Nominal Sets and Dependent Type Theory

Andrew M. Pitts

Computer Laboratory
University of Cambridge
Cambridge CB3 0FD, UK

Nominal sets [3, 7] provide a mathematical theory of structures involving names and binding constructs, based on some simple, but subtle ideas going back to Fraenkel and Mostowski’s symmetric models of set theory with atoms. The theory has been applied to programming language semantics, machine-assisted theorem proving and the design of functional and logical metaprogramming languages. In this talk I want to explore the relationship between nominal sets and dependent type theory, with the following two motivations in mind, both of which involve the nominal sets notion of name abstraction.

Homotopy Type Theory. The cubical sets model of homotopy type theory was introduced by Bezem, Coquand and Huber [1] using a category of presheaves. This category is equivalent to a category of nominal sets equipped operations for substituting constants 0 and 1 for names (the names in this case being names of cartesian axes \(x, y, z, \ldots\)); see [6]. In the nominal version of the model, proofs of identity are given by name abstractions: abstracting a named direction \(x\) in an element \(a\) gives a path (proof of equality) from \(a[0/x]\) to \(a[1/x]\). In order to interpret dependent types, the category of nominal sets can be extended to a category with families [2, 4] in a straightforward way.

Constructive nominal logic. FreshML [8] adds name abstraction types to ML [5], allowing the user to declare inductively defined data involving name binding operations and define functions on such data using patterns involving bound names. The semantics of FreshML guarantees that programmers cannot break \(\alpha\)-conversion, while allowing them to use a style close to informal practice when manipulating structures with bound names. I would very much like to have a similarly usable language that completes the following proportion:

\[
\frac{\text{Agda}}{\text{Haskell}} = \frac{?}{\text{FreshML}}
\]

Achieving this convincingly requires versions of the nominal sets notions of freshness, name abstraction and name restriction within constructive type theory that have good meta-theoretic properties and yet are syntactically simple from a user’s point of view.

References

