
:= ↵map : 8 {t t’} (e : t ⇠

1

t’), ↵ t’ � map f e ⇠
2

map g e � ↵ t.

Definition nat trans T U : HomSet (T �! U)
:= � f g, {↵ : 8 t : [T], f ? t ⇠

1

g ? t & NaturalTrans ↵}.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 17
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The function space groupoid structure
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Functors, natural transformations and modifications form a 
PreGroupoid.  	


!
!

It requires functional extensionality to prove the truncation 
property of Groupoids.
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The (Pre-)Groupoid of 	

Groupoids.
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Equivalence between groupoids is given by equivalences.

Homotopy equivalences

Equivalence between groupoids is given by adjoint equivalences.

Class Iso struct T U (f : [T �! U]) :=
{ adjoint : [U �! T] ;

section : f � adjoint ⇠
2

identity U ;
retraction : adjoint � f ⇠

2

identity T}.

This type class defines usual equivalences. We need the triangle
identity to get adjoint equivalences (it turns it into an hProp).

Class Equiv struct T U (f : T �! U) :=
{ iso : Iso struct f ;

triangle : 8 t, section ? (f ? t) ⇠
2

map f (retraction ? t)}.
Definition Equiv A B := {f : A �! B & Equiv struct f }.

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 20
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Actually, we use the triangle identity to get adjoint 
equivalences (it turns it into an hProp).
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We can define the PreGroupoid of Groupoids and 
homotopy equivalences. 	

!
It does not form a Groupoid.	

!

But Setoids do form a groupoid.

The (Pre-)Groupoid of Groupoids	


Remark: Groupoids appear both in the type and the term	

             => requires universe polymorphism.

Groupoid of types

I We can define the pre-groupoid Type11 of groupoids and
homotopy equivalences. It does not form a groupoid.

I Setoids (inhabitants of Type0) do form a groupoid:

Definition Type1
0

: Type1 := (Type0 ; EquivType0).

EquivType0 is a proof that Equiv and Equiv eq form a
groupoid (using funext again).

Note that Type1 appears both in the type and in the term
(through the proof).

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 22
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Rewriting.
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Transport

Definition transport A (F :[A �! Type1
1

]) {x y :[A]} (e:x ⇠
1

y)
: (F ? x) �! (F ? y) := [map F e].

The equational theory is derivables from the groupoid laws, e.g.:

Definition transporteq A (F :[A �! Type1
1

]) {x y :[A]}
{e e’:x ⇠

1

y} (H:e ⇠
2

e’)
: transport F e ⇠

1

transport F e’ := [map

2

F H].

We also use transportid, transportcomp and transportmap for
compatibilities with identities, composition and for the functoriality
of transport.
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The equational theory is derivable from the groupoid 
laws, e.g.:

Transport is given by functoriality:
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Dependent Functions.
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Dependent Functors	


28

As for functions, dependent functions are interpreted as 
functors, but of a dependent kind.

Dependent Product

As for functions, dependent functions are interpreted as functors,
but of a dependent kind.

Class Functor⇧ T (U : [T �! Type1
1

]) (f : 8 t, [U ? t]) : Type := {
map

⇧ : 8 {x y} (e: x ⇠
1

y), transport U e ? (f x) ⇠
1

f y ;
map

⇧

id : 8 x, map

⇧ (identity x) ⇠
2

transportid U ? (f x);
map

⇧

comp : 8 x y z (e : x ⇠
1

y) (e’ : y ⇠
1

z),
map

⇧ (e’ � e) ⇠
2

map

⇧ e’ � transportmap U (map

⇧ e) �
(transportcomp U e e’ ? );

map

⇧

2

: 8 x y (e e’: x ⇠
1

y) (H: e ⇠
2

e’),
map

⇧ e ⇠
2

map

⇧ e’ � (transporteq U H ? (f x))}.
Definition ⇧

T

T (U:[T �! Type1
1

]) :=
{f : 8 t, [U ? t] & Functor⇧ U f }.
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Equality between dependent functors is given by 
dependent natural transformations.

Dependent natural transformations

Equality between dependent functors is given by dependent natural
transformations and equality at level 2 is given by dependent
modifications.

Class NaturalTrans⇧ T (U:[T �! Type1
1

]) {f g : ⇧
T

U}
(↵ : 8 t, f ? t ⇠

1

g ? t) :=
↵map⇧ : 8 {t t’} e, ↵ t’ � map

⇧ f e ⇠
2

map

⇧ g e � transportmap U e (↵ t).

Definition nat trans⇧ T (U:[T �! Type1
1

]) (f g : ⇧
T

U)
:= {↵ : 8 t : [T], f ? t ⇠

1

g ? t & NaturalTrans⇧ ↵}.

Definition modification⇧ T U (f g : ⇧
T

U) : HomSet (f ⇠
1

g)
:= � ↵ � , 8 t : [T], ↵ ? t ⇠

2

� ? t.
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Dependent Sums.
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Dependent Sums

31

In the interpretation of Σ types, we pay for the fact that we 
are missing the 2-dimensional nature of groupoids.	

!
We must restrict to codomains in setoids.

Dependent Sum

In the interpretation of ⌃ types, we pay for the fact that we are
missing the 2-dimensional nature of Type11. We must restrict to
codomains in Type10.

Definition ⌃

T

T (U : [T �! Type1
0

]) := {t : [T] & [U ? t]}.

Definition ⌃

Eq

T (U : [T �! Type1
0

]) : HomSet (⌃
T

U) :=
� m n, {P : [m] ⇠

1

[n] & transport ( U�s) P ? (⇡
2

m) ⇠
1

⇡
2

n}.
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The interpretation of	

Type Theory.
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interpreation  

33

Following Dybjer, Hofmann&Streicher, Coquand et al.,	

we interpret:	

!

• Context Γ as a Groupoid 

• Type Γ⊢A as a functor from Γ to the Groupoid of 
setoids 

• Context extension Γ, x : A ⊢ is given by dependent sums 

• Term Γ ⊢ x : A as a functor from Γ to A  

!
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Takeuti-Gandy style 
interpreation  

33

Following Dybjer, Hofmann&Streicher, Coquand et al.,	

we interpret:	

!

• Context Γ as a ∞-Groupoid 

• Type Γ⊢A as a functor from Γ to the ∞-Groupoid of  
∞-Groupoid 

• Context extension Γ, x : A ⊢ is given by dependent sums 

• Term Γ ⊢ x : A as a ∞-functor from Γ to A  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A dependent type Γ, x : A ⊢ B is interpreted in two 
equivalent ways:	

!

• As a functor from Σ A to setoids 

• As a type family over A (corresponding to a family of 
sets in constructive mathematics). A type family can be 
seen as a fibration from B to A.

Dependent types

A dependent type �, x : A ` B is interpreted in two equivalent
ways:

I As a type TypDep A := Typ (⌃ A) over the dependent sum
of � and A

I As a type family TypFam A over A (corresponding to a family
of sets in constructive mathematics). A type family can be
seen as a fibration from B to A.

Definition TypFam {� : Context} (A: Typ �) :=
[⇧ (� �, (A ? �) �s �! Type1

0

; TypFamcomp )].

M. Sozeau & N. Tabareau - Towards an Internalization of the Groupoid Model of Type Theory 35

2 views on Dependent Types



Towards an Internalization of the Groupoid Model of Type Theory
Ascola

2 views on Dependent Types
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Those 2 views can be related using a dependent closure at 
the level of types. 	

!
In the interpretation of typing judgments, this connection is 
used to switch between the fibration and the morphism 
points of view.	
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Using those notions, we can define the translation of TTThe definitions

Definition Var {�} (A:Typ �) : Tm ⇥A := (� t, ⇡
2

t; Varcomp A).

Definition Prod {�} (A:Typ �) (F :TypFam A)
: Typ � := (� s, ⇧

0

(F ? s); Prodcomp A F).

Definition App {�} {A:Typ �} {F :TypFam A}
(c:Tm (Prod F )) (a:Tm A) : Tm (F {{a}}) :=
(� s, (c ? s) ? (a ? s); Appcomp c a).

Definition Lam {�} {A:Typ �} {B:TypDep A} (b:Tm B)
: Tm (Prod (⇤ B)) := (� �, (� t, b ? (� ; t) ; ); Lamcomp b).

Definition Sigma {�} (A:Typ �) (F :TypFam A)
: Typ � := (� �: [�], ⌃ (F ? �); Sigmacomp A F).

Definition Beta {�} {A:Typ �} {F :TypDep A} (b:Tm F ) (a:Tm A)
: [Lam b ? a] = [b � SubExtId a] := eq refl .
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Using those notions, we can define the translation of TT

Definition Var {�} (A:Typ �) : Tm ⇥A := (� t, ⇡
2

t; Varcomp A).

Definition Prod {�} (A:Typ �) (F :TypFam A)
: Typ � := (� s, ⇧

0

(F ? s); Prodcomp A F).

Definition App {�} {A:Typ �} {F :TypFam A}
(c:Tm (Prod F )) (a:Tm A) : Tm (F {{a}}) :=
(� s, (c ? s) ? (a ? s); Appcomp c a).

Definition Lam {�} {A:Typ �} {B:TypDep A} (b:Tm B)
: Tm (Prod (⇤ B)) := (� �, (� t, b ? (� ; t) ; ); Lamcomp b).

Definition Sigma {�} (A:Typ �) (F :TypFam A)
: Typ � := (� �: [�], ⌃ (F ? �); Sigmacomp A F).

Definition Beta {�} {A:Typ �} {F :TypDep A} (b:Tm F ) (a:Tm A)
: [Lam b ? a] = [b � SubExtId a] := eq refl .

Not Completely formalised 	

!

Need more automated reasoning using relevant rewriting 
(see next talk!) 	
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Identity types

Definition Id {�} (A: Typ �) (a b : Tm A)
: Typ � := (� �, (a ? � ⇠

1

b ? � ; ); Idcomp A a b).

The introduction rule just lifts the identity of the underlying setoid:

Definition Refl � (A: Typ �) (a : Tm A)
: Tm (Id a a) := (� �, identity (a ? �); Reflcomp ).

We can interpret the J eliminator of MLTT on Id using
functoriality of P and products (⇧comp).

Definition J � (A:Typ �) (a b:Tm A)
(P:TypFam (Sigma (⇤ (Id (a � Sub) (Var A)))))
(e:Tm (Id a b))
(p:Tm (P{{Pair ⇥ (Refl a)}}))

: Tm (P{{Pair ⇥e}}) :=
⇧comp (� �, (map (P ? �) (J Pair e P �)); Jcomp ) ? p.

The J equality rule holds up to ⇠2 in the model.
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The meaning of the identity types is given 	

by induction on types instead of by an inductive type.
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The meaning of the identity types is given 	

by induction on types instead of by an inductive type.

We can interpret the J eliminator of MLTT on Id using 
functoriality of P and products.	

!
The J equality rule holds up to ∼2 in the model.



Towards an Internalization of the Groupoid Model of Type Theory
Ascola

Univalent Type Theory

38

As equality between setoids is given by (adjoint) equivalence, 
we get a type theory with a univalent universe.	

!
!
The precise formulation is still work in progress.
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Doggy Bag

39

• Groupoids can be internalised but this requires 
functional extensionality and the use of identity 
types for contractibility.  

• We have a (partially) formalised interpretation 
of a type theory with a univalent universe.  

• Should scale to higher-order models  
(ie. cubical sets)  


