
TYPES 2014

Types for Proofs and Programs

20th Meeting

Paris, France

12-15 May, 2014

Book of Abstracts

Preface

This is the collection of the abstracts of the 20th Conference “Types for Proofs and Programs”, TYPES
2014, to take place in Paris, France, 12–15 May 2014. Paris was chosen this year to take advantage of the
synergy created by the special trimester on Semantics of proofs and certified mathematics at the Institut
Henri Poincaré, 22 April - 11 July 2014.

The Types Meeting is a forum to present new and on-going work in all aspects of type theory and
its applications, especially in formalized and computer assisted reasoning and computer programming.
Since 1992, Types Meetings have been annual workshops of several multilateral scientific EU-financed
projects, of which the Types Project was the most recent. Although organized in Europe, the meetings
were always open internationally, as evidenced by invited speakers and authors of contributed talks.
TYPES 2014 was intended to be a conference in our traditional workshop style, and the selection of
contributions was based on abstracts of up to two pages. Abstracts were generally reviewed by three
members of the programme committee:

• Andreas Abel, Chalmers University of Technology and Gothenburg University, Sweden

• Andrej Bauer, Fakulteta za matematiko in fiziko, Ljubljana, Slovenia

• Ma lgorzata Biernacka, University of Wroclaw, Poland

• Lars Birkedal, Aarhus University, Denmark

• Paul Blain Levy, University of Birmingham, UK

• Herman Geuvers, Radboud University and Eindhoven University of Technology, Netherlands

• Hugo Herbelin, INRIA Paris-Rocquencourt, France (co-chair)

• Pierre Letouzey, University Paris-Diderot, France (co-chair)

• Ralph Matthes, IRIT, CNRS and University of Toulouse, France

• Conor McBride, University of Strathclyde, UK

• Lúıs Pinto, University of Minho, Braga, Portugal

• Claudio Sacerdoti, University of Bologna, Italy

• Aleksy Schubert, University of Warsaw, Poland

• Matthieu Sozeau, INRIA Paris-Rocquencourt, France (co-chair)

• Thomas Streicher, TU Darmstadt, Germany

The present volume provides final versions of the abstracts of three invited speakers (chosen by the
programme committee)

• Thierry Coquand, Chalmers University of Technology and Gothenburg University, Sweden

• Xavier Leroy, INRIA Paris-Rocquencourt, France

• Andy Pitts, Cambridge University, UK

as well as 39 contributed talks.

3

Acknowledgements

Thanks go to all the authors of abstract submissions, whether accepted or not. They were the raw
material to shape this scientific meeting. A big thank-you to the invited speakers for accepting the
invitation. And, of course, the effort of the programme committee members is gratefully acknowledged.

Institut Henri Poincaré kindly offered to have the conference hosted in its building, rue Pierre et Marie
Curie, Paris 5th. Inria Paris-Rocquencourt provided general support for the organization, with special
thanks to Chantal Girodon and Lindsay Polienor. Poster was conceived by Bastien Sozeau. Reviewing
was made on Easychair.

April 23, 2014
Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau

4

Invited Talks

A cubical set model of type theory . 7

Thierry Coquand

Formal verification of a static analyzer: abstract interpretation in type theory . 9

Xavier Leroy

Nominal sets and dependent type theory . 11

Andrew M. Pitts

5

6

A cubical set model of type theory

Thierry Coquand

Computer Science and Engineering Department
University of Gothenburg

Sweden

We present a possible constructive justification of the axiom of univalence. Roughly speak-
ing, the computations for dependent type theory can be described with lambda terms (extended
with constructors and constants for primitive recursive functions), while for dependent type
theory with the axiom of univalence, computations are described using a nominal extension of
lambda calculus (with some additional “face” operations). Constants corresponding to the elim-
ination rule for equality can then be described by induction on the types. We describe a possible
implementation corresponding to this semantics. This also provides a model of types such as
the circle, or the operation of propositional truncation. In particular, we get a computational
justification of the axiom of description.

7

8

Formal verification of a static analyzer:

abstract interpretation in type theory

Xavier Leroy

Inria Paris-Rocquencourt
xavier.leroy@inria.fr

(Joint work with David Pichardie, Sandrine Blazy, Jacques-Henri Jourdan, and Vincent
Laporte.)

Abstract

Static analysis is the automatic inference and checking of simple properties of all executions
of a program. Initially developed in the context of compilers to support code optimization,
static analysis is very successful today for the formal verification of safety properties of critical
software, owing to its good scalability. As is the case for all tools involved in the production and
verification of critical software (compilers, code generators, program provers, model checkers),
confidence in the results of a static analysis tool requires evidence that the tool is sound and
correctly over-approximates all possible executions of the program. Such evidence can take the
form of a soundness proof mechanized using a proof assistant [5, 4].

Abstract interpretation [2] is an elegant, powerful mathematical framework to define and
reason about static analyses. In particular, it is not limited to so-called “non-relational” anal-
yses (inferring properties of a single value or variable) and works naturally for “relational”
analyses (inferring relations between several variables, such as linear inequalities). The classic
presentation of abstract interpretation involves Galois connections. It has the advantage that,
once the meaning of abstract data is chosen via a Galois connection, the abstract operators used
by the static analyzer can, in principle, be derived systematically from the concrete semantics,
in a way that is not only sound by construction, but also relatively optimal.

However, the theory of Galois connections is resolutely set-theoretical, involving non-comput-
able functions and equational reasoning over set comprehensions, making it very hard to ex-
press in type theory and to use in a proof assistant such as Coq. To overcome this difficulty,
Pichardie et al [6, 1] developed and mechanized an alternative presentation of abstract inter-
pretation, using only the “γ” (concretization) part of Galois connections, viewed as relations
“concrete-datum ∈ abstract-datum”. The calculational style is lost, and relative optimality is
no longer guaranteed, but soundness proofs are easily conducted with a proof assistant.

In the context of the Verasco project, we are currently trying to scale Pichardie’s approach
all the way to the development and Coq verification of a realistic static analyzer based on
abstract interpretation for the CompCert subset of the C language. Proper modular decom-
position is crucial to build the appropriate abstractions as a hierarchy combining numerical
and memory abstract domains. While the general interface of a non-relational domain is well
known, giving such an interface for relational domains is more challenging, and so is formulating
generic composition operators (such as reduced products) between such domains. Another en-
abling technique is the opportunistic use of validation a posteriori to obviate the need to prove
complicated algorithms such as fixpoint iteration with widening and narrowing, or operations
over polyhedra for relational domains of linear inequalities [3].

9

http://verasco.imag.fr

Acknowledgments This work is supported by the Verasco project (ANR-11-INSE-003) of
Agence Nationale de la Recherche (ANR).

References

[1] David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a data flow analyser
in constructive logic. Theoretical Computer Science, 342(1):56–78, 2005.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth ACM Symposium on
Principles of Programming Languages (POPL’77), pages 238–252. ACM, 1977.

[3] Alexis Fouilhé, David Monniaux, and Michaël Périn. Efficient generation of correctness certificates
for the abstract domain of polyhedra. In Static Analysis - 20th International Symposium (SAS
2013), volume 7935 of Lecture Notes in Computer Science, pages 345–365. Springer, 2013.

[4] Paolo Herms, Claude Marché, and Benjamin Monate. A certified multi-prover verification condition
generator. In Verified Software: Theories, Tools, Experiments (VSTTE 2012), volume 7152 of
Lecture Notes in Computer Science, pages 2–17. Springer, 2012.

[5] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–
115, 2009.

[6] David Pichardie. Interprétation abstraite en logique intuitionniste: extraction d’analyseurs Java
certifiés. PhD thesis, Université Rennes 1, 2005.

10

Nominal Sets and Dependent Type Theory

Andrew M. Pitts

Computer Laboratory
University of Cambridge
Cambridge CB3 0FD, UK

Nominal sets [3, 7] provide a mathematical theory of structures involving names and binding
constructs, based on some simple, but subtle ideas going back to Fraenkel and Mostowski’s
symmetric models of set theory with atoms. The theory has been applied to programming
language semantics, machine-assisted theorem proving and the design of functional and logical
metaprogramming languages. In this talk I want to explore the relationship between nominal
sets and dependent type theory, with the following two motivations in mind, both of which
involve the nominal sets notion of name abstraction.

Homotopy Type Theory. The cubical sets model of homotopy type theory was introduced
by Bezem, Coquand and Huber [1] using a category of presheaves. This category is equivalent
to a category of nominal sets equipped operations for substituting contants 0 and 1 for names
(the names in this case being names of cartesian axes x, y, z, . . .); see [6]. In the nominal version
of the model, proofs of identity are given by name abstractions: abstracting a named direction
x in an element a gives a path (proof of equality) from a[0/x] to a[1/x]. In order to interpret
dependent types, the category of nominal sets can be extended to a category with families [2, 4]
in a straightforward way.

Constructive nominal logic. FreshML [8] adds name abstraction types to ML [5], allow-
ing the user to declare inductively defined data involving name binding operations and define
functions on such data using patterns involving bound names. The semantics of FreshML guar-
antees that programmers cannot break α-conversion, while allowing them to use a style close
to informal practice when manipulating structures with bound names. I would very much like
to have a similarly usable language that completes the following proportion:

Agda

Haskell
=

?

FreshML

Achieving this convincingly requires versions of the nominal sets notions of freshness, name
abstraction and name restriction within constructive type theory that have good meta-theoretic
properties and yet are syntactically simple from a user’s point of view.

References

[1] M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets. Preprint, September
2013.

[2] Peter Dybjer. Internal type theory. In S. Berardi and M. Coppo, editors, Types for Proofs and
Programs, volume 1158 of Lecture Notes in Computer Science, pages 120–134. Springer Berlin
Heidelberg, 1996.

[3] M. J. Gabbay. Foundations of nominal techniques: Logic and semantics of variables in abstract
syntax. Bulletin of Symbolic Logic, 17(2):161–229, 2011.

11

[4] M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and P. Dybjer, editors, Se-
mantics and Logics of Computation, Publications of the Newton Institute, pages 79–130. Cambridge
University Press, 1997.

[5] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT
Press, 1997.

[6] A. M. Pitts. An equivalent presentation of the Bezem-Coquand-Huber category of cubical sets.
Preprint arXiv:1401.7807 [cs.LO], December 2013.

[7] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

[8] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made simple.
In Eighth ACM SIGPLAN International Conference on Functional Programming (ICFP 2003),
Uppsala, Sweden, pages 263–274. ACM Press, August 2003.

12

Contributed Talks

Coinduction in Agda using Copatterns and Sized Types . 15

Andreas Abel

Coalgebraic update lenses . 17

Danel Ahman and Tarmo Uustalu

Coinitial semantics for redecoration of triangular matrices . 19

Benedikt Ahrens and Régis Spadotti

A Type Theory with Partial Equivalence Relations as Types. 21

Abhishek Anand, Mark Bickford, Robert Constable and Vincent Rahli

Coq à la Tarski. 23

Ali Assaf

Inductive Construction in Nuprl Type Theory Using Bar Induction . 25

Mark Bickford and Robert Constable

Eliminating Higher Truncations via Constancy . 27

Paolo Capriotti and Nicolai Kraus

Objects and subtyping in the lambda-Pi-calculus modulo . 29

Raphaël Cauderlier, Ali Assaf and Catherine Dubois

Pattern matching without K . 31

Jesper Cockx, Dominique Devriese and Frank Piessens

Type-Checking Linear Dependent Types . 33

Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego Arias and Justin Hsu

Simply Typed Lambda-Calculus Modulo Type Isomorphisms . 35

Alejandro Dı́az-Caro and Gilles Dowek

Synthesis of certified programs with effects using monads in Coq. 37

Sara Fabbro and Marino Miculan

Toward a Theory of Contexts of Assumptions in Logical Frameworks . 40

Amy Felty, Alberto Momigliano and Brigitte Pientka

Modular and lightweight certification of polyhedral abstract domain . 42

Alexis Fouilhe, Sylvain Boulmé and Michaël Périn

The Church-Scott representation of inductive and coinductive data in typed lambda calculus. 44

Herman Geuvers

A type system for Continuation Calculus . 47

Herman Geuvers, Wouter Geraedts, Bram Geron and Judith van Stegeren

Church-Rosser Theorem for sequent lambda calculi . 49

Silvia Ghilezan, Jelena Ivetic and Silvia Likavec

Session Types, Solos, and the Computational Contents of Sequent Calculus Proofs 51

Nicolas Guenot

Covering Spaces in Homotopy Type Theory . 53

Kuen-Bang Hou

Isomorphism of Finitary Inductive Types . 54

Nicolai Kraus and Christian Sattler

A Separation Logic for Non-determinism and Sequence Points in C Formalized in Coq 56

Robbert Krebbers

13

All derivations of groupoid laws are proposionally equal. 58

Marc Lasson

Global semantic typing for inductive and coinductive computing . 60

Daniel Leivant

Proving and computing with the Harthong-Reeb line . 61

Nicolas Magaud and Laurent Fuchs

A Kleene realizability semantics for the Minimalist Foundation . 63

Maria Emilia Maietti and Samuele Maschio

Polymorphic variants in dependent type theory . 65

Dominic Mulligan and Claudio Sacerdoti Coen

Some Varieties of Constructive Finitenes . 67

Erik Parmann

A Calculus of Primitive Recursive Constructions. 70

Ludovic Patey and Hugo Herbelin

Liquid Types Revisited . 72

Mário Pereira, Sandra Alves and Mário Florido

A decidable formulation of extensional type theory . 74

Andrew Polonsky

Dialectica: From Gödel to Curry-Howard . 76

Pierre-Marie Pédrot

A formalization of the Quipper quantum programming language . 78

Neil J. Ross

Exceptions in Dependent Type Theory . 80

Jorge Luis Sacchini

Deciding unique inhabitants with sums . 82

Gabriel Scherer

On the complexity of negative quantification . 84

Aleksy Schubert, Pawel Urzyczyn and Konrad Zdanowski

Higher Inductive Types as Homotopy-Initial Algebras . 86

Kristina Sojakova

Proof-relevant rewriting strategies in Coq. 88

Matthieu Sozeau

Towards an Internalization of the Groupoid Interpretation of Type Theory . 90

Matthieu Sozeau and Nicolas Tabareau

Type system for automated generation of reversible circuits. 92

Benôıt Valiron

14

Coinduction in Agda
Using Copatterns and Sized Types

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University, Gothenburg, Sweden

andreas.abel@gu.se

Inductive data such as lists and trees is modeled category-theoretically as algebra where construction
is the primary concept and elimination is obtained by initiality. In a more practical setting, functions
are programmed by pattern matching on inductive data. Dually, coinductive structures such as streams
and processes are modeled as coalgebras where destruction (or transition) is primary and construction
rests on finality [Hag87]. Due to the coincidence of least and greatest fixed-point types [SP82] in lazy
languages such as Haskell, the distinction between inductive and coinductive types is blurred in partial
functional programming. As a consequence, coinductive structures are treated just as infinitely deep
(or, non-well-founded) trees, and pattern matching on coinductive data is the dominant programming
style. In total functional programming, which is underlying the dependently-typed proof assistants Coq
[INR12] and Agda [Nor07], the distinction between induction and coinduction is vital for the soundness,
and pattern matching on coinductive data leads to the loss of subject reduction [Gim96]. Further, in
terms of expressive power, the productivity checker for definitions by coinduction lacks behind the
termination checker for inductively defined functions.

It is thus worth considering the alternative picture that a coalgebraic approach to coinductive struc-
tures might offer for total and, especially, for dependently-typed programming. Understanding “alge-
braic programming” as defining functions by pattern matching, the dualization “coalgebraic program-
ming” leads us to the notion of copattern matching. While patterns match the introduction forms of finite
data, copatterns match on elimination contexts for infinite objects, which are applications (eliminating
functions) and destructors/projections (eliminating coalgebraic types = Hagino’s codatatypes). An infi-
nite object such as a function or a stream can be defined by its behavior in all possible contexts. Thus, if
we consider a set of copatterns covering all possible elimination contexts, plus the object’s response for
each of the copatterns, that object is defined uniquely. More concretely, a stream is determined by its
head and its tail, thus, we can introduce a new stream object by giving two equations; one that specifies
the value it produces if its head is demanded, and one for the case that the tail is demanded.

record Stream {i : Size} (A : Set) : Set where
coinductive
constructor _::_
field head : A

tail : ∀{j : Size< i} → Stream {j} A
open Stream public

zipWith : ∀{i A B C} (f : A → B → C) → Stream {i} A → Stream {i} B → Stream {i} C
head (zipWith f s t) = f (head s) (head t)
tail (zipWith f s t) = zipWith f (tail s) (tail t)

Another covering set of copatterns consists of head, head of tail and tail of tail. For instance, the
stream of Fibonacci numbers can be given by the three equations, using a function zipWith f s t which
pointwise applies the binary function f to the elements of streams s and t.

15

fib : ∀{i} → Stream {i} N
((head fib)) = 0
(head (tail fib)) = 1
(tail (tail fib)) = zipWith _+_ fib (tail fib)

Taking the above equations as left-to-right rewrite rules, we obtain a strongly normalizing system. This
is in contrast to the conventional definition of fib in terms of the stream constructor h :: t by

fib = 0 :: 1 :: zipWith _+_ fib (tail fib)

which, even if unfolded under destructors only, admits an infinite reduction sequence starting with tail fib
−→ 1 :: zipWith _+_ fib (tail fib) −→ 1 :: zipWith _+_ fib (1 :: zipWith _+_ fib (tail fib)) −→ . . . The
crucial difference is that tail fib does not reduce if we choose the definition by copatterns above, since
the elimination tail is not matched by any of the copatterns; only in contexts head or head of tail or tail of
tail it is that fib springs into action.

Using definitions by copattern matching, we reduce productivity to termination and productivity
checking to termination checking. As termination of a function is usually proven by a measure on
the size of the function arguments, we prove productivity by well-founded induction on the size of
the elimination context. For instance, fib is productive because the recursive calls occur in smaller
contexts: at least one tail-destructor is “consumed” and, equally important, zipWith does not add any
more destructors. The number of eliminations (as well as the size of arguments) can be tracked by sized
types [HPS96], reducing productivity (and termination) checking to type checking. For a polymorphic
lambda-calculus with inductive and coinductive types and patterns and copatterns, this has been spelled
out in joint work with Brigitte Pientka [AP13]. An introductory study of copatterns and covering sets
thereof can be found in previous work [APTS13].

A similar abstract has appeared under the title Productive Infinite Objects via Copatterns in the informal pro-
ceedings of NWPT 2013 (Nordic Workshop of Programming Theory, Tallinn, Estonia, November 2013), and under
the title Programming and Reasoning with Infinite Structures Using Copatterns and Sized Types in the proceedings
of ATPS 2014 (Arbeitstagung Programmiersprachen, Kiel, Germany, February 2014).

References
[AP13] Andreas Abel and Brigitte Pientka. Wellfounded recursion with copatterns: A unified approach to

termination and productivity. pages 185–196. ACM Press, 2013.
[APTS13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Programming infinite

structures by observations. In Proc. of the 40th ACM Symp. on Principles of Programming Languages,
POPL 2013, pages 27–38. ACM Press, 2013.

[Gim96] Eduardo Giménez. Un Calcul de Constructions Infinies et son application a la vérification de systèmes
communicants. PhD thesis, Ecole Normale Supérieure de Lyon, 1996. Thèse d’université.

[Hag87] Tatsuya Hagino. A Categorical Programming Language. PhD thesis, University of Edinburgh, 1987.
[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized

types. In Proc. of the 23rd ACM Symp. on Principles of Programming Languages, POPL’96, pages
410–423, 1996.

[INR12] INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition, 2012.
[Nor07] Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD thesis,

Dept of Comput. Sci. and Engrg., Chalmers, Göteborg, Sweden, 2007.
[SP82] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive domain equa-

tions. SIAM J. Comput., 11(4):761–783, 1982.

16

Coalgebraic Update Lenses

Danel Ahman1 and Tarmo Uustalu2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
10 Crichton Street, Edinburgh EH8 9LE, United Kingdom; d.ahman@ed.ac.uk

2 Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia; tarmo@cs.ioc.ee

O’Connor [6] made the simple but very useful observation with deep consequences that the
(very well-behaved) lenses à la Foster et al. [3] are nothing but coalgebras of the array comonads
of Power and Shkaravska [7].

The put operation in these lenses is quite rigid in that a whole new view is merged into
the source, there is no flexibility for speaking about small changes to the view. We advocate
a generalization that is as simple as O’Connor’s, but offers also this flexibility. The idea is to
introduce updates (or changes, deltas, edits) that can be composed and applied to views. The
generalization derives from the work on directed containers of Ahman et al. [1].

A lens in our generalized sense—an update lens—is parameterized by a fixed set S (of
views), a monoid (P, o,⊕) (of updates) and an action ↓ of the monoid on the set (describing
the outcome of applying any given update on any given view).

These data, sometimes collectively called an act, define a comonad (D, ε, δ) by DX =
S × (P → X).

We define an update lens to be a coalgebra of this comonad. This is the same as having a
set X and maps lkp : X → S and upd : X × P → X satisfying the conditions

upd (x, o) = x
upd (upd (x, p), p′) = upd (x, p ⊕ p′)

lkp (upd (x, p)) = lkpx ↓ p

To have an update lens turns out to be equivalent to having a functor R from 〈〈S, (P, o,⊕) ↓〉〉
to Set. Here 〈〈S, (P, o,⊕) ↓〉〉 is the category where an object is an element of S, a map between
s, s′ : S is an element of p such that s ↓ p = s′, the identity on an object s is o and the
composition of two maps p, p′ is p ⊕ p′.

An act S, (P, o,⊕), ↓ also defines a monad (T, η, µ) by T X = S → P × X (a compatible
combination of the reader monad for S and the writer monad for (P, o,⊕)) that we have
elsewhere [2] called the update monad. The algebras of this monad and update lenses model
resp. comodel the same Lawvere theory.

Ordinary lenses for S are canonically related to update lenses for the act (S, (P, o,⊕), ↓)
where (P, o,⊕) is the free monoid on the “overwrite” semigroup structure on S.

The algebraic treatment of ordinary lenses by Johnson et al. [5], compared to O’Connor’s
coalgebraic account by Gibbons and Johnson [4], extends to update lenses. The action ↓ defines
a lifting of the writer monad for (P, o,⊕) to category Set/S. An update lens is essentially the
same as an algebra of this lifted monad.

Acknowledgements Tarmo Uustalu thanks Andreas Abel for reminding him of O’Connor’s
work. This ongoing work is being supported by the University of Edinburgh Principal’s Ca-
reer Development PhD Scholarship, the ERDF funded Estonian CoE project EXCS and ICT
National Programme project Coinduction, and the Estonian Research Council target-financed
research theme 0140007s12 and grant no. 9475.

17

References

[1] D. Ahman, J. Chapman, T. Uustalu. When is a container a comonad? Log. Methods in Comput.
Sci., to appear. Conference version in L. Birkedal, ed., Proc. of 15th Int. Conf. on Foundations of
Software Science and Computation Structures, FoSSaCS 2012 (Tallinn, March 2012), v. 7213 of
Lect. Notes in Comput. Sci., pp. 74–88. Springer, 2012.

[2] D. Ahman, T. Uustalu. Update monads: cointerpreting directed containers. In R. Matthes, A.
Schubert, eds., Proc. of 19th Conf. on Types for Proofs and Programs (Toulouse, Apr. 2014),
Leibniz Proc. in Informatics, Schloss Dagstuhl, to appear.

[3] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt. Combinators for bidirectional
tree transformations: a linguistic approach to the view-update problem. ACM Trans. on Program.
Lang. and Syst., v. 29, n. 3, article 17, 2007.

[4] J. Gibbons, M. Johnson. Relating algebraic and coalgebraic descriptions of lenses. In F. Hermann,
J. Voigtländer, eds., Proc. of 1st Int. Wksh. on Bidirectional Transformations, BX 2012 (Tallinn,
March 2012), v. 49 of Electron. Commun. of EASST, 16 pp, 2012.

[5] M. Johnson, R. Rosebrugh, R. J. Wood. Algebras and update strategies. J. of Univ. Comput. Sci,
v. 16, n. 5, pp. 729748, 2010.

[6] R. O’Connor. Functor is to lens as applicative is to biplate: introducing multiplate. arXiv:1103.2841,
2011. (Paper presented at 2011 ACM SIGPLAN Wksh. on Generic Programming, Tokyo, Sept.
2011.)

[7] J. Power, O. Shkaravska. From comodels to coalgebras: state and arrays. In J. Adámek, S. Milius,
eds., Proc. of Wksh. on Coalgebraic Methods in Computer Science (Barcelona, March 2004)), v.
106 of Electr. Notes in Theor. Comput. Sci., pp. 297-314, Elsevier, 2004.

18

Coinitial semantics

for redecoration of triangular matrices

Benedikt Ahrens and Régis Spadotti

Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier, Toulouse

In Martin-Löf type theory, simple inductive types—W-types—are characterized categorically
as initial algebras of a polynomial functor. Dually, coinductive types are characterized as terminal
coalgebras of polynomial functors. In the case of coinductive types, the meta-theoretic notion of
equality given by Martin-Löf’s identity type is too weak: instead, the idea of bisimilarity as
equality for coinductive data types was coined by Aczel [1].

The characterization of inductive types as initial algebras has been extended to some
heterogeneous—also called nested—inductive data types, e.g., the type of λ-terms, in various
formulations [4, 5]. The main goal of those works is to characterize not only the data type via a
universal property, but rather the data type equipped with a well-behaved substitution operation.

In the present work we study a specific coinductive heterogeneous data type—the type
family Tri of infinite triangular matrices—and its redecoration operation: the codata type is
parametrized by a fixed type E for entries not on the diagonal, and indexed by another, variable,
type A for entries on the diagonal. The respective types of its specifying destructors top and
rest are given in Figure 1, together with the destructors for the coinductively defined bisimilarity
relation on it. Equipped with the redecoration operation, the type Tri is shown by Matthes and
Picard [6] to constitute what they call a “weak constructive comonad”.

t : Tri(A)

topA(t) : A

t : Tri(A)

restA(t) : Tri(E ×A)

t ∼ t′

top(t) = top(t′)

t ∼ t′

rest(t) ∼ rest(t′)

Figure 1: Destructors and bisimilarity for the coinductive family of setoids Tri

In this work, we first identify those weak constructive comonads as an instance of the more
general notion of relative comonad, the dual to relative monads as introduced in [3]. Indeed, a
weak constructive comonad is precisely a comonad relative to the functor eq : Type→ Setoid,
the left adjoint to the forgetful functor.

Afterwards, we characterize the codata type Tri, equipped with the cosubstitution operation
of redecoration, as a terminal object of some category. For this, we dualize the approach by
Hirschowitz and Maggesi [5], who characterize the heterogeneous inductive type of lambda
terms—equipped with a suitable substitution operation—as an initial object in a category of
algebras for the signature of lambda terms. In their work, the crucial notions are the notion
of monad and, more importantly, module over a monad. It turns out that more work than a
simple dualization is necessary for two reasons:

• the lambda calculus can be seen as a monad on types and thus, in particular, as an
endofunctor. The codata type Tri, however, associates to any type of potential diagonal

19

elements a setoid of triangular matrices. We thus need a notion of comonad whose
underlying functor is not necessarily endo: the already mentioned relative comonads;

• the category-theoretic analysis of the destructor rest is more complicated than that of the
heterogeneous constructor of abstraction of the lambda calculus.

Finding a suitable categorical notion to capture the destructor rest and, more importantly, its
interplay with the comonadic redecoration operation on Tri, constitutes the main contribution
of the present work. These rather technical details shall not be given in this abstract, but are
explained in a preprint [2].

Once we have found such a categorical notion, we can use it to give a definition of a “coalgebra”
for the signature of infinite triangular matrices, together with a suitable notion of morphism of
such coalgebras. We thus obtain a category of coalgebras for that signature. Any object of this
category comes with a comonad relative to the aforementioned functor eq : Type→ Setoid and a
suitable comodule over this comonad, modeling in some sense the destructor rest. Our main
result then states that this category has a terminal object built from the codata type Tri and its
destructor rest, which are seen as a relative comonad and a comodule over that relative comonad,
respectively. This universal property of coinitiality characterizes not only the codata type of
infinite triangular matrices but also the bisimilarity relation on it as well as the redecoration
operation.

All our definitions, examples, and lemmas have been implemented in the proof assistant Coq.
The Coq source files and HTML documentation are available on the project web page [2].

We thank the anonymous referees for their helpful comments on this abstract.

References

[1] Peter Aczel. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes. Center for the Study of
Languages and Information, 1988.

[2] Benedikt Ahrens and Régis Spadotti. Coinitial semantics for redecoration of triangular matrices.
http://benediktahrens.github.io/coinductives/.

[3] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.
In C.-H. Luke Ong, editor, FOSSACS, volume 6014 of Lecture Notes in Computer Science, pages
297–311. Springer, 2010.

[4] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99, pages
193–202, Washington, DC, USA, 1999. IEEE Computer Society.

[5] André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Inf. Comput.,
208(5):545–564, 2010.

[6] Ralph Matthes and Celia Picard. Verification of redecoration for infinite triangular matrices using
coinduction. In Nils Anders Danielsson and Bengt Nordström, editors, TYPES, volume 19 of LIPIcs,
pages 55–69. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

20

http://benediktahrens.github.io/coinductives/

A Type Theory with Partial Equivalence Relations as

Types

Abhishek Anand, Mark Bickford, Robert L. Constable, and Vincent Rahli

Cornell University

Abstract

A small core type language with intersection types in which a partial equivalence rela-
tion on closed terms is a type is enough to build the non-inductive types of Nuprl, including
the types of dependent functions and partial functions. Using induction on natural num-
bers and intersection types, we build coinductive types; and using partial functions and
coinductive types we build algebraic datatypes.

Introduction. Nuprl [6, 2] is a functional programming language based on a constructive dependent
type theory with partial types called CTT. As in similar systems such as Coq [4] and Agda [5], it
has dependent functions, inductive types, and a cumulative hierarchy of universes. In addition,
CTT has dependent products, disjoint union, integer,1, equality, set (or refinement) and quotient
types [6]; intersection and union types [10]; image types [11]; computational approximation and
equivalence types [12]; and is one of the only type theories with partial types [7, 8].

Allen gave a semantics of CTT where a type is a Partial Equivalence Relation (PER) on
closed terms [1], which is connected to Russell’s original definition of a type as “the range of
significance of a propositional function.” By allowing the theory to directly represent PERs as
types, we can reformulate CTT using a smaller core of primitive type constructors. For example,
the dependent function type can now be defined. Allen [1, pp.15] suggested such a type that
represents PERs by combining the set and quotient types.

The per type constructor can turn PERs into types. Therefore, we need some primitives
to express such PERs: Base is the type of closed terms (PERs are relations on closed terms)
whose equality ∼ is Howe’s computational equivalence [9]; equality (or identity) types to refer
to already defined PERs2; our main logical operator is the intersection type constructor which
is a uniform universal quantifier; the computational approximation type constructor � allows
us to build PERs by imposing restrictions on their domains in terms of how terms compute.

When the partial, union and image types were added to Nuprl in the past we had to update
the metatheory accordingly. Using the per constructor we can now add new types to Nuprl
without changing the metatheory. We are already using this type in Nuprl and have defined
several formerly primitive types using it, such as the quotient and partial types.

Nuprl’s syntax. Nuprl is defined on top of an applied lazy untyped λ-calculus. We define the
subset of this language that is of interest to us in this paper as follows:

A,B,R ::= t1 � t2 | Base | Ui | per(R) | ∩ x:A.B[x] | t1 = t2 ∈ A
v ::= A | i | λx .t | 〈t1, t2〉 | Ax | inl(t) | inr(t)

t ::= x | v | t1 t2 | fix(t) | let x, y = t1 in t2 | let x := t1 in t2
| if t1<t2 then t3 else t4 | isint(t1, t2, t3) | isaxiom(t1, t2, t3)

where A, B, and R stand for types, i for an integer, v for a value, x for a variable, and t
for a term. Ax is the unique canonical inhabitant of true propositions that do not have any
nontrivial computational meaning in CTT, such as 0 = 0 ∈ N. The canonical form tests such as

1For efficiency issues, the integer type is a primitive type in Nuprl.
2We extended the definition of equality types so that the equality in T is not only a relation on T but also

a relation on Base [3, Sec. 4.2.1].

21

isaxiom allow us to distinguish between the different canonical forms [12]. A term of the form
let x := t1 in t2 eagerly evaluates t1 before evaluating t2.

The Booleans are: tt = inl(Ax) and ff = inr(Ax). The following operation lifts Booleans
to propositions: ⇑(a) = tt � a, which implies that a is computationally equivalent to tt. The
following operator asserts that its parameter computes to a value: halts(t) = Ax � (let x :=
t in Ax). We define the following uniform implication: AVB = ∩x:A.B, where x does not
occur free in B; uniform and: A u B = ∩x:Base. ∩ y:halts(x).isaxiom(x,A,B); uniform iff:
AWVB = (AVB uBVA); computational equivalence: t1 ∼ t2 = t1 � t2 u t2 � t1.

Meaning of per types. A term of the form per(R) is a type if for all closed terms t1 and t2,
R t1 t2 is a type, and R is a PER on closed terms. Two per types per(R1) and per(R2) are
equal if for all closed terms t1 and t2, R1 t1 t2 is inhabited iff R t1 t2 is inhabited. Two terms
t1 and t2 are equal in per(R) if R t1 t2 is inhabited. We have formally proved in our Coq
metatheory that the derivation rules that implement these conditions are valid [3, Sec. 5.2.4].

Type definitions. We now show how one defines Nuprl’s partial and function types using the core
type system described above. We first start with the simple Void, Unit and Z types.

Void = per(λa.λb.tt � ff) Unit = per(λa.λb.tt � tt)
Z = per(λa.λb.a ∼ b u ⇑(isint(a, tt, ff)))

a:A→ B[a] = per(λf.λg. ∩ a, b:Base.a = b ∈ AVf a = g b ∈ B[a])
A = per(λx, y.(halts(x)WVhalts(y)) u (halts(x)Vx = y ∈ A) u ∩a:Base.a ∈ AVhalts(a))

Using these definitions, several of our inference rules can be proved as lemmas.

Algebraic datatypes. Let N = per(λa.λb.a = b ∈ Zu⇑(if −1<a then tt else ff)). We assume
the existence of an induction principle on N. Using induction on N and intersection types, we
build coinductive types: corec(G) = ∩n:N.fix(λP .λn.if n=0 then Top else G (P (n−1))) n;
and using partial functions and coinductive types we build algebraic datatypes. (In order to
build inductive types we can add W types to our core system. However, in a companion paper
we discuss how to build inductive types using Bar Induction instead.) Our method consists
in selecting the largest collection of terms on which the subterm relation is well-founded. We
then derive induction principles using this selection procedure. Given a coalgebraic datatype
T , we define a size function s on T . Using fixpoint induction [8] we can prove that for all t ∈ T ,
s(t) ∈ Z. We can then prove that (∃n : N. s(t) = n ∈ Z) ∈ P. We define our algebraic datatype
as {t : T | ∃n : N. s(t) = n ∈ Z}. To prove inductive properties of algebraic datatypes, we can
then go by induction on n.

References
[1] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cornell University, 1987.

[2] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and Evan Moran.
Innovations in computational type theory using Nuprl. J. Applied Logic, 4(4):428–469, 2006. http://www.nuprl.org/.

[3] Abhishek Anand and Vincent Rahli. Towards a formally verified proof assistant. Technical report, Cornell University, 2014.
http://www.nuprl.org/html/verification/.

[4] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development. SpringerVerlag, 2004. http:
//coq.inria.fr/.

[5] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a functional language with dependent types. In Theorem
Proving in Higher Order Logics, 22nd Int’l Conf., volume 5674 of LNCS, pages 73–78. Springer, 2009. http://wiki.portal.chalmers.
se/agda/pmwiki.php.

[6] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[7] Robert L. Constable and Scott F. Smith. Partial objects in constructive type theory. In LICS, pages 183–193. IEEE
Computer Society, 1987.

[8] Karl Crary. Type-Theoretic Methodology for Practical Programming Languages. PhD thesis, Cornell University, Ithaca, NY,
August 1998.

[9] Douglas J. Howe. Equality in lazy computation systems. In Proceedings of Fourth IEEE Symposium on Logic in Computer
Science, pages 198–203. IEEE Computer Society, 1989.

[10] Alexei Kopylov. Type Theoretical Foundations for Data Structures, Classes, and Objects. PhD thesis, Cornell University,
Ithaca, NY, 2004.

[11] Aleksey Nogin and Alexei Kopylov. Formalizing type operations using the ”image” type constructor. Electr. Notes Theor.
Comput. Sci., 165:121–132, 2006.

[12] Vincent Rahli, Mark Bickford, and Abhishek Anand. Formal program optimization in Nuprl using computational equivalence
and partial types. In ITP 2013, volume 7998 of LNCS, pages 261–278. Springer, 2013.

22

http://www.nuprl.org/
http://www.nuprl.org/html/verification/
http://coq.inria.fr/
http://coq.inria.fr/
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

Coq à la Tarski: a predicative calculus of constructions

with explicit subtyping

Ali Assaf12

1 INRIA Paris-Rocquencourt, Paris, France
2 École Polytechnique, Paris, France

The predicative Calculus of Inductive Constructions (pCIC), the theory behind the Coq
proof system, contains an infinite hierarchy of predicative universes

Type0 ∈ Type1 ∈ Type2 ∈ . . .

and an impredicative universe Prop for propositions, together with an implicit cumulativity
relation

Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 ⊆
This gives rise to a subtyping relation ≤ which is used in the subsumption rule

Γ `M : A A ≤ B
Γ `M : B .

Subtyping in Coq is implicit, and is handled by the kernel. An attempt to simplify the
theory would be to make subtyping explicit, by inserting explicit coercions such as

c0,1 : Type0 → Type1

and rely on a kernel that only uses the classic conversion rule

Γ `M : A A ≡ B
Γ `M : B .

However, because of dependent types, coercions change the shape of the types and therefore
interfere with type checking.

We present a formulation of the predicative calculus of constructions using Tarski-style
universes [4] where subtyping is explicit. Other such systems have been proposed in the past
[5, 2, 3]. However, they do not preserve equality: a term in the original Coq system can have
many non-equivalent representations in the new system, which breaks typing. As a result, these
systems lose some of the expressivity of Russell-style universes with implicit subtyping, and are
therefore incomplete.

Our system fully preserves equality. By adding aditional equations between terms, we ensure
that every well-typed term in the original system has a unique canonical representation in our
system. To our knowledge, this is the first time such work has been done for the full predicative
calculus of constructions. We will also show how to orient the equations into reduction rules.
This work can be used as a basis for embedding Coq in a logical framework like the λΠ-calculus
modulo [1], implemented in Dedukti [6].

23

References

[1] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus mod-
ulo. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of Lecture Notes in Computer
Science, pages 102–117. Springer, 2007.

[2] Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford University
Press, Inc., New York, NY, USA, 1994.

[3] Zhaohui Luo. Notes on universes in type theory. Lecture notes for a talk at Institute for Advanced
Study, Princeton (URL: http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf), 2012.

[4] Per Martin-Lof and Giovanni Sambin. Intuitionistic type theory. Bibliopolis Naples, 1984.

[5] Erik Palmgren. On universes in type theory. In Twenty Five Years of Constructive Type Theory.
Oxford University Press, 1998.

[6] Ronan Saillard. Dedukti: a universal proof checker. In Foundation of Mathematics for Computer-
Aided Formalization Workshop, 2013.

24

http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf

Inductive Construction in Nuprl Type Theory Using Bar

Induction

Mark S Bickford & Robert Constable

Cornell University

Contructive type theories such as Coq, Agda, and Nuprl all have some powerful primitive
form of inductive construction. The soundness of the rules for these inductive constructions can
be di�cult to prove. In this note we show that one powerful form of inductive construction,
parameterized families of W-types, can be internally constructed in type theory using a general
form of Brouwer's bar induction rule and induction on a primitive type of natural numbers,
from types that need not be de�ned inductively. We �rst construct the corecursive family
of non-wellfounded types and then construct their wellfounded parts in such a way that the
desired induction principle follows from bar induction. All the results have been formally
proved in Nuprl, and details can be found here: http://www.nuprl.org/LibrarySnapshots/
Published/Version1/Standard/co-recursion/sbi-param-W-induction.html.

S v T means that type S is a subtype of type T . A type function F is monotone if S v
T ⇒ F (S) v F (T), and preserves ω-limits if

⋂
n∈N F (Xn) v F (

⋂
n∈NXn). A type T is a �xed

point of F if T v F (T) and F (T) v T . For any type T , T v Top, where Top =
⋂
x∈V oid V oid.

For any monotone, ω-limit preserving function F , the type corec(F) =
⋂
n∈N F

n(Top), where
the iteration Fn is de�ned by primitive recursion, is the greatest �xed point of F . We often
write Ap rather than A(p) and Bp,a rather than B(p, a).

Parameterized families of co-W and W-types. For parameter type P and functions A ∈ P → Type,
B ∈ p :P → Ap → Type, and C ∈ p :P → a :A→ Bp,a → P , the family WA,B,C(p) is the least
�xed point of the functional FA,B,C on type families G ∈ P → Type de�ned by

FA,B,C(G) = λp. a :A× (b :Bp,a → G(Cp,a,b))

Since FA,B,C is monotone and preserves ω-limits (on type families), we can easily construct
the greatest �xed point family, coWA,B,C , as follows:

coWA,B,C = λp.
⋂

n∈N
FnA,B,C(λq. Top)(p)

Then, for SA,B,C = p : P × w : coWA,B,C × (Bp,π1(w) + Unit), a path has type PathA,B,C =
{s : N→ SA,B,C | ∀n : N. con(s(n), s(n+ 1))} where

con(〈p, 〈a, f〉, d1〉, 〈q, w2, d2〉)⇔ (d1 = inl(b)⇒ (q = Cp,a,b ∧ w2 = f(b)))

A path s halts, halts(s), if ↓∃n : N. ∃p.∃w. s(n) = 〈p, w, inr()〉, where the squash of a type T is
the type ↓T that is empty if T is empty and is Unit if T is non-empty. Paths that start at p, w
have type

PathA,B,Cp,w =
{
s : PathA,B,C | ∃d. s(0) = 〈p, w, d〉

}

and we de�ne the type WA,B,C(p) by

WA,B,C(p) =
{
w : coWA,B,C | ∀s : PathA,B,Cp,w . halts(s)

}

It is relatively straightforward to prove that WA,B,C is a �xed point of the functional FA,B,C .

25

http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/co-recursion/sbi-param-W-induction.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/co-recursion/sbi-param-W-induction.html

To show that it is the least �xed point we use bar induction to prove that its induction principle
is witnessed by:

λC.λind.λpar.λw. letrec F (p, w) = let a, f = w in ind(p, a, f, λb.F (C[p; a; b], f(b))
in F (par;w)

Bar Induction. A �nite sequence s of length k has type Vk(T) = Nk → T , and we append
t to s using s ⊕k t = λi. if i < k then s(i) else t. Our bar induction rule is restricted to
conclusions of the form a(k, s) ∈ X(k, s), which, in Nuprl, have trivial constructive content.
Let ind(R, T, a,X, k, s, t) be the formula

∀t : {t : T |R(k, s, t)} . a(k + 1, s⊕k t) ∈ X(k + 1, s⊕k t)
The (restricted) bar induction rule is:

H ` T ∈ Type H, k : N, s : Vk(T), t : T ` R(k, s, t) ∈ Type
H, k : N , s : Vk(T), con(R, k, s) ` B(k, s) ∨ ¬B(k, s)
H, f : N→ T, ∀i : N. R(i, f, f(i)) `↓∃n : N. B(n, f)

H, k : N , s : Vk(T), con(R, k, s), B(k, s) ` a(k, s) ∈ X(k, s)
H, k : N , s : Vk(T), con(R, k, s), ind(R, T, a,X, k, s, t) ` a(k, s) ∈ X(k, s)

H ` a(0, z) ∈ X(0, z)

The �rst two premises give the type of the spread law R. The next two premises state that
B is a decidable bar on the spread de�ned by R. The �fth and sixth premises are the base and
induction steps of the proof by bar induction for the term a(0, z) ∈ X(0, z) in the conclusion of
the rule. This is a strong form of bar induction because the spread law R can be any relation
not necessarily decidable.

Since Nuprl allows general recursive de�nitions we can de�ne bar recursion as

br(d, b, i, n, s) = if d=inl(x) then b(n, s, x) else i(n, s, λt. br(d, b, i, n+ 1, s⊕n t))
and, using the restricted bar induction rule, we prove that bar recursion is the realizer for the
general, unrestricted form of bar induction.

Remarks.
1. As described in a companion paper, all the non-inductive types can be built using only

three type constructors, intersection, equality, and PER, which forms a type from a partial
equivalence relation on closed terms.

2. Anand and Rahli have implemented Nuprl in Coq by de�ning its computation system,
type system, sequents and rules. The type system they de�ne has W types as primitives
and does not include Mendler's recursive types. They have both an impredicative model
of all the universes and a predicative model of �nitely many.

3. Nuprl currently uses Mendler's recursive types, but every use of a recursive type in our
library could be replaced with a W-type.

4. The results in this paper reduces the soundness of inductive constructions to the soundness
of the bar induction rule given above. Because bar induction is true in classical logic, we
should be able to prove it in the impredicative Coq model of Nuprl using the excluded
middle axiom. This is work in progress.

5. We believe that analogues of Coq's inductive types can be de�ned using parameterized
W-types because Nuprl's type theory satis�es function extensionality.

6. We do not know whether Agda's inductive-recursive constructions can be de�ned using
the method of this paper (corecursion and bar induction).

26

Eliminating Higher Truncations via Constancy

Paolo Capriotti and Nicolai Kraus

University of Nottingham

Abstract

We show how to construct functions ‖A‖n → B if B is not an n-type.

In Homotopy Type Theory (HoTT), truncations constitute an important class of higher
inductive types: for any type A and any integer n ≥ −1, the n-truncation ‖A‖n can be under-
stood as a version of the type A where all homotopical structure above level n is collapsed. In
general, a type without any nontrivial structure above level n is called an n-type.

When n = −1, truncations correspond to the squashing or bracketing [1] operator, of which
they can be thought of as higher-dimensional generalisations. Truncations are usually presented
as reflectors of the corresponding sub-(∞, 1)-categories of n-types, resulting in an elimination
principle which only allows n-types as targets. Given a function f : A → B, we can construct
a function ‖A‖n → B as long as B is an n-type.

If B happens to be an m-type for some m > n, then the eliminator cannot be applied
directly. Therefore, in order to factor a function f : A → B through the truncation ‖A‖n, the
usual approach is to construct an ad-hoc n-type P , and show, with the help of the eliminator,
that f factors through P . However, it is not always clear how to construct such a type P .

We address this problem in vast generality by reducing the problem of factoring a function
f : A→ B through ‖A‖n to that of proving a number of coherence conditions on f .

The simplest nontrivial special case of our construction is, for a given 0-truncated type B
(a set), the equivalence

(
‖A‖−1 → B

)
' (Σf :A→B ∀a1 a2. f(a1) = f(a2)) . (1)

This equivalence tells us that, in order to define ‖A‖−1 → B, we need to find f : A → B
and a proof that f takes equal values for any pair of points in its domain. The latter can be
understood as a weak form of constancy. Let us write C1 for this condition:

CA;f
1 :≡ Πa1,a2:A f(a1) = f(a2).

Unfortunately, the equivalence (1) breaks down when B is anything other than a 0-type (a
related explanation can be found in [3]). For example, if B is a 1-type, then, given a function

f : A → B, a term c1 : CA;f
1 is not sufficient to guarantee that f factors through ‖A‖−1. We

need to impose an additional condition: c1 should provide “coherent” equality proofs in B.
More precisely, we require an inhabitant of the type

CA;f,c1
2 :≡ Πa1,a2,a3:A c1(a1, a2) · c1(a2, a3) = c1(a1, a3).

Indeed, we can then prove the following equivalence: for any type A and any 1-type B,

(
‖A‖−1 → B

)
'

(
Σf :A→B Σc1:CA;f

1
CA;f,c1

2

)
. (2)

We can deal with higher truncations similarly. For example, factoring through the 0-
truncations requires the same conditions, but this time they are imposed on apf rather than f
directly. When B is a 1-type, we then obtain the equivalence:

(‖A‖0 → B) '
(

Σf :A→B Πa:AC
Ω(A,a);apf
1

)
. (3)

27

It is not hard to imagine that the equivalences (1), (2) and (3) can be generalised both to
any truncation level of B and to any truncation operator, by formulating appropriate coherence
conditions Cn for all n, of which C1 and C2 are the first two examples.

For any fixed numbers k, n ≥ −1 (technically, −2) and n-type B, we show how to construct
a type in basic HoTT (using Σ, Π, Id only) which is equivalent to ‖A‖k → B. Our proof of the
equivalence, however, requires higher inductive types for k ≥ 0.

We view these equivalences as generalised universal properties of the truncations. In the
case n = k, they degenerate to the ordinary universal property of the truncation, as defined in
[4, Lemma 7.3.3], (‖A‖n → B) ' (A→ B).

Note that it is not immediately obvious how to even express the general result. It is not
difficult to guess the conditions Cn for the first few values of n, but, although the pattern is
intuitively clear, it is quite hard to capture it precisely.

Fortunately, Shulman’s work on inverse diagrams [5] provides a powerful framework, which
helps formulate and reason about towers of coherence conditions.

The idea to generalise the equivalences (1) and (2) to higher truncation levels of B (but
still assuming k = −1 for now) is that the required coherence conditions may be regarded as a
morphism between two semi-simplicial types [2]: the 0-coskeletal semi-simplicial type “gener-
ated” by A, and the equality semi-simplicial type on B (an explicit Reedy-fibrant resolution of
B regarded as a constant presheaf). The statement of the general case (k ≥ −1) can then be
obtained by applying the above construction to apk+1

f .
We state and prove our result in any model of HoTT with ωop-Reedy limits, without putting

any restriction on B. However, if B is an n-type for some n, as is often the case for the
target of an eliminator, the condition of existence of Reedy limits in the model can be dropped
(intuitively, the infinite tower of conditions becomes finite).

In that case, we obtain a simplified formulation, which, for any fixed pair of natural numbers
k and n, holds in any model of HoTT. In particular, this is true for the initial (syntactical)
model, and the equivalences can be used when formalising mathematics in a proof assistant.

Note that our result can simply be regarded as a family of types and equivalences depending
on the two indices k and n. The construction is uniform enough to be done mechanically, that
is, one could write a program which takes k, n as inputs and generates the required types and
proof terms. However, we believe that it is impossible to perform this construction internally
for variables k, n. This is closely related to the difficulties encountered by several people when
trying, for example, to formalise HoTT in itself; Shulman has recently given a thorough analysis
of this phenomenon [6].

References

[1] Steven Awodey and Andrej Bauer. Propositions as [types]. Journal of Logic and Computation,
14(4):447–471, 2004.

[2] Hugo Herbelin. A dependently-typed construction of semi-simplicial types. 2014.

[3] Nicolai Kraus, Mart́ın Escardó, Thierry Coquand, and Thorsten Altenkirch. Notions of anonymous
existence in Martin-Löf type theory. 2014. In preparation.

[4] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. first edition, 2013. Available online at homotopytypetheory.org/book.

[5] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. ArXiv e-prints, March
2012.

[6] Michael Shulman. Homotopy type theory should eat itself (but so far, its too big to swallow). Blog
post at homotopytypetheory.org, March 2014.

28

http://homotopytypetheory.org/book/
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/

Objects and subtyping in the λΠ-calculus modulo

Ali Assaf12, Raphaël Cauderlier13, and Catherine Dubois34

1 INRIA Paris-Rocquencourt, Paris, France
2 École Polytechnique, Paris, France

3 CNAM, Paris, France
4 ENSIIE, Évry, France

In this talk, we present a shallow embedding of an object calculus, the ς-calculus, in the
λΠ-calculus modulo. The main difficulty is the encoding of subtyping. We propose a solution
that makes use of rewriting in order to ease the handling of subtyping proofs.

Motivations The λΠ-calculus modulo is an extension of the λΠ-calculus [7] with rewrite
rules. Implemented in the Dedukti type-checker [9], it can be used as a logical framework for
the implementation of formal systems [5]. In this framework, rewrite rules can be introduced
in addition to β-reduction to extend the conversion relation between terms.

Cousineau and Dowek [4] showed that any functional pure type system can be encoded in
the λΠ-calculus modulo using appropriate rewrite rules. The main emphasis of this embedding
is that it is shallow, as opposed to deep embeddings. As much as possible, the features of the
object language are implemented by the corresponding features in the meta-language: bindings
are represented using binders, typing using typing, reduction using reduction, etc. Besides
avoiding the reimplementation of these features, shallow embeddings have the advantage of
being more compact, more readable, and more efficient than deep embeddings.

While encoding languages with functional features in the λΠ-calculus modulo seems natural,
encoding object-oriented languages, that share no feature with the λΠ-calculus modulo, is less
obvious. In particular, encoding subtyping is a challenging problem, because it is absent from
the target language. In the λΠ-calculus modulo, each term has a unique type. If M has type
A and A is not convertible to B then M does not have type B. Moreover, it is not possible to
rewrite A to B, as then any term of type B would also have type A, which would be unsound.

Related work A lot of work has been done in the field of encoding of objects. Several such
encodings in System Fω<: have been proposed and compared [8, 2]. They often rely on existential
types and some form of recursion.

In 1996, Abadi and Cardelli [1] defined several object calculi which consider objects as a
primitive notion instead of encoding them in a λ-calculus. These calculi are very primitive in
the sense that they can be used to represent both object-based and class-based languages and
they do not distinguish methods from fields. These calculi have been used as examples for
testing the effectivity of deep embeddings in the Coq proof assistant [6, 3].

One of these calculi is the simply-typed ς-calculus. It represents objects as records of the
form [li = ς(x : A)ti]i=1...n, and each method has only one parameter, introduced by the ς
binder, which represents self. This calculus has simple typing rules and operational semantics.

Γ, x : A ` ti : Ai ∀i = 1 . . . n

Γ ` t : A
where A = [li : Ai] and t = [li = ς(x : A)ti]i=1...n

t.lj −→ tj{x := t} (method selection)
t.lj ⇐ ς(x : A)u −→ t {lj := ς(x : A)u} (method update)

29

Subtyping is defined by [li : Ai]i=1...n+m <: [li : Ai]i=1...n , so A is a subtype of B if and only if
A and B coincide on the labels of B. With its minimalist definition, the simply-typed ς-calculus
is an ideal candidate for the study of encodings of object-oriented mechanisms.

Contributions We give an encoding of the simply-typed ς-calculus in the λΠ calculus mod-
ulo. We encode types and objects using association lists. Since sub-lists of well-typed objects
need not be well-typed, we have to introduce partially constructed (ill-typed) objects. Selection
and update of methods are performed using

select : ΠA : type,Object A→ Πl : Label,Object (assoc A l)
update : ΠA : type,Object A→ Πl : Label, (Object A→ Object (assoc A l))→ Object A

and the operational semantics is translated to the following rewrite rules:

select A [l = m, . . .] l ↪→ m [l = m, . . .]
update A [l = m, . . .] l m′ ↪→ [l = m′, . . .]

We use explicit coercions to handle subtyping. The coercion function

coerce : ΠA,B : type, proof(A <: B)→ Object A→ Object B

takes an extra logical argument of type proof(A <: B). We show how to make special use of
rewrite rules and reflection to reduce proof(A <: B) to proof > and thus avoid carrying big
subtyping proofs.

This encoding has been implemented in Dedukti and tested on the examples from Abadi and
Cardelli [1] which illustrate all the features of the simply-typed ς-calculus. Our implementation
can be found online at: https://www.rocq.inria.fr/deducteam/Sigmaid.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. Springer New
York, 1996.

[2] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information and Compu-
tation, 155(1/2):108–133, November 1999.

[3] A. Ciaffaglione, L. Liquori, and M. Miculan. Reasoning about object-based calculi in (co)inductive
type theory and the theory of contexts. J. Autom. Reasoning, 39(1):1–47, 2007.

[4] D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-calculus modulo. In
S. Ronchi Della Rocca, editor, TLCA, volume 4583 of LNCS, pages 102–117. Springer, 2007.

[5] G. Dowek. A theory independent curry-de bruijn-howard correspondence. In Proceedings of the
39th International Colloquium Conference on Automata, Languages, and Programming - Volume
Part II, ICALP’12, pages 13–15, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] G. Gillard. A formalization of a concurrent object calculus up to alpha-conversion. In D. A.
McAllester, editor, CADE, volume 1831 of LNCS, pages 417–432. Springer, 2000.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 40(1):143–184,
January 1993.

[8] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for object-oriented programming.
Journal of Functional Programming, 4(2):207–247, April 1994.

[9] R. Saillard. Dedukti: a universal proof checker. In Foundation of Mathematics for Computer-Aided
Formalization Workshop, Padova, 2013.

30

https://www.rocq.inria.fr/deducteam/Sigmaid

Pattern matching without K

Jesper Cockx, Dominique Devriese, and Frank Piessens

DistriNet – KU Leuven

Dependent pattern matching [Coquand, 1992] is a technique for writing functions in languages
based on dependent type theory, such as Agda [Norell, 2007], Coq [Sozeau, 2010], and Idris [Brady,
2013]. It allows us to define functions in a style similar to functional programming languages
such as Haskell. Additionally, dependent pattern matching can be used to write proofs in
the form of dependently-typed functions. For example, we can prove the transitivity of the
propositional equality x ≡ y by pattern matching on its only constructor refl : x ≡ x:

trans : (x y z : A)→ x ≡ y → y ≡ z → x ≡ z
trans x bxc bxc refl refl = refl

(1)

Inaccessible patterns, like bxc in this example, witness the fact that only one type-correct
argument can be in that position. Indeed, matching on a proof of x ≡ y with refl : x ≡ x
forces x and y to be the same.

Proofs by dependent pattern matching are typically much shorter and more readable than
ones that use the classical datatype eliminators associated to each inductive family. On the
other hand, Goguen et al. [2006] showed that all definitions by dependent pattern matching can
be translated to ones that only use eliminators. For this translation they depend on the so-called
K axiom. Coquand [1992] already observed that pattern matching allows proving this K axiom:

K : (P : a ≡ a→ Set)→
(p : P refl)(e : a ≡ a)→ P e

K P p refl = p

(2)

An emerging field within dependent type theory is homotopy type theory (HoTT) [The
Univalent Foundations Program, 2013]. It gives a new interpretation of terms of type x ≡ y
as paths from x to y. Many basic constructions in HoTT can be written very elegantly using
pattern matching, for example trans (1) corresponds to the composition of two paths.

One of the core elements of HoTT is the univalence axiom. Univalence captures the common
mathematical practice of informal reasoning “up to isomorphism” in a nice and formalized way.
It also has a number of useful consequences, such as functional extensionality. However, the
univalence axiom is incompatible with dependent pattern matching. This has forced people
working on HoTT to avoid using pattern matching or risk unsoundness.

The source of the incompatibility between univalence and dependent pattern matching is that
pattern matching relies on the K axiom. In an attempt to fix this, an option called –without-K
was added to Agda. In theory, this option should allow people to use pattern matching in a safe
way when it is undesirable to assume K. However, the option has been criticized many times
for being too restrictive, for having unclear semantics, and for containing errors. These errors
allowed one to prove (weaker versions of) the K axiom. While they are typically fixed quickly,
this really calls for a more in-depth investigation of dependent pattern matching without K.

We present a new criterion that describes what kind of definitions by pattern matching are
still allowed if we do not assume K, which is strictly more general than previous attempts. Our
criterion works by limiting the unification algorithm used for case splitting in two ways:

� It is not allowed to delete equations of the form x = x.

31

� When applying injectivity on the equation c s̄ = c t̄ where c s̄, c t̄ : D ū, the indices ū (but
not the parameters) should be self-unifiable, i.e. unification of ū with itself should succeed
positively (while still adhering to these two restrictions).

This criterion has been implemented as a patch to Agda. It allows the definition of trans (1),
but it prohibits the definition of K (2) because case splitting on the argument of type a ≡ a fails.

We give a formal proof that definitions by pattern matching satisfying this criterion are
conservative over standard type theory by translating them to eliminators in the style of Goguen
et al. [2006], without relying on the K axiom. Our proof follows the same general outline, but
there are two important differences:

� We work with the homogeneous equality instead of the heterogeneous version, because the
elimination rule for the heterogeneous equality is equivalent with K [McBride, 2000].

� Working with the homogeneous equality leads us naturally to upgraded versions of the
unification transitions given by Goguen et al. [2006], where the return type is dependent
on the equality proof.

We hope that this is enough to convince the HoTT community that pattern matching can
be used safely without assuming K, and maybe even helps in the creation of a language based
on HoTT. Our criterion makes it possible to do pattern matching on regular inductive families
without assuming K. But HoTT also introduces the concept of higher inductive types, which can
have nontrivial identity proofs between their constructors. This implies that in general they
don’t satisfy the injectivity, disjointness, or acyclicity properties. Luckily, our proof is entirely
parametric in the actual unification transitions that are used. So in order to allow pattern
matching in a context with higher inductive types, we should just limit the unification algorithm
further.

References

Edwin Brady. Idris, a general purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 23(5), 2013.

Thierry Coquand. Pattern matching with dependent types. In Types for proofs and programs,
1992.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern
matching. In Algebra, Meaning, and Computation. 2006.

Conor McBride. Dependently typed functional programs and their proofs. PhD thesis, University
of Edinburgh, 2000.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

Matthieu Sozeau. Equations: A dependent pattern-matching compiler. In Interactive theorem
proving, 2010.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

32

http://homotopytypetheory.org/book

Type-Checking Linear Dependent Types

Arthur Azevedo de Amorim1, Emilio Jesús Gallego Arias1, Marco Gaboardi2,

and Justin Hsu1

1 University of Pennsylvania
2 University of Dundee

Linear indexed type systems have been used to ensure safety properties of programs with
respect to di�erent kinds of resources; examples include usage analysis [10], implicit complex-
ity [3], and more. Linear indexed types use a type-level index language to describe resources
and linear types to reason about the program's resource usage in a compositional way.

A limitation of current analysis techniques for such systems is that resource usage is inferred
independently of the control �ow of a program�e.g., the typing rule for branching usually ap-
proximates resources by taking the maximal usage of one of the branches. To make this analysis
more precise, some authors have proposed extending adding dependent types, considering both
resource usage and the size information of a program's input. This signi�cantly enriches the
resulting analysis by allowing resource usage to depend on runtime information. Linear de-
pendent type systems have been used in several domains, such as implicit complexity [1] and
others.

Of course, there is a price to be paid for the increase in expressiveness: type checking and
type inference inevitably become more complex. In linear indexed type systems, these tasks are
often done in two stages: a standard Hindley-Milner-like pass, followed by a constraint-solving
procedure. In some cases, the generated constraints can be solved automatically with custom
algorithms [6] or o�-the-shelf SMT solvers [4]. However, the constraints are speci�c to the index
language, and richer index languages often lead to more complex constraints.

In this work we consider the type-checking problem for a particular system with linear
dependent types, DFuzz. DFuzz was born out of Fuzz [9], a language where types are used to
reason about sensitivity of programs, which measures the distance between outputs on nearby
inputs. Fuzz uses real numbers as indices for the linear types, which provide an upper bound
on the sensitivity of the program. As shown by [4], type-checking Fuzz programs can be done
e�ciently by using an SMT solver to discharge the numeric proof obligations arising from the
type system. The same approach works for type inference, which infers the minimal sensitivity
of a function.

DFuzz [5] was introduced to overcome a fundamental limitation of Fuzz: sensitivity infor-
mation cannot depend on runtime information, such as the size of a data structure. This is
done by enriching Fuzz with a limited form of dependent types, whose index language combines
information about the size of data structures and the sensitivity of functions. These changes
have a signi�cant impact on the di�culty of type checking, since type checking constraints in
DFuzz may involve general polynomials rather than just constants.

One solution could be to extend the algorithm proposed in [4] to work with the new index
language by generating additional constraints when dealing with the new constructs. This
would be similar in spirit to the work of [2] for type inference for d`PCF, a linear dependent
type system for complexity analysis. Unfortunately, such an approach does not work as well for
DFuzz, since it relies on the presence of arbitrary computable functions in the index language,
whereas DFuzz's index language is far simpler. Instead, since the type system of DFuzz also
supports subtyping, we consider a di�erent approach inspired by techniques from the literature
on subtyping (e.g. [7]) and on constraint-based type-inference approaches (e.g. [8]).

33

The main idea is to type-check a program by inferring some set of sensitivities for it, and
then testing whether the resulting type is a subtype of the desired type. To obtain completeness,
one must ensure that the inferred sensitivities are the �best� possible. Unfortunately, the DFuzz

index language is not rich enough for expressing such sensitivities. For instance, some cases
require taking the maximum of two sensitivity expressions, which may not lie inside the basic
sensitivity language. We solve this problem by extending the index language with a handful of
index constructs to ease sensitivity-inference; we call this new system EDFuzz. We present a
sensitivity-inference algorithm for EDFuzz, which we show sound and complete. Furthermore,
EDFuzz has similar meta-theoretic properties as DFuzz.

We are left with the problem of solving the constraints generated by our algorithm. First,
we show how to compile the constraints generated by the algorithmic systems to �rst-order
constraints, allowing us to use standard solvers. Unfortunately, the resulting set of constraints
is too powerful, and we also show that type checking for DFuzz is undecidable. We discuss how
to approximate complete type-checking with a constraint relaxation procedure that is enough
to handle the examples proposed in [5].

References

[1] Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. In IEEE
Symposium on Logic in Computer Science (LICS), Toronto, Ontario, pages 133�142. IEEE, 2011.

[2] Ugo Dal Lago, Barbara Petit, et al. The geometry of types. In ACM SIGPLAN�SIGACT Sym-
posium on Principles of Programming Languages (POPL), Rome, Italy, pages 167�178, 2013.

[3] Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear space. In ACM Transac-
tions on Programming Languages and Systems, pages 205�225. Springer, 2010.

[4] Loris D'Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen, and Benjamin C.
Pierce. Sensitivity analysis using type-based constraints. InWorkshop on Functional Programming
Concepts in Domain-speci�c Languages (FPCDSL), FPCDSL '13, pages 43�50, New York, NY,
USA, 2013. ACM.

[5] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. Linear
dependent types for di�erential privacy. In ACM SIGPLAN�SIGACT Symposium on Principles of
Programming Languages (POPL), Rome, Italy, POPL '13, pages 357�370, New York, NY, USA,
2013. ACM.

[6] Ugo Dal Lago and Ulrich Schöpp. Type inference for sublinear space functional programming.
In Kazunori Ueda, editor, Asian Symposium on Programming Languages and Systems (APLAS),
Shanghai, China, volume 6461 of Lecture Notes in Computer Science, pages 376�391. Springer,
2010.

[7] Benjamin C. Pierce and Martin Ste�en. Higher-order subtyping. In IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET), pages 511�530, 1994. Full version in
Theoretical Computer Science, vol. 176, no. 1�2, pp. 235�282, 1997 (corrigendum in TCS vol. 184
(1997), p. 247).

[8] François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389�489. MIT
Press, 2005.

[9] Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A calculus for
di�erential privacy. In ACM SIGPLAN International Conference on Functional Programming
(ICFP), Baltimore, Maryland, ICFP '10, pages 157�168, New York, NY, USA, 2010.

[10] Philip Wadler. Is there a use for linear logic? In Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), New Haven, Connecticut, volume 26, pages 255�273. ACM,
1991.

34

Simply Typed Lambda-Calculus

Modulo Type Isomorphisms ∗

Alejandro Dı́az-Caro1,2 and Gilles Dowek2

1 Université Paris-Ouest Nanterre La Défense, 200 avenue de la République, 92001 Nanterre, France
2 INRIA, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France

In informal mathematics, isomorphic structures are often identified. For instance, the nat-
ural numbers and non negative integers are never distinguished, although they formally are
different structures.

In typed lambda-calculus, in programming languages, and in proof theory, two types A and
B are said to be isomorphic, when there exists two functions φ from A to B and ψ from B to
A such that ψφr = r for all terms r of type A and φψs = s for all terms s of type B.

In some cases, isomorphic types are identified. For instance, in Martin-Löf’s type theory [16],
in the Calculus of Constructions [8], and in Deduction modulo [14,15], definitionally equivalent
types are identified. For example, the types x ⊆ y, x ∈ P(y) and ∀z (z ∈ x ⇒ z ∈ y) may
be identified. However, definitional equality does not handle all the isomorphisms and, for
example, the isomorphic types A∧B and B∧A are not usually identified: a term of type A∧B
does not have type B ∧A.

Not identifying such types has many drawbacks, for instance if a library contains a proof of
B ∧ A, a request on a proof of A ∧B fails to find it [18], if r and s are proofs of (A ∧B)⇒ C
and B ∧ A respectively, it is not possible to apply r to s to get a proof of C, but we need to
explicitly apply a function of type (B ∧A)⇒ (A ∧B) to s before we can apply r to this term.
This has lead to several projects aiming at identifying in a way or another isomorphic types in
type theory, for instance with the univalence axiom [4]. Identifying types also leads, as we shall
see, to interesting calculi.

In [6], Bruce, Di Cosmo and Longo have provided a characterisation of isomorphic types in
the simply typed λ-calculus extended with products and a unit type. In this work, we fully
defined a simply typed λ-calculus extended with products, where all the isomorphic types are
identified, and we provide a proof of strong normalisation for it. All the isomorphisms in such
a setting, can be summarised to the following four:

A ∧B ≡ B ∧A (1)

A ∧ (B ∧ C) ≡ (A ∧B) ∧ C (2)

A⇒ (B ∧ C) ≡ (A⇒ B) ∧ (A⇒ C) (3)

(A ∧B)⇒ C ≡ A⇒ B ⇒ C (4)

Any other isomorphisms can be obtained by a combination of the previous four. For example,
A⇒ B ⇒ C ≡ B ⇒ A⇒ C is a consequence of isomorphisms (4) and (1).

Identifying types requires to also identify terms. For example, if 〈r, s〉 has type A∧B = B∧A,
then it is not clear what the first projection would be. A more elaborated example, if r is a
closed term of type A, then λxA.x is a term of type A ⇒ A, and 〈λxA.x, λxA.x〉 is a term of
type (A ⇒ A) ∧ (A ⇒ A), hence, by isomorphism (3), a term of type A ⇒ (A ∧ A). Thus
the term 〈λxA.x, λxA.x〉r is a term of type A ∧ A. Although this term contains no redex, we
do not want to consider it as normal, in particular because it is not an introduction. So we
shall distribute the application over the comma, yielding the term 〈(λxA.x)r, (λxA.x)r〉 that
finally reduces to 〈r, r〉. Similar considerations lead to introduction of several equivalence rules
on terms.

∗Full version of this paper available at http://www.diaz-caro.info/stmti.pdf (submitted)

35

http://www.diaz-caro.info/stmti.pdf

One of the main difficulties in the design of this calculus is the design of the elimination
rule for the conjunction. A rule like “if r : A ∧ B then π1(r) : A”, would not be consistent.
Indeed, if A and B are two arbitrary types, s a term of type A and t a term of type B, then
〈s, t〉 has both types A ∧B and B ∧A, thus π1〈s, t〉 would have both type A and type B. The
approach we have followed is to consider explicitly typed (Church style) terms, and parametrise
the projection by the type: if r : A ∧ B then πA(r) : A and the reduction rule is then that
πA〈s, t〉 reduces to s if s has type A.

But this rule introduces some non-determinism. Indeed, in the particular case where A
happens to be equal to B, then both s and t have type A and πA〈s, t〉 reduces both to s and
to t. Notice that although this reduction rule is non-deterministic, it preserves typing.

Thus, our calculus is one of the many non-deterministic calculi in the line of [5,7,9,10,12,17].
Our pair-construction operator is like the parallel composition operator in a non deterministic
calculi. In non-deterministic calculi, the parallel composition is such that if r and s are two λ-
terms, the term 〈r, s〉 represents the computation that runs either r or s non-deterministically,
that is such that 〈r, s〉t reduces either to rt or st. In our case, πB(〈r, s〉t) first reduces to
πA⇒B〈r, s〉t and then to rt or st.

In [11] we showed that this calculus is also related to the algebraic calculi [1–3,13,19], some
of which have been designed to express quantum algorithms. In this case, the pair 〈s, t〉 is
not interpreted as a non deterministic choice but as a superposition of two processes running s
and t, and the projection π is the related to the projective measurement, that is the only non
deterministic operation.

References

[1] P. Arrighi and A. Dı́az-Caro. A System F account-
ing for scalars. LMCS, 8(1:11), 2012.

[2] P. Arrighi, A. Dı́az-Caro, and B. Valiron. A
type system for the vectorial aspects of the
linear-algebraic lambda-calculus. EPTCS, 88:1–
15, 2012.

[3] P. Arrighi and G. Dowek. Linear-algebraic
lambda-calculus: higher-order, encodings, and
confluence. LNCS, 5117:17–31, 2008.

[4] S. Awodey, A. Pelayo, and M. A. Warren. Voevod-
sky’s univalence axiom in homotopy type theory.
Notices of the AMS, 60(08):1164–1167, 2013.

[5] G. Boudol. Lambda-calculi for (strict) parallel
functions. IC, 108(1):51–127, 1994.

[6] K. B. Bruce, R. Di Cosmo, and G. Longo. Prov-
able isomorphisms of types. MSCS, 2(2):231–247,
1992.

[7] A. Bucciarelli, T. Ehrhard, and G. Manzonetto.
A relational semantics for parallelism and non-
determinism in a functional setting. Annals of
Pure and Applied Logic, 163(7):918–934, 2012.

[8] T. Coquand and G. Huet. The calculus of con-
structions. IC, 76(2–3):95–120, 1988.

[9] U. de’Liguoro and A. Piperno. Non deterministic
extensions of untyped λ-calculus. IC, 122(2):149–
177, 1995.

[10] M. Dezani-Ciancaglini, U. de’Liguoro, and
A. Piperno. A filter model for concurrent

lambda-calculus. SIAM Journal of Computing,
27(5):1376–1419, 1998.

[11] A. Dı́az-Caro and G. Dowek. The probability of
non-confluent systems. EPTCS, 143:1–15, 2013.

[12] A. Dı́az-Caro, G. Manzonetto, and M. Pagani.
Call-by-value non-determinism in a linear logic
type discipline. LNCS, 7734:164–178, 2013.

[13] A. Dı́az-Caro and B. Petit. Linearity in the
non-deterministic call-by-value setting. LNCS,
7456:216–231, 2012.

[14] G. Dowek, T. Hardin, and C. Kirchner. Theorem
proving modulo. Journal of Automated Reason-
ing, 31(1):33–72, 2003.

[15] G. Dowek and B. Werner. Proof normaliza-
tion modulo. The Journal of Symbolic Logic,
68(4):1289–1316, 2003.

[16] P. Martin-Löf. Intuitionistic type theory. Studies
in proof theory. Bibliopolis, 1984.

[17] M. Pagani and S. Ronchi della Rocca. Linearity,
non-determinism and solvability. Fundamenta In-
formaticae, 103(1-4):173–202, 2010.

[18] M. Rittri. Retrieving library identifiers via equa-
tional matching of types. LNCS, 449:603–617,
1990.

[19] L. Vaux. The algebraic lambda calculus. MSCS,
19(5):1029–1059, 2009.

36

Synthesis of certified programs with effects

using monads in Coq

Sara Fabbro and Marino Miculan

Laboratory of Models and Applications of Distributed Systems
Department of Mathematics and Computer Science, University of Udine, Italy

fabbro.sara.88@gmail.com, marino.miculan@uniud.it

An important feature of type-theory based proof assistants is the possibility of extracting
certified programs from proofs [4, 2], in virtue of the Curry-Howard “proofs-as-programs”,
“propositions-as-types” isomorphism. The extracted programs are certified in the sense that
they are guaranteed to satisfy their specification, i.e. the properties represented by their types
in the proof assistant.

One limitation of this approach is that these programs are always purely functional. Non-
functional programming languages (e.g. imperative, distributed, concurrent,. . .) hardly fea-
ture a type theory supporting a Curry-Howard isomorphism, and even if such a theory were
available, implementing a specific proof-assistant with its own extraction facilities would be a
daunting task.

In this talk we present a methodology for circumventing this problem using the extraction
mechanisms of existing proof assistants (namely Coq), generalizing previous work [3]. Basi-
cally, the idea is to incapsulate the non-functional aspects in a computational monad, as done
in Haskell, and using the extraction facilities of Coq for directly producing certified Haskell
code with monads.

Let us consider an algebraic specification (T,Σ,Γ) of a monad T . This consists of an abstract
type constructor T (i.e., for each type A, TA is the type of computations whose values have
type A), and a set Σ = {op1, . . . , opn} of (multi-sorted) constructors for the monadic types
TA. The behaviour of these constructors is specified by the set Γ = {s1 = t1, . . . , sm = tm}
of equational laws; terms si, ti in these equations are built using the operators in Σ, plus the
basic constructors of any monad returnA : A → TA and bindA,B : TA → (A → TB) → TB
(often written �=). For instance, the “maybe” monad M is defined by a single (polymorphic)
constructor nothingA : MA, and a single equation bindA,B(nothingA, f) = nothingB . Similarly,
the “global store” monad can be specified by two operations lookup and update, and seven
equational laws [7]. Many other computational aspects can be specified in this way; see e.g. [6].

The specification (T,Σ,Γ) is encoded in Coq as a module signature, i.e., Module Type
specializing MONAD_INTERFACE, like the following:

Module Type MAYBEMONAD_INTERFACE <: MONAD_INTERFACE.

Parameter Nothing : forall (A: Type), M A.

Axiom Strictness : forall (A B : Type) (f : A -> M B),

(Nothing A) >>= f = (Nothing B).

End MAYBEMONAD_INTERFACE.

Then, we can start reasoning about (and implementing) programs with effects by assuming
a monad implementing this signature. Program specifications can be given using the equational
logic at the Prop level of Coq. For instance, the specification of a program for in-place swapping
of two locations, in the monad for global store, is the following:

Module StateInstance <: STATEMONAD_INTERFACE.

Include STATEMONAD_INTERFACE.

37

mailto:fabbro.sara.88@gmail.com
mailto:marino.miculan@uniud.it

Include MemoryState.

Lemma swap_locs : forall (l1 l2 : loc), l1 <> l2 -> {c : M unit |

((c >>= (fun _ => lookUp l2)) =

(lookUp l1) >>= fun x => c >>= (fun _ => ret x)) /\

((c >>= (fun _ => lookUp l1)) =

(lookUp l2) >>= fun x => c >>= (fun _ => ret x)) /\

forall (l : loc), (l <> l1 /\ l <> l2) -> ((c >>= fun _ => lookUp(l))) =

((lookUp(l) >>= fun x => c >>= fun _ => ret x))}.

This kind of Lemmata can be proved constructively as usual, by providing a program c and
proving that it meets the specification. This proof will make use of the abstract algebraic laws
declared in the monad signature (STATEMONAD_INTERFACE in this case). Notice that there is
no need to provide any real implementation of the monadic specification in Coq, in order to
program with the operators and prove the specification. Actually, it is not even advisable: for
proving that programs are compliant to their specifications we cannot rely on peculiar properties
of any specific implementation.

At this point, from these proofs we can extract Haskell programs by taking advantage of
the standard Coq Extraction facility. The programs so obtained cannot be executed, because
they will contain the constructors opi which have still to be defined. Differently from previous
work [3], we solve this issue by automatically replacing during the Extraction each opi with a
suitable Haskell code fragment, possibly using operators of the corresponding Haskell monad.
In the case of the “maybe” monad above, we declare:

Extract Constant Maybe.M "a" => "Maybe a".

Extract Constant Maybe.ret => "Just".

Extract Constant Maybe.bind => "(>>=)".

Extract Constant Maybe.Nothing => "Nothing".

This is the step where we provide the implementation of the monad; in general, each operator
can be mapped to an arbitrary complex code snippet. With these definitions, the extracted
code can be readily executed in the Haskell runtime, with the proper monads covering the
non-functional computational aspects.

Still, we have to prove that the mappings defined in the Extract Constant declarations are
sound. This corresponds to prove that the equational laws declared in the monad interface are
respected. The methodology for proving this soundness is general and uniform, and proceeds
as follows. Let s = t be an equational law of the monad specification, and let s′, t′ the two
Haskell programs obtained by extraction from s, t, respectively; we have to prove that s′ and t′

are semantically equivalent with respect to the semantics of Haskell.
Now, instead of working with the full-blown Haskell syntax and semantics, it is more con-

venient to work with the Core language, a very small, explicitly-typed, variant of System F
used as an intermediate language in ghc. On this language we can easily define an applicative
bisimulation M ≈ N à la Abramsky [1], which corresponds to the behavioural (i.e., contextual)
equivalence. Thus, for each pair s′, t′ as above, let s′′, t′′ be the corresponding two Core terms
produced by ghc (with suitable options); we have to prove that s′′ ≈ t′′. Once all equivalences
s′′ ≈ t′′ have been proved, we can assert that the mapping defined by the Extract Constant

clauses is correct with respect to the equational laws assumed in the monad signature, and
hence the extracted code with effects is certified.

These equivalences can be proved “on the paper”, following the usual techniques for applica-
tive bisimulation. However, these proofs can be quite long and error-prone, hence it is better
(and safer) to develop them within a proof assistant. To support these proofs we are currently

38

developing a formalization in Coq of the syntax, semantics and behavioural equivalence of Core
language, similar to that in [5]. The whole methodology is summarized in the following dia-
gram.

High Level
Specifications

Monad Specifcation
(Σ,Γ)

Monad Type
and Properties

inclusion

INCLUSION
Encoding

of Program
Specifications

ENCODING
Write
the

Program

PROGRAMMING
Monad

Monad

Module
Monad Type

Program
Specifications Program Prove

 Program
Correctness

PROVING

Formal
verification

of extracted code

CERTIFICATION

Execute
the

program

RUN!
Implementation

of the
 Monad

IMPLEMENTATION

Extraction
of the

Program

EXTRACTION
Proof

Mapping

Target Language
Monad

Mapping
Specifications

Target Language
Semantic Specification

PROOF ASSISTANT
(COQ)

EXTENDED PROOF ASSISTANT
(COQ + MONADS)

TARGET LANGUAGE
(HASKELL)

References

[1] S. Abramsky. The lazy lambda calculus. Research topics in functional programming, pages 65–116,
1990.

[2] P. Letouzey. Extraction in Coq: An overview. In Proc. CiE, volume 5028 of Lecture Notes in
Computer Science, pages 359–369. Springer, 2008.

[3] M. Miculan and M. Paviotti. Synthesis of distributed mobile programs using monadic types in Coq.
In Proc. ITP’12, LNCS 7406. Springer, 2012.

[4] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq. Journal of
Symbolic Computation, 15:607–640, 1993.

[5] M. Pirog and D. Biernacki. A systematic derivation of the STG machine verified in Coq. In ACM
Sigplan Notices, volume 45, pages 25–36. ACM, 2010.

[6] G. D. Plotkin and A. J. Power. Computational effects and operations: An overview. Electr. Notes
Theor. Comput. Sci., 73:149–163, 2004.

[7] G. D. Plotkin and J. Power. Notions of computation determine monads. In Proc. FoSSaCS, volume
2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

39

Toward a Theory of Contexts of Assumptions

in Logical Frameworks

Amy Felty1, Alberto Momigliano2, and Brigitte Pientka3

1 School of Electrical Engineering and Computer Science, University of Ottawa, Canada,
afelty@eecs.uottawa.ca

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy, momigliano@di.unimi.it
3 School of Computer Science, McGill University, Montreal, Canada, bpientka@cs.mcgill.ca

In the beginning Gentzen created natural deduction, but then He switched to the sequent
calculus in order to sort out the meta-theory. Something similar happened to logical frameworks
supporting higher-order abstract syntax (HOAS): first Edinburgh LF adopted Martin-Löf’s
parametric-hypothetical judgments to encode object logics in such a way that contexts were
left implicit. Later on, Twelf [5] had to provide some characterization of contexts (regular
worlds) to verify the meta-theory of those very object logics. The same applies to λProlog vs.
Abella [3] and Hybrid [2] and, in a more principled way, to Beluga [4].

One may argue that, prior to Girard, proof-theory had been somewhat oblivious to what
contexts look like. Even sub-structural logics view a context of assumptions as a flat collection
of formulas A1, A2, . . . , An listing its elements separated by commas. However, this turns out
to be inadequate once we mechanize this matter, as it ignores that assumptions come in blocks.
Consider as an object logic the typing rules for the polymorphic lambda-calculus:

x term
tmx x : T1

ofv

...
M : T2

(lamx.M) : (arr T 1T2)
of tmx,ofv

l

α tp
tpv

...
M : T1

(tlamα.M) : (allα. T)
of tpv

tl

M1 : (arr T 1T2) M2 : T1

(appM1 M2) : T2

ofa
M : (allα. T1) T2 tp

(tappM T1) : [T2/α]T1

ofta

We have proposed in [1] to view contexts as structured sequences of declarations D, where a
declaration is a block of unique (atomic) assumptions separated by ’;’.

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ, D
Schema S ::= Ds | Ds + S

A schema classifies contexts and consists of declarations Ds, possibly more general than those
occurring in a concrete context having schema S. This yields for the above example

Γ ::= · | Γ, (x term;x : T) | Γ, α tp
S ::= α tp + (x term;x : T)

where, e.g., the context α1 tp, (x1 term;x1 : (arr α1 α1)), (x2 term;x2 : α1) has schema S.
Since contexts are structured sequences, they admit structural properties on the level of se-

quences (for example by adding a new declaration) as well as inside a block of declarations (for
example by adding an element to an existing declaration). We distinguish also between struc-
tural properties of a concrete context and structural properties of all contexts of a given schema.

40

We give a unified treatment of all such weakening/strengthening/exchange re-arrangements via
total operations rm and perm that remove an element of a declaration, and permute elements
within a declaration. For example, declaration weakening can be seen as:

Γ, rmA(D),Γ′ ` J
Γ, D,Γ′ ` J d-wk

Suppose now that we want to prove in a logical framework some meta-theorem involving differ-
ent contexts, say “if Γ1 ` J1 then Γ2 ` J2”, for Γi of schema Si. HOAS-based logical frameworks
have so far pursued two apparently different options:

(G) We reinterpret the statement in a generalized context containing all the relevant assumptions—
we call this the generalized context approach, as taken in Twelf and Beluga—and prove
“if Γ1 ∪ Γ2 ` J1 then Γ1 ∪ Γ2 ` J2”, where “∪” denotes the join of the two contexts.

(R) We state how two (or more) contexts are related—we call this the context relations ap-
proach. The statement becomes therefore “if Γ1 ∼ Γ2 and Γ1 ` J1 then Γ2 ` J2”, with
an explicit and typically inductive definition of this relation. This approach is taken in
Abella and Hybrid.

If we had a common grounding of both approaches, this would pave the way toward moving
proofs from one system to another, in particular breaking the type/proof theory barrier. It
turns out, roughly, that a context relation can be seen as the graph of one or more appropriate
rm operation on a generalized context. Further, if we take the above join metaphor seriously,
we can organize declarations and contexts in a semi-lattice, where x � y holds iff x can be
reached from y by some rm operation on y. A generalized context will indeed be the (lattice-
theoretic) join of two contexts and context relations can be identified by navigating the lattice
starting from the join of the to-be-related contexts. Our ongoing effort is to use the lattice
structure to give a declarative account promotion/demotion of theorems (known in the Twelf
lingo as “context subsumption”), where a statement proven in a certain context can be used in
a “related” one. We may formulate subsumption rules akin to upward and downward casting
over the lattice order.

This work also has a practical outcome in our ongoing work designing ORBI (Open challenge
problem Repository for systems supporting reasoning with BInders), a repository for sharing
benchmark problems and their solutions for HOAS-based systems, in the spirit of TPTP [6].

References

[1] A. Felty, A. Momigliano, and B. Pientka. The next 700 challenge problems for reasoning with
higher-order abstract syntax representations: Part 1—a foundational view. Submitted, 2014.

[2] A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach to reasoning with higher-
order abstract syntax. Journal of Automated Reasoning, 48(1):43–105, 2012.

[3] A. Gacek. The Abella interactive theorem prover (system description). In IJCAR 2008, volume
5195 of LNCS, pages 154–161. Springer, 2008.

[4] B. Pientka and J. Dunfield. Beluga:a framework for programming and reasoning with deductive
systems (system description). In IJCAR 2010, volume 6173 of LNCS, pages 15–21. Springer, 2010.

[5] C. Schürmann. The Twelf proof assistant. In 22nd International Conference on Theorem Proving
in Higher Order Logics, volume 567 of LNCS, pages 79–83. Springer, 2009.

[6] G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated
Reasoning, 43(4):337–362, 2009.

41

Modular and lightweight certification of polyhedral

abstract domains∗

Alexis Fouilhe, Sylvain Boulmé, and Michaël Périn

Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
{alexis.fouilhe,sylvain.boulme,michael.perin}@imag.fr

Abstract interpretation [5] provides a theory for static analysis of programs, where sets of
reachable states are over-approximated by elements of an abstract domain. In particular, the
domain of convex polyhedra [6] expresses postconditions as conjunctions of affine inequalities:
a polyhedron p encodes a formula “

∧
i

∑
j aij .xj≤bi”, where aij and bi are rational constants,

and xj are numerical variables of the program. Its semantics (or concretization) is the predicate
JpK defined as “λm.

∧
i

∑
j aij .m(xj)≤ bi”, where m is a total map from variables to rationals

representing a memory state. The analyzer computes postconditions in a given abstract domain
by performing a symbolic evaluation of programs that combines operators of this domain. Its
correctness relies on each domain operator over-approximating a given predicate transformer.

An abstract interpreter such as Astrée [3] is able to ensure the absence of undefined
behaviours in large critical programs from avionics. But Astrée is itself very complex and,
despite the care put in its development, it may contain bugs. This is probably also the case for
well-known abstract domain implementations, such as the PPL [1] and Apron [8]. Inspired by
the development in Coq of the CompCert certified compiler [10], the Verasco project aims
to build a certified abstract interpreter [4]. Our work in this project focuses on obtaining a
provably correct library for convex polyhedra, similar in features and performance to the core
of the PPL and Apron polyhedra libraries.

Proving correct the result of domain operators on polyhedra reduces to proving inclusions
of polyhedra: a polyhedron p is included in a polyhedron p′ iff ∀m, JpK(m) ⇒ Jp′K(m). If each
inequality of p′ is entailed by a positive linear combination of the inequalities of p, then inclusion
holds. Farkas’s lemma states that when inclusion holds, such a vector Λ of linear combinations
always exists.

Moreover, such a Λ can be considered as a certificate containing the necessary information
to build the result p′ of a given domain operator from its operands which are here expressed
as p. The result p′ = Λ.p satisfies the inclusion properties which guarantee its correctness, by
construction. Our certified abstract domain of polyhedra is built out of two components:

• An untrusted Ocaml backend which, for each operator, produces certificates.

• A frontend, developed in Coq, which builds proved-correct results using certificates pro-
vided by the backend.

This idea has previously been experimented by Frédéric Besson et al. [2]. Our work makes
the frontend more modular and more generic with respect to the backend. All that is required
from the backend is to be able to generate certificates in our format. The backend could use its
own data structures (e.g. double representation), or trade some precision for computationally
cheaper operators [11, 9]. Such flexibility is achieved reducing the coupling between the frontend
and the backend:

• Communication between the frontend and the backend is reduced to certificates, i.e.
descriptions of linear combinations of inequalities identified by integers.

∗This work was partially supported by ANR project “Verasco” (INS 2011).

42

http://verasco.imag.fr/

• The frontend ensures soundness but does not give formal precision guarantees. The
precision versus efficiency trade-off is delegated to the backend.

The frontend requires the backend to implement only a basic Ocaml interface. It is extended
in the frontend using functors: extra features are added in a modular way to any numerical
domain without relying on its specifics. For example, the predicate transformer for assignment
can be phrased in terms of more basic operators: intersection, projection and renaming. A
functor adds the operator to a basic domain and builds the required correctness proofs.

To complete our abstract domain, we built a backend using a constraints-only representation
of polyhedra [7]. Its operators use tweaked versions of standard algorithms so as to produce
certificates as a cheap by-product of computations. Experiments show that the overhead of
result verification is sufficiently low for our abstract domain to remain competitive with well-
established, but non-verifying, implementations.

In conclusion, result verification is particularly well suited for certifying polyhedral abstract
domains. Our work demonstrates an efficient, evolutive and reusable design, which could serve
as a guiding example for lightweight certification. We hope to extend this work to a whole
static analyzer.

References

[1] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1–2), 2008.

[2] F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result certification for relational program
analysis. Technical Report RR-6333, INRIA, 2007.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In PLDI. ACM, 2003.

[4] S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal Verification of a C Value Analysis
Based on Abstract Interpretation. In SAS, volume 7935 of LNCS. Springer, 2013.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL. ACM, 1977.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In POPL. ACM, 1978.

[7] A. Fouilhe, D. Monniaux, and M. Périn. Efficient Generation of Correctness Certificates for the
Abstract Domain of Polyhedra. In SAS, volume 7935. Springer, 2013.

[8] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis. In
CAV, 2009.

[9] V. Laviron and F. Logozzo. Subpolyhedra: a (more) scalable approach to infer linear inequalities.
In VMCAI, volume 5403 of LNCS, pages 229–244. Springer, 2009.

[10] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7), 2009.

[11] S. Sankaranarayanan, M. Colón, H. Sipma, and S. Manna. Efficient strongly relational polyhedral
analysis. In VMCAI, volume 3855 of LNCS, pages 111–125. Springer, 2006.

43

The Church-Scott representation of inductive and

coinductive data in typed lambda calculus

Herman Geuvers
1,2

1 ICIS, Radboud University Nijmegen, the Netherlands
2 Technical University Eindhoven, the Netherlands

Data in the lambda calculus is usually represented using the "Church encoding", which gives
closed terms for the constructors and which naturally allows to de�ne functions by "iteration".
An additional nice feature is that in system F (polymorphically typed lambda calculus) one can
de�ne closed data types for this data, the iteration scheme is well-typed and beta-reduction is
always terminating. A problem is that primitive recursion is not directly available: it can be
coded in terms of iteration at the cost of ine�ciency (e.g. a predecessor with linear run-time).
The much less well-known Scott encoding [1] has case distinction as a primitive. (For the numerals,
these are also known as `Parigot numerals'[3,4].) The terms are not typable in system F and there
is no iteration scheme, but there is a constant time destructor (e.g. predecessor).

We will present a uni�cation of the Church and Scott presentation of data types, which has
primitive recursion as basic. We show how these can be typed in the polymorphic lambda calculus
extended with recursive types and we show that all terms are strongly normalizing. We also show
that this works for the dual case, co-inductive data types, and we show how programs can be
extracted from proofs in second order predicate logic.

Church and Scott data types As a step back, we look at data in the untyped λ-calculus.
Church numerals:

0 := λx f.x p := λx f.fp (x)
1 := λx f.f x S := λn.λx f.f (nx f)
2 := λx f.f (f x)

The Church numerals have iteration as basis: the numerals are iterators. An advantage is that
one gets quite a bit of �well-founded recursion� for free. A disadvantage is that there is no pattern
matching built in, so the predecessor is hard to de�ne.

Scott numerals:

0 := λx f.x p+ 1 := λx f.f p
1 := λx f.f 0 S := λn.λx f.f n
2 := λx f.f 1

The Scott numerals have case as a basis: the numerals are case distinctors: nAB = A if n = 0
and nAB = Bm if n = m+ 1. An advantage is that the predecessor can immediately be de�ned,
but one has to get �recursion� from somewhere else (e.g. by using a �xed point-combinator).

A more general de�nition of Church and Scott data in the untyped λ-calculus is the following.
Given a data type with constructors c1, . . . , ck, each with a �xed arity, say the arity of constructor
ci is ar(i), we have a Church encoding:

ci := λx1 . . . xar(i).λc1 . . . ck.ci (x1 ~c) . . . (xar(i) ~c) 0 := λx f.x
S := λn.λx f.f (nx f)

and a Scott encoding:

ci := λx1 . . . xar(i).λc1 . . . ck.ci x1 . . . xar(i) 0 := λx f.x
S := λn.λx f.f n

44

The Scott encoding is simpler, but it's not very well-known and seldom used. Why? Probably
the main reason is that Church data can be typed in the polymorphic λ-calculus λ2, and already
quite a lot of functions can be typed in simple type theory, λ→.

To type Church numerals of type nat, we need nat = A → (A → A) → A. (Church 1940). In
polymorphic λ-calculus, we can even do better by taking

nat := ∀X.X → (X → X)→ X.

There is a (well-known) general pattern behind this

bool := ∀X.X → X → X

listA := ∀X.X → (A→ X → X)→ X

bintreeA,b := ∀X.(A→ X)→ (B → X → X → X)→ X

This provides a nice function de�nition scheme in λ2. As an example we give the iteration scheme

for nat and listA. (Let D be a type.)

d : D f : D → D

It d f : nat→ D

d : D f : A→ D → D

It d f : listA → D

with with
It d f 0 � d It d fnil � d
It d f (S x) � f (It d f x) It d f (cons a x) � f a (It d f x)

Important features: (1) This scheme is available in λ2: we can de�ne It for nat, listA, . . .; (2)
Using this we can de�ne as λ-terms very many functions: +, ×, exp, Ackermann, . . ., map-list,
fold, . . .; (3) Because these terms are typed in λ2, these are all terminating.

Do we have types for Scott data? To type Scott numerals we need nat = A→ (nat→ A)→ A.

In λ2, we cannot do this, unless we extend it with (positive) recursive types, obtaining λ2µ:

nat := µY.∀X.X → (Y → X)→ X.

Type formation rule: µY.Φ[Y] is a well-formed type if Y occurs positive in the type expression
Φ[Y]. A drawback of this approach is that one does not get any well-founded recursion �for free�.

Combined Church-Scott encoding To get the best of both worlds, we can de�ne the CS
(Church-Scott) numerals by

0 := λx f.x p+ 1 := λx f.f p (p x f)

1 := λx f.f 0 (0x f) S := λn.λx f.f n (nx f)
2 := λx f.f 1 (1x f)

These numerals can be types as well in λ2µ:

nat := µY.∀X.X → (Y → X → X)→ X.

The advantage is that now one obtains the primitive recursion scheme for free.

d : D f : nat→ D → D

Rec d f : nat→ D

with Rec d f := λn : nat.n d f , satisfying Rec d f 0 = d and Rec d f (S x) = f x (Rec d f x).

For other known data types, we can do the same, if we observe that

45

• in λ2, nat := lfp Φ, with Φ(X) = 1 + X and lfp Φ is the well-known de�nable (weak) least
�xed point in λ2,

• in our new de�nition nat := µY.lfp Φ×Y , where Φ×Y (X) = 1 + (Y ×X).

The fact that all this works is due to that fact that we can de�ne recursive algebras (in the
terminology of [2]) inside λ2µ in a very generic way.

The dual case: streams It is well-know that streams over a base type A can also be de�ned
in λ2:

StrA := ∃X.X × (X → A×X)

If we use the same type of implicit Curry-style typing for ∃ that we have also used for ∀ above,
and we use 〈−,−〉 for pairing and (−)1 and (−)2 for the projections. we see that the de�nitions
of head and tail are:

hd s := (s2 s1)1

tl s := 〈(s2 s1)2, s2〉

Now it is hard to de�ne the cons operator, that takes an a : A and an s : StrA to create
cons a s : StrA. However, in λ2µ we can de�ne a co-recursive co-algebra for the functorX 7→ A×X
as follows:

StrA := µY.∃X.X × (X → A× (X + Y))

Now we can de�ne

hd s := (s2 s1)1

tl s := case (s2 s1)2 of (inlx⇒ 〈x, s2〉) (inry ⇒ y)

cons a s := 〈a, λx.〈a, inr s〉〉

And we can check that

hd(cons a s) := a

tl(cons a s) := s

It can be shown that the approach sketched above works for more general inductive and co-
inductive data-types. It gives �nice� �nite representations of in�nite data in the untyped lambda
calculus. (E.g. the stream of natural numbers is a term in normal form.) It can also be shown
that the programs from proof extraction mechanism as developed by Krivine, Leivant and Parigot
[3] works nicely for these data type de�nitions.

Reference

[1] M. Abadi, L. Cardelli and G. Plotkin, Types for the Scott Numerals, 1993, http://lucacardelli.
name/Papers/Notes/scott2.pdf.

[2] H. Geuvers, Inductive and Coinductive Types with Iteration and Recursion, in the informal
proceedings of the 1992 workshop on Types for Proofs and Programs, Bastad 1992, Sweden, eds.
B. Nordström, K. Petersson and G. Plotkin, pp 183�207. http://www.cs.ru.nl/~herman/PUBS/
BRABasInf_RecTyp.ps.gz

[3] P. Fu, A. Stump, Self Types for Dependently Typed Lambda Encodings, Submitted to RTA-
TLCA 2014.

[4] M. Parigot, Recursive Programming with Proofs, Theor. Comput. Sci., 94, 2, 1992, pp.
335-336.

46

http://lucacardelli.name/Papers/Notes/scott2.pdf
http://lucacardelli.name/Papers/Notes/scott2.pdf
http://www.cs.ru.nl/~herman/PUBS/BRABasInf_RecTyp.ps.gz
http://www.cs.ru.nl/~herman/PUBS/BRABasInf_RecTyp.ps.gz

A type system for Continuation Calculus

Herman Geuvers1,2, Wouter Geraedts1, Bram Geron3, Judith van Stegeren1

1 Radboud University Nijmegen, the Netherlands
2 Technical University Eindhoven, the Netherlands

3 School of Computer Science, University of Birmingham, UK

Abstract

Continuation Calculus (CC), introduced by Geron and Geuvers [2], is a simple foundational
model for functional computation. It is closely related to lambda calculus and term rewriting,
but it has no variable binding and no pattern matching. It is Turing complete and evaluation
is deterministic. Notions like �call-by-value� and �call-by-name� computation are available
by choosing appropriate function de�nitions: e.g. there is a call-by-value and a call-by-name
addition function.

In the present paper we extend CC with types, to be able to de�ne data types in a canonical
way, and functions over these data types, de�ned by iteration. Data type de�nitions follow
the so-called �Scott encoding� of data, as opposed to the more familiar �Church encoding�.

The iteration scheme comes in two �avors: a call-by-value and a call-by-name iteration
scheme. The call-by-value variant is a double negation variant of call-by-name iteration. The
double negation translation allows to move between call-by-name and call-by-value.

Continuation calculus (or CC) [2] is a crossover between term rewriting systems and λ-calculus.
Rather than focusing on expressions, continuation calculus treats continuations as its fundamental
object. This is realized by restricting evaluation to strictly top-level, discarding the need for
evaluation inside contexts. This also �xes an evaluation order, so the representation of a program
in CC depends on whether call-by-value or call-by-name is desired. Furthermore, CC �separates
code from data� by placing the former in a static program, which is sourced for reductions on a
term. Variables are absent from terms, and no substitution happens inside terms.

Despite the obvious di�erences between CC and λ-calculus with continuations (or λC), there seems
to be a strong correspondence. For instance, it has been suggested [3] that programs in either
can be simulated in the other up to parametrized (non)termination, in an untyped setting. If
the correspondence turns out to be su�ciently strong, continuation calculus could become an
alternative characterization of λC , and theorems in one system could apply without much e�ort
to the other.

The purpose of this paper is to strengthen the correspondence between CC and λ-calculus, by
introducing a type system for CC and by showing how data types and functions over data can
be de�ned in CC. The type system rejects some undesired terms and the types emphasize the
di�erence between call-by-name and call-by-value. Also, the types pave the way for proving
properties of the programs. The types themselves do not enforce termination, because the system
is `open': one can add whatever program one wants. However, if the programs on data types
are de�ned using only iteration and non-circular program rules, all programs are terminating,
which we show using a translation to a simply typed λ-calculus with data-types and iterators in
call-by-name and call-by-value style. We show this λ-calculus to be strongly normalizing.

Informal de�nition of CC Terms in CC are of the shape n.t1.t2.tk, where n is a name and
ti is again a term. The `dot' denotes binary application, which is left-associative. In CC, terms
can be evaluated by applying program rules which are of the shape

n.x1.x2.xp −→ u, (∗)

where u is a term over variables x1 . . . xp. However, this rule can only be applied on the `top level':

47

• reduction is not a congruence;

• rule (*) can only be applied to the term n.t1.t2.tk in case k = p,

• then this term evaluates to u[t1/x1, . . . , tp/xp].

CC has no pattern matching or variable binding, but it is Turing complete and a faithful translation
to and from the untyped λ-calculus can be de�ned, see [3].

In continuation calculus, the natural numbers are represented by the names Zero and Succ and
the following two program-rules:

Zero.c1.c2 −→ c1
Succ.x.c1.c2 −→ c2.x

So Zero represents 0, Succ.Zero represents 1, Succ.(Succ.Zero) represents 2 etcetera. This
representation of data follows the so-called Scott encoding, which is known from the untyped
lambda calculus by de�ning Zero := λx y.x, Succ := λn.λx y.y n (e.g. see [1, 4]). The Scott
numerals have �case-distinction� built in (distinguishing between 0 and n+ 1), which can be used
to mimic pattern matching. The more familiar Church numerals have iteration built in. For Scott
numerals, iteration has to be added, or it can be obtained from the �xed-point combinator in
the case of untyped lambda calculus. For CC the situation is similar: we have to add iteration
ourselves.

As an example, we de�ne addition in two ways: in call-by-value (CBV) and in call-by-name (CBN)
style ([2]).
Example 1.

AddCBV.n.m.c −→ n.(c.m).(AddCBV′.m.c)
AddCBV′.m.c.n′ −→ AddCBV.n′.(Succ.m).c

AddCBN.n.m.c1.c2 −→ n.(m.c1.c2).(AddCBN′.m.c2)
AddCBN′.m.c2.n′ −→ c2.(AddCBN.n′.m)

For AddCBV we �nd that AddCBV.(Succn.Zero).(Succm.Zero).c evaluates to c.(Succn+m.Zero):
the result of the addition function is computed completely and passed as argument to the continu-

ation c. For AddCBN, only a �rst step in the computation is carried out and then the result is

passed to the appropriate continuation c1 or c2.

Continuation calculus as it occurs in [2] is untyped. In the present work we present a typing
system for continuation calculus, using simple types and positive recursive types. The typing
system gives the user some guarantee about the meaning and well-formedness of well-typed terms.
We also develop a general procedure for de�ning algebraic data-types as types in CC and for
transforming functions de�ned over these data types into valid typed terms in CC.

References

[1] M. Abadi, L. Cardelli, and G. Plotkin. Types for the scott numerals. http://lucacardelli.name/

Papers/Notes/scott2.pdf, 1993.

[2] B. Geron and H. Geuvers. Continuation calculus. In Proceedings of COS 2013, volume 127 of EPTCS,
pages 66�85, 2013.

[3] Bram Geron. Continuation calculus, master's thesis. http://alexandria.tue.nl/extra1/afstversl/
wsk-i/geron2013.pdf, 2013.

[4] J.M. Jansen. Programming in the λ-calculus: From Church to Scott and back. In The Beauty of

Functional Code, volume 8106 of Lecture Notes in Computer Science, pages 168�180, 2013.

48

http://lucacardelli.name/Papers/Notes/scott2.pdf
http://lucacardelli.name/Papers/Notes/scott2.pdf
 http://alexandria.tue.nl/extra1/afstversl/wsk-i/geron2013.pdf
 http://alexandria.tue.nl/extra1/afstversl/wsk-i/geron2013.pdf

Church-Rosser Theorem

for sequent lambda calculi∗

Silvia Ghilezan1, Jelena Ivetić1, and Silvia Likavec2

1 University of Novi Sad, Faculty of Technical Sciences, Serbia
gsilvia, jelenaivetic@uns.ac.rs

2 Dipartimento di Informatica, Università di Torino, Italy
likavec@di.unito.it

The Curry-Howard correspondence is a well-known relation between typed lambda calculi
and intuitionistic natural deduction. In the last decade, several term calculi have been designed
to embody the Curry-Howard correspondence for intuitionistic sequent calculus, [5, 2, 3, 4]
among others.

Our focus is on the untyped version of the so called λGtz-calculus of [3], which is known to
be non-confluent. We regain confluence in the untyped λGtz-calculus by imposing restrictions
on the reduction rules, which eliminate the critical pair. In this way two subcalculi, the call-by-
name λGtzN and the call-by-value λGtzV variant of λGtz are obtained. In the λ̄µµ̃-calculus of Curien
and Herbelin [1], the call-by-name and call-by-value fragments are obtained by dual restrictions
on the reductions rule, here instead the situation is different in the call-by-name case. The
set of λGtzV -terms is equal to the set of λGtz-terms and the the call-by-value λGtzV subcalculus is
obtained by restrictions on the reductions. However, the set of λGtzN -terms is a strict subset of
the set of λGtz-terms. Therefore, we introduce an appropriate mapping to translate λ-terms into
λGtzN -terms. We prove then that this mapping preserves the operational semantics of lambda
calculus as well as the normal forms.

We prove the confluence of the two proposed subcalculi by adapting Takahashi’s parallel
reductions technique, used in [6] for proving the confluence of λ-calculus. This is a refinement
of the standard Tait and Martin-Löf’s proof of the confluence of βη-reduction in the λ-calculus.
We analyse the granularity of reduction rules and then define a new notion of parallel reductions
in this framework. We then prove the diamond property, which yields the proof of confluence
for type free λGtzV -calculus. Finally, we show that the diamond property of the new parallel
reduction is also applicable to λGtzN . Confluence of a sequent lambda calculus is usually proved
by embedding it in a calculus already known to be confluent. We developed a direct proof of
confluence of two subcalculi of λGtz, which was our motivation. To the best of our knowledge
this is a first direct proof of confluence in sequent lambda calculi.

References

[1] P.-L. Curien and H. Herbelin. The duality of computation. In 5th International Conference on
Functional Programming, ICFP’00, pages 233–243. ACM Press, 2000.

[2] R. Dyckhoff and L. Pinto. Cut-elimination and a permutation-free sequent calculus for intuitionistic
logic. Studia Logica, 60(1):107–118, 1998.

[3] J. Esṕırito Santo. Completing Herbelin’s programme. In The 8th International Conference on Typed
Lambda Calculi and Applications, TLCA ’07, volume 4583 of Lecture Notes in Computer Science,
pages 118–132. Springer, 2007.

∗This work has been partly supported by the Ministry of Education and Science of Republic of Serbia,
projects ON174026 and III44006.

49

[4] J. Esṕırito Santo, R. Matthes, and L. Pinto. Continuation-passing style and strong normalisation
for intuitionistic sequent calculi. In The 9th International Conference on Typed Lambda Calculi
and Applications, TLCA ’07, volume 4583 of Lecture Notes in Computer Science, pages 133–147.
Springer, 2007.

[5] H. Herbelin. A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure.
In Computer Science Logic, CSL ’94, volume 933 of Lecture Notes in Computer Science, pages
61–75. Springer, 1995.

[6] M. Takahashi. Parallel reduction in λ-calculus. Information and Computation, 118:120–127, 1995.

50

Session Types, Solos, and

the Computational Contents

of Sequent Calculus Proofs

Nicolas Guenot

IT University of Copenhagen
ngue@itu.dk

The original form of the Curry-Howard correspondence established a connection between
intuitionistic natural deduction and the simply-typed λ-calculus, but this has been extended to
various other logical systems and other calculi. One problem with such extensions arise when
considering proofs in the sequent calculus: the correspondence in such a setting is difficult to
design, so that the proof systems considered are often quite constrained — for example using
a stoup in the logic to restrict the shape of proofs — and term calculi are not necessarily
well-behaved — for example when one interprets the left rule for implication as a floating let

construct, which is problematic in the usual theory of λ-calculi. We discuss in this work the
status of this problem in the light of some recent developments relating linear sequent proofs
to session-typed processes.

1 Cut Elimination and Permutations

A quite striking difference between normalisation in the natural deduction NJ and any cut
elimination procedure for the sequent calculus is the fact that eliminating cuts from a proof is
performed in small steps, such that important steps, the so-called principal cases, require some
form of synchronisation of the shape of the two subproofs above the cut. The other cases are
mere trivial permutations that reflect the lax structure of proofs in the sequent calculus: the
order between the rule instances in a given proof are often irrelevant, leading to the notion of
proof-nets in linear logic [Gir87].

While the view of principal cases in cut elimination as synchronisation has lead to the
concurrent interpretation of sequent calculi, as done in linear logic [CP10], this emphasis on
trivial permutations leads to the idea that instead of using proof-nets to represent parallel
processes, one can adopt a syntactic approach where permutations correspond to the equations
of a congruence on processes — as usually considered in the process calculi community. The
correspondence we are looking for is thus:

propositions session types
proofs processes

cut elimination communication
congruence permutation

2 Linear Logic and Session Solos

The session types system introduced by Caires and Pfenning [CP10], based on the intuitionistic
variant of linear logic and adapted to linear logic by Wadler [Wad12] establishes a correspondence
that provides strong guarantees on typed π-terms, but the connection it shows between proofs

51

and processes is not as tight as one might expect, in the sense that some equations on processes
cannot be reflected in the structure of proofs. To improve this, we propose to use the solos
calculus [LV03], a restricted setting where inputs and outputs are free of explicit sequentialisation
— it drops the prefix operation just as the asynchronous π-calculus drops it for outputs, leaving
only implicit, causal dependencies. Consider for example the typing of some process starting
with an output in Wadler’s typed π-calculus:

Π1

P ` Γ, y : A

Π2

Q ` ∆, x : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x〈y〉.(P Q) ` Γ,∆, x : A⊗B

and observe that typing involves the decomposition of several operators, where in particular
the prefix operation supposedly prevents processes inside P or Q to move out even if they are
not using x or y. As a consequence, typeability is not preserved by the structural congruence
usually applied on π-terms, as illustrated by the two terms below:

x〈y〉.(P (νz) (Q R)) ≡ x〈y〉.(νz) ((P Q) R)

where the left one is typeable and the right one is not. Moving to the more parallel setting of
solos allows to write this process as (y) (x〈y〉 (z) (P Q)) or equivalently as (y) (z) (x〈y〉 (P Q)),
which is much closer to the structure of the corresponding proof in the sequent calculus, where
some rule instances in Π1 and Π2 might permute downwards.

The adoption of solos as the underlying computational model yields a session type system
where the correspondence between proofs and processes is tighter, and all this can also be
adapted to the intuitionistic variant of linear logic. This might place solos in the position of
being an interesting implementation language for typesafe concurrent programming, but it does
not solve all problems of previous systems nor create a perfect correspondence. Because of the
shape of proofs in the sequent calculus, an exact matching of π-terms or solos processes with
such proofs is impossible. This offers two orthogonal possibilities: either making concessions
on the side of process calculi and constrain further the structure of processes, or use a different
logical formalism where the structure of proofs is even more lax than in the sequent calculus.

References

[CP10] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In P. Gastin
and F. Laroussinie, editors, CONCUR’10, volume 6269 of LNCS, pages 222–236, 2010.

[Gir87] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[LV03] C. Laneve and B. Victor. Solos in concert. Mathematical Structures in Computer Science,
13(5):657–683, 2003.

[Wad12] P. Wadler. Propositions as sessions. In P. Thiemann and R. B. Findler, editors, ICFP’12,
pages 273–286. ACM, 2012.

52

Covering Spaces in Homotopy Type Theory

Kuen-Bang Hou (Favonia)1 ∗

Carnegie Mellon University, USA
favonia@cs.cmu.edu

Homotopy type theory (HoTT) is an exciting new interpretation of intensional type theory
which provides a synthetic framework for homotopy theory. It is natural to ask whether we can
restate various homotopy-invariant concepts and theorems from classical homotopy theory. In
this talk I will explore one fundamental construct: covering spaces. It turns out that we can
express covering spaces (up to homotopy) elegantly in HoTT as follows.

Definition 1. A covering space of a type (space) A is a family of sets indexed by A.

That is, the type of a covering of A is simply A → Set where Set is the type of all sets.
To verify that this formulation matches the classical one, I proved in HoTT several expected
properties of covering spaces, including that covering spaces of a pointed, path-connected A are
classified by functors π1(A) → Set where π1(A) is the fundamental group of A, that homotopy-
equivalent classes of paths with one end fixed form a universal covering space, and that simply-
connectedness implies universality.

I will review the key ideas in the proofs. Some interesting techniques employed in the current
proofs seem applicable to other constructions as well. It is worth emphasizing that every proof
mentioned in this talk has been fully mechanized [1] in the proof assistant Agda. The code of
critical parts will be demonstrated during the talk.

Looking forward, I am working on the generalization of the results from sets to groupoids.
These attempts will also be discussed if time permits.

References

[1] HoTT library in Agda. https://github.com/HoTT/HoTT-Agda.

∗This material is based upon work supported by the National Science Foundation under Grant No. 1116703.

53

Isomorphism of Finitary Inductive Types

Nicolai Kraus and Christian Sattler

University of Nottingham

Abstract

We present an algorithm for deciding isomorphism of finitary mutually inductive types.

We consider the simply typed lambda calculus with finite products and coproducts, type
variables X, Y , Z, . . . , and mutually inductive types, for example defined by

A = Z +XA2 +BC

B = 1 +BC

C = Y +AC,

which we call (parameterized) finitary inductive types. Equivalently, we can define these as
nested µ-expression; for example, C can be represented as

µC.Y + (µA.Z +XA2 + (µB.1 + CB)C)C.1

Note that the attribute finitary indicates the absence of function types.
Based on discussions with Swierstra and Morris, Altenkirch [1] notices that the special case

of regular types, i.e. types defined mutually as sums over products where each product contains
at most one recursive variable, corresponds to proof-relevant regular grammars where terminal
symbols commute. 2 They discuss isomorphism of such types in the set model and conjectures
that isomorphism of regular types is decidable, while isomorphism of general finitary inductive
types might be undecidable.

In this talk, we present an algorithm that decides syntactic isomorphism of general finitary
inductive types with respect to the βη-equational theory with strong sums and interpretation of
µ-expressions as initial algebras. We further show that the set model is complete with respect
to this question. This yields the solution to Altenkirch’s conjectures as a special case.

We want to outline one core observation on which the easier set model variant of this
algorithm is based. As is well known, in the set model parameterized finitary inductive types
can equivalently be expresses as a formal power series, e.g. via the intermediate notion of finitary
containers. For example, lists over X (that is µA.1 +AX) admit the representation

1 +X +X2 +X3 +X4 + . . . , (1)

while the series of the type C defined above starts with (we list all summands which have less
than four occurrences of X, Y , Z)

Y + Y 2 + Y Z + 3Y 3 + 3Y 2Z + Y Z2 + (2)

It is possible that certain coefficients of the power series corresponding to a type are not finite;
for example, the natural numbers µA.1+A have a power series over zero variables with a single

1We write XA2 for X ×A×A.
2Confusingly, other authors have introduced the term regular functors over type variables for the concept

we name finitary inductive types here.

54

summand of degree 0 with coefficient of cardinality N. This imposes additional difficulties. It
forces us to treat the part consisting of the infinite coefficients separately, a finitary inductive
description of which we call the unguarded part. However, the surgery necessary on a finitary
inductive type to effectively renove the unguarded part is not canonical, leaving a residue type
having only finite power series coefficients that is in general not uniquely determined.

In the set model, two types are isomorphic if the coefficients of their corresponding power
series are equal. The key point now is that the guarded part is always algebraic over a cer-
tain function field, i.e. it is has a corresponding minimal polynomial, a finite representation,
with coefficients in a certain kind of finitely describable algebraic structure, and two of these
finite representations can be algorithmically compared. The guarded part is however selec-
tively masked by the unguarded part, requiring further algebraic machinery involving modules,
lattices, and known methods for constructively dealing with systems of polynomial equations.

Having established isomorphism in the set model between two finitary inductive types,
actually synthesizing one such isomorphism as a syntactic λ-term (and thus establishing com-
pleteness of the set model) requires internalizations of parts of the above arguments into a
theory not even able to reflect many basic inductive arguments. Thus, we want to stress that
the actual main technical effort concerns this aspect. We strive to give our arguments in an
abstract fashion, preferring type- or category-level reasoning wherever possible (e.g., making
use of categorical properties of traversable functors [3]). Still, reducing the amount of low-level
details in this part of our proof warrants further attention.

Our project is superficially related to previous work by Fiore [2]. Crucially, however, our
recursive types are not generic, but initial: instead of just constructing and destructing elements
of inductive types, we have the full power of unique existence of the folding eliminator at hand;
this induces a much stronger equational theory that is more difficult to reason about.

References

[1] Thorsten Altenkirch. Isomorphisms on inductive types (talk), 2005.

[2] Marcelo Fiore. Isomorphisms of generic recursive polynomial types. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’04, pages 77–88,
New York, NY, USA, 2004. ACM.

[3] Mauro Jaskelioff and Ondrej Rypacek. An investigation of the laws of traversals. In MSFP, pages
40–49, 2012.

55

A Separation Logic for Non-determinism and

Sequence Points in C Formalized in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

Abstract

The C11 standard of the C programming language does not specify the execution order
of expressions. Besides, to make more effective optimizations possible (e.g. delaying of
side-effects and interleaving), it gives compilers in certain cases the freedom to use even
more behaviors than just those of all execution orders.

Widely used C compilers exploit this freedom given by the C standard for optimiza-
tions, so it should be taken seriously in formal verification. In [3], we have presented an
operational and axiomatic semantics (based on separation logic) for non-determinism and
sequence points in C. Soundness of the axiomatic semantics is proved with respect to the
operational semantics. This proof has been fully formalized using the Coq proof assistant.

1 Introduction

The C programming language [2] is not only among the most popular programming languages in
the world, but it is also among the most dangerous programming languages. Due to weak static
typing and the absence of runtime checks, it is extremely easy for C programs to have bugs that
make the program crash or behave badly in other ways: NULL-pointers can be dereferenced,
arrays can be accessed outside their bounds, memory can be used after it is freed, etc.

Instead of forcing compilers to use a predefined execution order for expressions (e.g. left
to right), the C standard does not specify it. This is a common cause of portability and
maintenance problems, as a compiler may use an arbitrary execution order for each expression.
Hence, to prove the correctness of a C program with respect to an arbitrary compiler, one has
to verify that each possible execution order is legal and gives the correct result. To make more
effective optimizations possible (e.g. delaying of side-effects and interleaving), the C standard
requires the programmer to ensure that all execution orders satisfy certain conditions. If these
conditions are not met, the program may do anything. Let us take a look at an example where
one of those conditions is not met.

int main() {

int x; int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

By considering all possible execution orders, one would naively expect this program to print
4 7 or 3 7, depending on whether the assignment x = 3 or x = 4 is executed first. However,
the sequence point restriction does not allow an object to be modified more than once (or being
read after being modified) between two sequence points [2, 6.5p2]. A sequence point occurs for
example at the end ; of a full expression, before a function call, and after the first operand of the
conditional ? : operator [2, Annex C]. Hence, both execution orders lead to a sequence point
violation, and are thus illegal. As a result, the execution of this program exhibits undefined
behavior, meaning it may do literally anything. Indeed, when compiled with gcc -O1 (version
4.7.2), it prints 4 8, which does not correspond to any of the execution orders.

56

2 Approach

As a step towards taking non-determinism and the sequence point restriction seriously in C ver-
ification, we extend our axiomatic semantics with a Hoare judgment {P} e {Q} for expressions.
Since expressions not only have side-effects but primarily yield a value, the postcondition Q is
a function from values to assertions. Intuitively, {P} e {Q} means that if P holds beforehand,
and execution of e yields a value v, then Qv holds afterwards.

Apart from partial program correctness, the judgment {P} e {Q} ensures that e exhibits
no undefined behavior. To deal with the unrestrained non-determinism in C, we observe that
non-determinism in expressions corresponds to a form of concurrency, which separation logic
is well capable of dealing with. Inspired by the rule for the parallel composition of separation
logic (see [4]), we propose the following kind of rules for each operator }.

{P1} e1 {Q1} {P2} e2 {Q2}
{Pl ∗ Pr} e1 } e2 {Q1 ∗ Q2}

The idea is that, if the memory can be split up into two disjoint parts (using the separating
conjunction ∗), in which the subexpressions e1 respectively e2 can be executed safely, then the
full expression e1 } e2 can be executed safely in the whole memory.

To ensure no sequence point violations occur, we use separation logic with permissions [1],

extended with a special class of locked permissions. The singleton assertion becomes e1
γ7→ e2

where γ is the permission of the object e2 at address e1. The inference rules are set up in such
a way that reads and writes are only allowed for objects that are not locked, and moreover
such that objects become locked after they have been written to. At constructs that contain a
sequence point, the inference rules ensure that these locks are released.

3 Formalization in Coq

All our proofs have been fully formalized using the Coq proof assistant. We used Coq’s notation
mechanism combined with unicode symbols and type classes for overloading to let the Coq code
correspond as well as possible to the definitions on paper. Coq’s type classes are also used
to provide abstract interfaces for commonly used structures like finite sets and finite partial
functions, so that we were able to prove theory and implement automation in an abstract
way. Because the semantics is rather big, it is quite cumbersome to prove properties about
it without automation, to this end, we have automated many steps of the proofs. Our Coq
code, available at http://robbertkrebbers.nl/research/ch2o, is about 10 000 lines of code
including comments and white space. Apart from that, our library on general purpose theory
(finite sets, finite functions, lists, etc.) is about 9 000 lines.

References

[1] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. Permission
Accounting in Separation Logic. In POPL, pages 259–270, 2005.

[2] International Organization for Standardization. ISO/IEC 9899-2011: Programming languages – C.
ISO Working Group 14, 2012.

[3] Robbert Krebbers. An Operational and Axiomatic Semantics for Non-determinism and Sequence
Points in C. In POPL, pages 101–112, 2014.

[4] Peter W. O’Hearn. Resources, Concurrency and Local Reasoning. In CONCUR, volume 3170 of
LNCS, pages 49–67, 2004.

57

http://robbertkrebbers.nl/research/ch2o

All derivations of groupoid laws are propositionally equal.

Marc Lasson
1

INRIA
PPS, Université Paris Diderot

marc.lasson@inria.fr

Garner, van den Berg [6] and Lumsdsaine [3] independently showed that in type theory,
each type can be equipped with a structure of weak ω-groupoids. For this, they show that a
minimal fragment MLID of Martin-Löf type theory, where identity types are the only allowed
type constructors, bears a weak ω-category structure. Informally, these results state the possi-
bility to express groupoid laws of weak ω-groupoids as types and in each case to �nd a canonical
inhabitant of these types re�ecting the fact that the law holds. Identities, inversion and concate-
nation of paths, associativities, idempotency of inversion, horizontal and vertical compositions
of 2-paths, are all examples of groupoid laws.

In this work1, we follow a syntactic approach proposed by Brunerie [2] to formalize the notion
of groupoid laws. We call groupoid law any closed type ∀Γ.c such that the sequent Γ ` c : Type
is derivable in MLID and the context Γ is contractible. A contractible context is a context of
the following shape: X : Type, x : X,x1 : C1, y1 : M1 = x1, . . . , xn : Cn, yn : Mn = xn where
xi does not occur in Mi. A canonical inhabitant of a groupoid law may always be obtained by
successive path inductions. Some examples of groupoid laws are given in Figure 1.

Moreover, one can prove that any term M such that Γ ` M : c is derivable in MLID is
extensionally equal to the canonical one. The natural question we answer positively here is:
does this uniqueness property of groupoid laws holds in the whole Martin-Löf type theory
(MLTT) (with function spaces, universes, sigma types, and inductive families) ? We prove that
if Γ ` M : c is derivable in MLTT then M is equal to the canonical derivation of the groupoid
law.

The main idea of the proof is to use successive path inductions to reduce the problem of
the uniqueness of inhabitants of a given groupoid law to the uniqueness of the canonical point
inhabiting a parametric loop space. Given a base type X and a point x : X, the n-th loop space

and its canonical point are inductively de�ned by:

Ω0(A, a) := A

Ωn+1(A, a) := Ωn(a = a, 1a)

ω0(A, a) := a

ωn+1(A, a) := ωn(a = a, 1a)

where 1a : a = a denotes the re�exivity. Thus for any integer n, ∀X : Type, x : X.Ωn(X,x)
is a groupoid law inhabited by λX : Type, x : X.ωn(X,x) (note that using one universe, it
is possible to internalize the quanti�cation over n; everything that we state here will be true
whether or not this is used). We call this groupoid law the n-th parametric loop space.

The 0-th parametric loop space, is the polymorphic type ∀X : Type.X → X of identity
functions, and its canonical inhabitant is λX : Type, x : X.x, ie. the identity function. This
term is the only one in MLTT up to function extensionality inhabiting its type. The standard
tool to prove this kind of property is by using Reynold's parametricity theory [4] which was
introduced to study the behavior of type quanti�cations within polymorphic λ-calculus (a.k.a.
System F). It refers to the concept that well-typed programs cannot inspect types; they must

1We believe that Lumsdaine's construction of a contractible globular operad may be described in our frame-

work, but we have not checked it. More generally, a precise study of how models of MLID restricted to contractible

contexts compare to de�nitions of ω-groupoids is out of the scope of the present work.

58

id : ∀X : Type.X → X

sym : ∀X : Type, x : X.x = y → y = x

concat : ∀X : Type, x : X, y : X.x = y → ∀z : X.y = z → x = z

assoc : ∀X : Type, x : X, y : X, p : x = y, z : X, q : y = z, t : X, r : z = t.

concatX xz (concatX xy p z q) t r = concatX xy p t (concatX y z q t r)

horizontal : ∀X : Type, x : X, y : X, p : x = y, p′ : x = y.p = p′ →
∀z : X, q : x = z, q′ : x = z.q = q′ → concatX xy p z q = concatX xy p′ z q′

Figure 1: Examples of groupoid laws with aliases for canonical inhabitants

behave uniformly with respect to abstract types. Reynolds formalizes this notion by showing
that polymorphic programs satisfy the so-called logical relations de�ned by induction on the
structure of types. This tool has been extended by Bernardy et al. [1] to dependent type
systems. It provides a uniform translation of terms, types and contexts preserving typing
(the so-called abstraction theorem). In its unary version (the only needed for this work), logical
relations are de�ned by associating to any well-formed type A : Type a predicate JAK : A→ Type
and to any inhabitant M : A a witness JMK : JAKM that the M satis�es the predicate. This
translation may be extended to cope with identity types by taking Ja = bK : a = b → Type to
be the predicate de�ned by λp : a = b.p∗(JaK) = JbK where p∗ is the transport along p of the
predicate generated by the common type of a and b. Then, it is easy -although quite verbose- to
�nd a translation of introduction and elimination rules of identity types as well as checking that
these translations preserve computation rules. This allows to extend the Bernardy's abstraction
theorem to identity types. Using this framework, we are able to generalize the uniqueness
property of the polymorphic identity type to any parametric loop space. The proof proceed by
induction on the dimension of the loop space and uses algebraic properties of transport.

This work shows that parametricity theory may be used to deduce properties about the
algebraic structure of identity types. The most interesting question that remains open is whether
or not we can extend the translation and the uniqueness property of groupoid laws to deal with
Voevodsky's univalence axiom.

References

[1] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free - parametricity for
dependent types. J. Funct. Program., 22(2):107�152, 2012.

[2] Guillaume Brunerie. Syntactic grothendieck weak ∞-groupoids. Available as http://uf-ias-2012.
wikispaces.com/file/view/SyntacticInfinityGroupoidsRawDefinition.pdf.

[3] Peter LeFanu Lumsdaine. Weak omega-categories from intensional type theory. In Pierre-Louis
Curien, editor, TLCA, volume 5608 of LNCS, pages 172�187. Springer, 2009.

[4] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP Congress, pages
513�523, 1983.

[5] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-

matics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[6] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the London

Mathematical Society, 102(2):370�394, 2011.

59

http://uf-ias-2012.wikispaces.com/file/view/SyntacticInfinityGroupoidsRawDefinition.pdf
http://uf-ias-2012.wikispaces.com/file/view/SyntacticInfinityGroupoidsRawDefinition.pdf
http://homotopytypetheory.org/book

Global semantic typing for inductive and coinductive

computing

Daniel Leivant

Indiana University
leivant@indiana.edu

Inductive and coinductive types are commonly construed as ontological (Church-style) types,
denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes,
notably the study of programs in the context of global (“uninterpreted”) semantics, it is prefer-
able to think of types as semantical properties (Curry-style).

Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for
reasoning about programs and their semantic types [3]. We extend them here to data given by
any combination of inductive and coinductive definitions. This approach is of interest because
it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with
potential applications in implicit computational complexity as well as extraction of programs
from proofs. We prove a Canonicity Theorem, showing that the global definition of program
typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational
semantics in the intended (“canonical”) model.

Finally, we show that every intrinsic theory is interpretable in (a conservative extension of)
first-order arithmetic. This means that quantification over infinite data objects does not lead,
on its own, to proof-theoretic strength beyond that of Peano Arithmetic.

Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and
were used to characterize major computational complexity classes [3, 4, 2, 1]. Their extensions
described here have similar potential which has already been applied in [5].

References

[1] Daniel Leivant. Ramified recurrence and computational complexity I: Word recurrence and poly-
time. In Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics II, Perspectives in Computer
Science, pages 320–343. Birkhauser-Boston, New York, 1994. www.cs.indiana.edu/∼leivant/papers.

[2] Daniel Leivant. Intrinsic theories and computational complexity. In D. Leivant, editor, Logic and
Computational Complexity, LNCS, pages 177–194, Berlin, 1995. Springer-Verlag.

[3] Daniel Leivant. Intrinsic reasoning about functional programs I: First order theories. Annals of
Pure and Applied Logic, 114:117–153, 2002.

[4] Daniel Leivant. Intrinsic reasoning about functional programs II: Unipolar induction and primitive-
recursion. Theor. Comput. Sci., 318(1-2):181–196, 2004.

[5] Daniel Leivant and Ramyaa Ramyaa. Implicit complexity for coinductive data: a characterization
of corecurrence. In Jean-Yves Marion, editor, DICE, volume 75 of EPTCS, pages 1–14, 2011.

60

Proving and Computing with the Harthong-Reeb line using

Ω-integers

Nicolas Magaud1 and Laurent Fuchs2

1 Icube UMR 7357 CNRS - Université de Strasbourg
300 Bld Sébastien Brant BP 10413 67412 Illkirch Cedex, France

magaud@unistra.fr
2 Laboratoire XLIM-SIC UMR 6172 CNRS - Université de Poitiers

Bat. SP2MI Bld Marie et Pierre Curie
BP 30179 86962 Futuroscope Chasseneuil Cedex, France

Laurent.Fuchs@sic.univ-poitiers.fr

The Harthong-Reeb line offers an alternative model to describe the continuum. It uses
only integers to represent real numbers (viewing them at different scales). This is appeal-
ing, especially when considering fields of applications such as discrete geometry or geometric
computations.

In TYPES 2011, we presented a formal description of the Harthong-Reeb line based on
axiomatic non-standard integers (intuitively they correspond to Z where we introduce a - new
- infinitely large number ω). We formally proved using Coq [5] that this description of the
Harthong-Reeb line does satisfy all the axioms for constructive real numbers proposed by D.
Bridges [1].

However, having an axiomatic description of the underlying non-standard integers prevents
us from computing in this formalism. Thus it has been investigated how to implement these
non-standard integers using Laugwitz-Schmieden integers [2].

Laugwitz-Schmieden integers (also known as Ω-integers) are sequences of elements of Z.
This representation of non-standard integers allows to build a constructive description of the
Harthong-Reeb line. Thus, we can implement the Ω-arithmetization scheme (adapted from
Euler’s one) proposed in [3]. Using extraction in Ocaml and the graphical interface of Ocaml,
we obtain discrete representations of continuous functions at different scales as shown in Fig.
1.

One of our goals is to establish the correction of this Ω-arithmetization scheme for continuous
functions as Fleuriot does in [4] using hyperreals. To do so, we must first establish that the
Harthong-Reeb line based on Laugwitz-Schmieden integers verifies Bridges’ axioms.

As showed by Chollet et al. in [2], most properties of the constructive real line hold for this
model based on Laugwitz-Schmieden (except three of them: two properties about the order
and the least upper bound principle). These restrictions come from the fact that Ω-integers
are a very rich structure where many Ω-integers have no interpretation as naive (or standard)
integers. Chollet et al. thus propose an alternative axiom system which is very close to Bridges’
one, but defines an alternative continuum.

We formally proved using Coq that the description of this continuum based on Ω-integers
actually verifies all of these (new) axioms. Work in progress consists in finding a way to
characterize a subset of the Harthong-Reeb line based on Ω-integers which corresponds to
constructive real numbers (such as those available in CoRN). We then expect to prove using
Coq that this subset is actually isomorphic to the constructive real numbers of CoRN.

61

Figure 1: The arithmetization of the function t 7→ t2

6 . Graphs of the function t̃ 7→ x̃(t̃) are
drawn at different ranks of the involved infinite integer sequences.

References

[1] D. S. Bridges. Constructive mathematics: A foundation for computable analysis. Theor. Comput.
Sci., 219(1-2):95–109, 1999.

[2] A. Chollet, G. Wallet, L. Fuchs, E. Andres, and G. Largeteau-Skapin. Foundational Aspects of
Multiscale Digitization. Theor. Comput. Sci., 466:2–19, 2012.

[3] A. Chollet, G. Wallet, L. Fuchs, G. Largeteau-Skapin, and E. Andres. Insight in discrete geometry
and computational content of a discrete model of the continuum. Pattern recognition, 42:2220–2228,
2009.

[4] J. Fleuriot. Exploring the foundations of discrete analytical geometry in Isabelle/HOL. In
P. Schreck, J. Richter-Gebert, and J. Narboux, editors, Proceedings of Automated Deduction in
Geometry 2010, volume 6877 of LNAI. Springer, 2011.

[5] N. Magaud, A. Chollet, and L. Fuchs. Formalizing a Discrete Model of the Continuum in Coq
from a Discrete Geometry Perspective. Submitted to an international journal., 2013. see https:

//dpt-info.u-strasbg.fr/~magaud/Harthong-Reeb/.

62

https://dpt-info.u-strasbg.fr/~magaud/Harthong-Reeb/
https://dpt-info.u-strasbg.fr/~magaud/Harthong-Reeb/

A Kleene realizability semantics for the Minimalist

Foundation

Maria Emilia Maietti and Samuele Maschio

Dipartimento di Matematica, University of Padova, Italy

Abstract

The Minimalist Foundation was ideated by M. E. Maietti and G. Sambin in [MS05] and then
completed in [Mai09] by M. E. Maietti. It is intended to constitute a common core among the
most relevant constructive and classical foundations. One of its novelties is that it consists of
two levels: an intensional level (mTT) which should make evident the constructive contents
of mathematical proofs in terms of programs, and an extensional level (emTT) formulated in
a language close as much as possible to that of ordinary mathematics. Both the intensional
level and the extensional level of the Minimalist Foundation consist of type systems based on
versions of Martin-Lof’s type theory with the addition of a primitive notion of propositions:
the intensional one is based on [NPS90] and the extensional one on [Mar84].

In this talk we show how to build a predicative realizability model of the Minimalist Foun-
dation, and in particular of its extensional level emTT, validating the Extended Church thesis
(ECT).

To reach this goal it is enough to build a realizability model for the intensional level mTT
validating ECT. Indeed a realizability interpretation for the extensional level emTT can be then
obtained from an interpretation of mTT by composing this with the interpretation of emTT in
a suitable setoid model of mTT as in [Mai09] and analyzed in [MR13].

We build the realizability model for mTT+ECT in the theory ÎD1([Fef82]). This theory is
formulated in the language of second-order arithmetics and it consists of PA (Peano Arithmetic)
plus the existence of some (not necessary the least) fixed point for positive parameter-free arith-
metical operators. Our realizability model is obtained by suitably modifying the realizability
semantics in ÎD1 described in [Bee85] for the extensional version of first-order Martin-Löf’s
type theory with one universe, which is based on Kleene realizability semantics of intuitionistic
arithmetics.

In essence we interpret mTT-sets as Beeson interpreted Martin-Löf’s sets following Kleene
realizability in ÎD1, propositions are interpreted as proof-irrelevant quotients of their Kleene
realizability interpretation and the universe of mTT-small propositions as a suitable quotient
of some fix-point including all the codes of small propositions.

It is worth to recall that our modifications to Beeson’s model are essential, because Beeson’s
model for the extensional version of Martin-Löf’s type theory can not validate ECT due to the
inconsistency of the full axiom of choice and function extensionality with it. If we drop function
extensionality and we take the intensional version of Martin-Löf’s type theory then this version
might be consistent with ECT, and from it we can easily derive the consistency of mTT+ECT+
full axiom of choice, but this is still an open problem.

References

[Bee85] M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985.

63

[Fef82] S. Feferman. Iterated inductive fixed-point theories: application to Hancock’s conjecture. In
Patras Logic Symposion, pages 171–196. North Holland, 1982.

[Mai09] M. E. Maietti. A minimalist two-level foundation for constructive mathematics. Annals of
Pure and Applied Logic, 160(3):319–354, 2009.

[Mar84] P. Martin-Löf. Intuitionistic Type Theory. Notes by G. Sambin of a series of lectures given in
Padua, June 1980. Bibliopolis, Naples, 1984.

[MR13] M. E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive math-
ematics. Logica Universalis, 7(3):371–402, 2013.

[MS05] M. E. Maietti and G. Sambin. Toward a minimalist foundation for constructive mathematics.
In L. Crosilla and P. Schuster, editor, From Sets and Types to Topology and Analysis: Prac-
ticable Foundations for Constructive Mathematics, number 48 in Oxford Logic Guides, pages
91–114. Oxford University Press, 2005.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin Löf ’s Type Theory.
Clarendon Press, Oxford, 1990.

64

Polymorphic variants in dependent type theory

Claudio Sacerdoti Coen1∗ and Dominic Mulligan1

Dipartimento di Informatica – Scienza e Ingegneria,
Università di Bologna,

Mura Anteo Zamboni 7, Bologna (BO) Italy

The expression problem and polymorphic variants The expression problem is maybe
the best known issue in programming language development. The problem consists in the
extension of a data type of expressions to include new constructors. All operations defined on
the data type have to be updated to cover also the new constructors. The difficulty is that
the extension should be done modularly: it should be possible to add new constructors or to
merge together two sets of them without modifying the already developed code. Object oriented
languages provide a solution to the problem: the type of expressions becomes an interface that
is implemented by each constructor, represented as a class. The tradeoff is the impossibility
to close the universe of expressions in order to perform pattern matching and exhaustivity
checking. Pattern matching, in particular, seems the natural way to reason on (expression)
trees.

A partial solution can be obtained using functional languages based on algebraic types and
pattern matching, like OCaml or Haskell. The idea consists in “opening” the algebraic data type
E of expressions by turning it into a parametric type E α where the type parameter α replaces
E in the recursive arguments of the constructors of E. The recursive type µα.(E α) is then
isomorphic to the original “closed” type E. In order to merge together two types of expressions
E1 α and E2 α is it sufficient to build the parametric disjoint union E α := K1 : E1 α |K2 : E2 α.
Similarly, given two functions f1, f2 typed as fi : (α → β) → Ei α → Ei β), it is possible to
build the function f over E α by pattern matching over the argument and dispatching the
computation to the appropriate fi.

The previous solution has several major problems. The first one is the non associativity of
the binary merge operation, which is a major hindrance to modularity. Concretely, it is often the
case that one needs to explicitly provide functions to convert back and forth between isomorphic
types. A second problem is the following: merge is implemented on top of a disjoint union,
when the expected operation is the standard union. Again, this is a problem for modularity,
since it disallows multiple inheritance. Finally, the solution is not efficient since every merge
operation adds an indirection that is paid for both in space (memory consumption) and pattern
matching time.

A satisfactory solution to the expression problem for functional languages is given by poly-
morphic variants, like the ones implemented by Guarrigue in the OCaml language [?, ?] . The
idea is to add to the programming language a (partial) merge operation over algebraic types
that corresponds to a standard union. Merging fails when the the same constructor occurs in
both types to be merged with incompatible types. Replaying the previous construction with
this operation already gives a satisfactory solution by solving at once all previous problems.
Moreover, polymorphic variants and their duals, polymorphic records, allow for an interesting
typing discipline where polymorphisms is obtained not by subtyping, but by uniformity. For

∗The project CerCo acknowledges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the European Commission, under FET-
Open grant number: 243881.

65

example, a function could be typed as [K1 : T1 | K2 : T2] ∪ ρ → T to mean that the input
can be any type obtained by merging a type ρ into the type of the two listed constructors. The
function can be applied to a K3 M by instantiating (via unification in ML) ρ with [K3 : T3] ∪ σ
for some σ and for M : T3.

An efficient encoding in dependent type theory In the talk we will show an efficient
encoding of bounded polymorphic variants in a dependent type theory augmented with implicit
coercions. The languages of Coq and Matita, for instance, can be used for the encoding, doing
everything at user level. We name bounded polymorphic variants the class of all polymorphic
variants whose constructors are a subset of one (or more) sets of typed constructors — called
universes — given in advance.

Several encodings are possible. However, we will limit ourselves to the one that respects the
following requirements:

1. Universe extension: after adding a new constructor to a universe, all files that used
polymorphic variants that were subsets of the universe should typecheck without modi-
fications. Therefore, the restriction to the bounded case is not problematic because the
merge of two universes does not require any changes to the code.

2. Efficiency of extracted code: after code extraction, bounded polymorphic variants and
classical algebraic types should be represented in the same way and have the same effi-
ciency.

3. Expressivity: all typing rules for polymorphic variants discussed in the literature must
be derivable. In particular, each bounded polymorphic variant should come with its own
elimination principle that allows to reason only on the constructors of the universe that
occur in the polymorphic variant.

4. Non intrusivity: thanks to implicit coercions and derived typing rules, writing code that
uses polymorphic variants should not require more code than what is required in OCaml.

Our encoding is based on the following idea: a universe is represented as a standard al-
gebraic data type; a polymorphic variant on that universe is represented as a pair of lists of
constructors, those that may and those that must be present; dependent types and computable
type formers allow to turn the two lists into the sigma-type of inhabitants of the universe
that are built only from constructors that respect the constraints; code extraction turns the
sigma-type into the universe type, ensuring efficiency; implicit coercions are used to hide the
sigma type construction, so that the user only works with the two lists; more dependently typed
type formers compute the type of the introduction and elimination rules for the polymorphic
variants; the latter are inhabited by dependently typed functions. All previous functions and
type formers cannot be expressed in the type theory itself. However, we provide a uniform
construction (at the meta-level) to write them for each universe.

Finally, we will show how the same ideas can be exploited for a similar efficient representation
of polymorphic records in dependent type theory.

66

Some Varieties of Constructive Finitenes

Erik Parmann

Introduction

In this note we consider two related notions of constructive finiteness. First we look at how we
can define that the set of True positions in a stream over bool is finite. This extends the work
done by Bezem, Nakata and Uustalu [1] by identifying a new formalisation which lies between
two known ones, and identifying that reductions ”upwards” in the hierarchy is equivalent to
Markov’s Principle and the Weak Limited Principle of Omniscience, respectively.

In the second part we look at streamless sets, recently investigated by Coquand and Spiwack [2].
A set is streamless if, intuitively, every stream over that set must contain duplicates. It is an
open question whether the product of two streamless sets is a streamless set. Here we show that
this indeed holds if we assume Markov’s Principle and decidable equality.

Definitions

We start by providing the basic definitions. A stream over A is a function of type N → A.
For a stream f : N → bool, NrOfTruef : N → N is the function which on input k returns the
number of natural numbers i such that i ≤ k and f(i) = True, that is, NrOfTruef k = |{i | i ≤
k ∧ f(i) = True}|.

Now we provide three different properties that can hold of Boolean streams. A function
f : N→ bool is eventually always false, written eaf(f) when

∃n : N,∀m : N,m ≥ n→ f(m) = False .

Bezem et al. [1] refers to this as both Equation (1) and ”F(G blue)s”.
Next, we say that a stream f : N → bool is bounded, written bounded(f) when there is a

bound to the number of True positions:

∃n : N,∀k : N, NrOfTruef k ≤ n.

Bezem et al. [1] refers to this as both Equation (2) and ”∃n. len s”.
The new notion is a natural strengthening of bounded. We say that a stream f : N→ bool

is strictly bounded, written sb(f) when there exists a strict bound on the number of True
positions:

∃n : N, (∀k : N, NrOfTruef k ≤ n ∧ ¬∀k : N, NrOfTruef k ≤ n− 1).

Finally we have three axioms which are all constructively consistent, but not provable.
Markov’s Principle (MP) states that for any decidable predicate over natural numbers (i.e.,
streams over bool): ¬¬(∃n : N, Pn)→ ∃n : N, Pn. Intuitively MP is realized by an unbounded
search, which we know (from outside the system) will terminate because of the antecedent.

Weak Limited Principle of Omniscience (WLPO) states that for any decidable predicate
P , we have that (∀n : N, P (n)) ∨ (¬∀n : N, P (n)), while the stronger Limited Principle of
Omniscience (LPO) states that (∀n : N, P (n)) ∨ (∃n : N,¬P (n)). It is rather easy to see that
(MP ∧WLPO)⇒ LPO, and in fact we have the stronger (MP ∧WLPO) ⇐⇒ LPO.

67

Relations between the formulae

Bezem et al. [1] showed that for any stream f we have eaf(f)⇒ bounded(f). It is obvious that
sb(f)⇒ bounded(f), and eaf(f)⇒ sb(f) is also clear, as the bound on the index in eaf gives
us a bound where all the True values must reside, letting us find the exact amount of True’s.
They furthermore show that (∀f, bounded(f)⇒ eaf(f)) ⇐⇒ LPO.

We find that the new notion of strictly bounded falls neatly between the two previous notions,
completing the picture:

Lemma 1. (∀f, sb(f)⇒ eaf(f)) ⇐⇒ MP.

Lemma 2. (∀f, bounded(f)⇒ sb(f)) ⇐⇒ WLPO.

As neither MP, WLPO or LPO hold constructively, we get a strict hierarchy where eaf ⇒ sb
and sb⇒ bounded holds constructively, but none of the other directions hold without further
assumptions.

Streamless

In this section we will look at streamless sets. A set B is streamless if for all streams g : N→ B
we have indices i < j and g(i) = g(j). See Coquand and Spiwack [2] for further elaborations. It
is an open problem whether A×B is streamless whenever A and B are. Here we look at two
special cases in which it holds.

First we observe several properties of streamless sets. If we have a stream g over streamless
B we can make a new stream over B × N, such that for every 〈b, i〉 in the new stream, b occurs
at least twice in g. We get this letting it begin with the pair 〈g(j), j〉 with j as above, and then
continuing likewise on the stream we get by starting g at index j. We can iterate this process,
and for every n : N we get a stream such that every element in the new stream gives a b : B and
an index such that b occurs at least n times in g before the index. Given a stream g : N→ B
we denote by gx : N→ B × N the stream which gives pairs 〈b, i〉 such that there is at least x
occurrences of b before i in g.

Finally, we say that a set A is bounded by n : N if every list over A with more than n
elements must contain duplicates.

Lemma 3. If A is bounded by n and B is streamless then A×B is streamless.

Proof sketch. Assuming g : N→ A× B we can look at g2 : N→ B, its second projection. By
looking at (g2)n+1(0) we get a pair 〈b, i〉 such that b occurs at least n+ 1 times before i in g2.
As this is a bounded range we can extract the list [j1, . . . , ji] of indices where b occurs in g2.
Note that [g1(j1), . . . , g1(ji)] is n+ 1 elements of A, so there must be at least two indices jk < jl
such that g1(jk) = g1(jl). As g2(jk) = b = g2(jl) we get g(jk) = g(jl).

Lemma 4. Assuming Markov’s Principle and decidable equality on A we have that A×B is
streamless whenever A and B are.

Proof sketch. Assume a stream g : N → A × B. We then define the predicate P (n) :=”for
〈b, i〉 = (g2)n(0) we have duplicates in the list generated from taking the A-elements from the n
pairs before i with b as their second element.” Notice that P (n) is decidable as long as B is
streamless and A has decidable equality.

68

We want to prove ¬¬∃n, P (n) when A is streamless. From ¬∃n, P (n) we get that for every
n we have a list of n elements of A without duplicates. This allows us to construct a stream
over A without duplicates, contradicting that A is streamless.

Using Markov’s Principle we get an n such that P (n), and by essentially the same argument
as for Lemma 3 we get the two indices i < j with g(i) = g(j).

References

[1] Marc Bezem, Keiko Nakata, and Tarmo Uustalu. On streams that are finitely red. Logical Methods
in Computer Science, 8(4), 2012.

[2] Thierry Coquand and Arnaud Spiwack. Constructively finite? In Contribuciones cient́ıficas en
honor de Mirian Andrés Gómez, pages 217–230. Universidad de La Rioja, 2010.

69

A Calculus of Primitive Recursive Constructions

Hugo Herbelin and Ludovic Patey

Université Paris Diderot, Paris, France
Hugo.Herbelin@inria.fr

Ludovic.Patey@computablity.fr

Primitive Recursive Arithmetic (PRA) is a predicative formal subsystem of Peano Arith-
metic, which aims to capture finitist reasoning. PRA is expressive enough to manipulate basic
structures using codings to natural numbers. The tradeoff between its expressive power and
the consensus on finitist reasoning makes it a good candidate as a meta-system in proof theory
[3].

However the necessity to go through coding for manipulating any structure different from
natural numbers makes proofs more tedious. Moreover, a wide class of formal structures can
be easily proven to be encodable within PRA, so the restriction to natural numbers as the
only primitive structure of the language is not justified. It becomes clear that proof theory
would benefit from the introduction of a typed language enabling mathematicians to express
in a natural way their objects manipulated. Such a language should be proven to be able to
express only structures encodable in natural numbers within Primitive Recursive Arithmetic.

With the advent of computers, formal proof assistants have been developed [2, 5], answer-
ing to the request of more reliability in the proofs, enabling more collaboration in the research
process and therefore to tackle bigger projects. Designed to capture the broadest audience,
they provide very expressive formal languages to be able to mechanise in a natural way a wide
range of proofs. This policy finds its limits in proof theory where mathematicians want to
ensure that their proofs are formalisable in a weak formal system. A proof theorist may want
to parametrise the expressiveness of his proof assistant, leading to a syntactical restriction of
the formal language.

We design a Calculus of Primitive Recursive Constructions (CPRC) as a subsystem of the
Calculus of Inductive Constructions without dependent product. In practice, in our approach
of CPRC, inductive types are presented algebraically from the type constructors 0, 1, +, Σ,
= and µ, while recursion is decomposed into pattern-matching and guarded fixpoint as done
in [4]. We provide two translations α and β between a logic-free presentation of PRA [1] and
CPRC. We also provide proofs of their correctness in a sense defined below. Hence the CPRC
has the same expressiveness as PRA, while being able to express natural structures in a simpler
way.

Let Nat be the inductive type µX.1 +X and =Nat be the equality over Nat.

t1 = u1, . . . , tn = un `PRA t = u

is a valid PRA judgement iff there exists a proof term p such that

x1 : Jt1Kα =Nat Ju1Kα, . . . , xn : JtnKα =Nat JunKα `CPRC p : JtKα =Nat JuKα
is a valid CPRC judgement. Conversely, terms of CPRC are coded as terms in PRA whereas
types are interpreted as characteristic functions of the coding of their inhabitants. If

x1 : A1 . . . , xn : An `CPRC p : A

70

is a valid CPRC judgement, then

JA1Kβ x1 = 0, . . . , JAnKβ xn = 0 `PRA JAKβ JpKβ = 0

is a valid PRA judgement. The conditions under which the converse holds are still under study.

A CPRC judgement is a refinement of a PRA judgement as it contains the proof terms,
hence is more informative about the derivation tree. Note that in CPRC as in CIC, there is no
distinction between formulae and types. In particular equality is a type.

This calculus is a first step to an implementation in Coq, opening the door to proofs within
Primitive Recursive Arithmetic using formal proof assistants.

References

[1] Haskell B Curry. A formalization of recursive arithmetic. American Journal of Mathematics, pages
263–282, 1941.

[2] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Benjamin Werner, Christine Paulin-
Mohring, et al. The coq proof assistant user’s guide: Version 5.6. 1991.

[3] Gerhard Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathematische Annalen,
112(1):493–565, 1936.

[4] Hugo Herbelin and Arnaud Spiwack. The rooster and the syntactic bracket. arXiv preprint
arXiv:1309.5767, 2013.

[5] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer, 2002.

71

Liquid Types Revisited

Mário Pereira, Sandra Alves, and Mário Florido

University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

Abstract

We present a new type system combining re�nement types ideas and the expressiveness
of intersection type discipline. The use of such features makes it possible to derive very
precise types, using the types language itself as a detailed description for programs' func-
tional behaviour. We have been able to prove several interesting properties for our system
(including subject reduction) and started the development of an inference algorithm, which
was proved sound.

1 Motivation

Re�nement types [2, 4] state complex program invariants, by augmenting type systems with
logical predicates. A re�nement type of the form {ν : B | φ} stands for the set of values from
basic type B restricted to the �ltering predicate (re�nement) φ. A subtyping relation exists for
re�nement types, which will generate implication conditions (much like a VCGen in the context
of program veri�cation):

Γ; ν : B ` φ⇒ ψ

Γ ` {ν : B | φ} <: {ν : B | ψ}
One idea behind the use of such type systems is to perform type-checking using SMTs

(Satisfability Modulo Theories), discharging conditions as the above φ⇒ ψ. However, the use
of arbitrary boolean terms as re�nement expressions leads to undecidable type systems, both
for type checking and inference.

Liquid Types [5, 6] (Logically Quali�ed Data Types) present a system capable of automat-
ically infer re�nement types, by means of two main restrictions to a system: every re�nement
predicate is a conjunction of expressions exclusively taken from a global, user-supplied set (de-
noted Q) of logical quali�ers (simple predicates over program variables, the value variable ν
and the variable placeholder ?); and a conservative (hence decidable) notion of subtyping.

The Liquid Types system is de�ned as an extension to the Damas-Milner type system,
with the term language extended with an if-then-else constructor and constants. A key idea
behind this system is that the re�nement type of every term is a re�nement of the corresponding
ML type.

Despite the interest of Liquid Types, some situations arise where the inference procedure
infers poorly accurate types. For example, considering Q = {ν ≥ 0, ν ≤ 0} and the term neg ≡
λx.−x, Liquid Types system infers neg :: x : {ν : int |0 ≤ ν ∧0 ≥ ν} → {ν : int |0 ≤ ν ∧0 ≥ ν}
(the syntax x : τ → σ is here preferred over the usual Π(x : τ).σ for functional dependent types).
This type cannot, at all, be taken as a precise description of the neg function's behaviour.

2 Intersection-re�nement types

We propose a re�nement type system with the addition of intersection types [1]. Our intersec-
tions are at the re�nement expressions level only, i.e. for the type σ ∩ τ both σ and τ are of

72

the same form, solely di�ering in the re�nement predicates. We introduce a new rule to form
intersections on types (our typing relation is denoted by `∩):

Intersect

Γ `∩ M : σ Γ `∩ M : τ

Γ `∩ M : σ ∩ τ

As an example, the neg function could be typed within our system as

(x : {ν : int | ν ≥ 0} → {ν : int | ν ≤ 0}) ∩ (x : {ν : int | ν ≤ 0} → {ν : int | ν ≥ 0})

Our use of intersections for re�nement types draws some inspiration from [3].
We use a standard call-by-value small step operational semantics to de�ne the evaluation

relation, denoted ;. Based on this relation, we were able to prove the following result:

Theorem 1 (Subject reduction). If Γ `∩ M : σ and M ; N then Γ `∩ N : σ.

Based on the Liquid Types restrictions, we conceived an algorithm to infer appropriate
re�ned types with intersections. We use the set Q to restrict the possible re�nements of types
and to guarantee that the algorithm terminates. We de�ne the inference algorithm in terms of a
programM , a typing context Γ and Q as Infer(Γ,M,Q) = σ, where σ is an intersection-re�ned
type. The following result holds:

Theorem 2 (Soundness). If Infer(Γ,M,Q) = σ then Γ `∩ M : σ.

With the use of intersections we are able to derive more precise types than in a classical
re�nement type system. These types can thus be taken as detailed descriptions of programs'
behaviour.

We are currently investigating completeness properties of our inference algorithm. We take
particular interest in realizing if our algorithm infers most-general types by means of subtyping.
In other words, we would like to prove that if Infer(Γ,M,Q) = σ and Γ `∩ M : σ′, for some
σ′, then σ <: σ′.

References

[1] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A �lter lambda model and
the completeness of type assignment. The journal of symbolic logic, 48(4):931�940, 1983.

[2] Ewen Denney. Re�nement types for speci�cation. In Programming Concepts and Methods PRO-

COMET'98, pages 148�166. Springer, 1998.

[3] Tim Freeman and Frank Pfenning. Re�nement types for ML. In Proceedings of the ACM SIGPLAN

1991 Conference on Programming Language Design and Implementation, PLDI '91, pages 268�277,
New York, NY, USA, 1991. ACM.

[4] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans. Program. Lang. Syst.,
32(2):6:1�6:34, February 2010.

[5] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the 2008

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '08,
pages 159�169, New York, NY, USA, 2008. ACM.

[6] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract re�nement types. In Proceedings of

the 22Nd European Conference on Programming Languages and Systems, ESOP'13, pages 209�228,
Berlin, Heidelberg, 2013. Springer-Verlag.

73

Toward a New Formulation of Extensional Type Theory

Andrew Polonsky

VU Amsterdam

We report progress on the design of a type system with extensional equality that would
admit decidable type checking by avoiding the propositional reflection rule.

Our approach is similar to Observational Type Theory of Altenkirch et al, in that extensional
equality is generated from a logical relation defined by induction on type structure. Equality
on Π-types is defined to be pointwise equality of functions.

Our contribution is to reflect the logical relation by a dedicated type constructor (which
inhabitants represent type equalities) in such a way that extensionality witnesses exist for every
term in the same type universe. This allows us to define a higher-dimensional substitution
operation:

Γ, x ∶ A ⊢ t ∶ T Γ ⊢ a ∶ A
Γ ⊢ t[a/x] ∶ T [a/x] Γ, x ∶ A ⊢ t ∶ T Γ ⊢ a∗ ∶ a ≃A a′

Γ ⊢ t[a∗//x] ∶ t[a/x] ∼T [a∗//x] t[a′/x]
The fact that T and t[a] ∼T [a∗] t[a′] belong to the same type hierarchy allows the operation to
be iterated to arbitrary dimensions.

Every type has the structure of a globular set with reflexivities, which furthermore satisfies a
certain kind of Kan filling condition. The condition is realized by new operators which formally
witness the homotopy lifting property.

For simplicity, we present our system as an extension of λ∗, with the understanding that
the stratified version is conjectured to be strongly normalizing.

A, t, e, γ ∶∶= ∗ ∣ x ∣ Πx∶A.B ∣ Σx∶A.B ∣ A ≃ B ∣ a ∼e b ∣ a ≃A a′∣ λx∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t∣ s.t∣ ∗∗ ∣ Π∗[x,x′, x∗]∶A∗.B∗ ∣ Σ∗[x,x′, x∗]∶A∗.B∗ ∣ ≃∗A∗B∗
∣ r(t) ∣ e(t) ∣ ē(t) ∣ te ∣ te ∣ γ ↬

e∗γ′
This system has three kinds of equality relations.
The constructor A ≃ B represents the type of equalities between types:

A ∶ ∗ B ∶ ∗
A ≃ B ∶ ∗

Any term e ∶ A ≃ B of this type induces a binary relation between the corresponding types:

e ∶ A ≃ B a ∶ A b ∶ B
a ∼e b ∶ ∗

The term former ∼e ∶ A → B → ∗ can thus be seen as the eliminator for the type A ≃ B. The
constructors for this type are the symbols ∗∗,Π∗,Σ∗,≃∗, which witness the fact that equality
is a congruence with respect to all type constructors (including ≃ itself).

The type A ≃ B enjoys the following computation rules:

A ∼∗∗ B Ð→ A ≃ B
f ∼Π∗[x,x′,x∗]∶A∗B∗ f ′ Ð→ Πa∶AΠa′∶A′Πa∗ ∶ a ∼A∗ a′. fx ∼B∗[a/x,a′/x′,a∗/x∗] f ′x′
p ∼Σ∗[x,x′,x∗]∶A∗B∗ p′ Ð→ Σa∗ ∶ π1p ∼A∗ π1p

′. π2p ∼B∗[π1p/x,π1p′/x′,a∗/x∗] π2p
′

e ∼≃∗A∗B∗ e′ Ð→ Πa∶AΠa′∶A′Πa∗ ∶ a ∼A∗ a′
Πb∶BΠb′∶B′ Πb∗ ∶ b ∼B∗ b′. (a ∼e b) ≃ (a′ ∼e′ b′)

74

The type a ≃A a′ is the extensional equality type on A:

A ∶ ∗ a ∶ A a′ ∶ A
a ≃A a′ ∶ ∗ a ∶ A

r(a) ∶ a ≃A a
The following identities are valid:

t[a∗//x] = r(t) if x ∉ FV(t)
a ≃A a′ = a ∼r(A) a′
A ≃ B = A ≃∗ B

In particular, (A ≃ B) = (A ≃∗ B) = (A ∼r(∗) B) = (A ∼∗[a∗//x] B), justifying the typing of the
higher-dimensional substitution.

For example, one can define in this system the “mapOnPaths” operation

Γ ⊢ t ∶ Πx∶A.B Γ ⊢ α ∶ a1 ≃A a2

Γ ⊢ t.α ∶ ta1 ∼B[α//x] ta2

by taking t.α ∶= r(t)a1a2α. It computes as

(λx∶A.b).α Ð→ b[α//x]
So far, the equality type gives each type the structure of a globular set with reflexivities.

For higher-dimensional compositions, this structure must also satisfy a certain filling condition.
We obtain this by adding operations which allow one to transfer terms from one side of type
equality to another.

e ∶ A ≃ B a ∶ A
e(a) ∶ B

ae ∶ a ∼e e(a)
e ∶ A ≃ B b ∶ B

ē(b) ∶ A
be ∶ ē(b) ∼e b

These are operations with reduction rules. As they can be used in any context, they have
the effect of witnessing the homotopy lifting property:

Γ, x ∶ A ⊢ B(x) ∶ ∗ Γ ⊢ a∗ ∶ a ≃A a′ Γ ⊢ b ∶ B(a)
Γ ⊢ bB(a∗) ∶ b ∼B(a∗) B(a∗)(b)

where B(a∗) = B[a∗//x] ∶ B(a) ≃ B(a′).
Composition and symmetry are defined as follows. For α ∶ a ≃A a′, we have

α̊(x) ∶ (x ≃A a) ≃ (x ≃A a′) α ∶ a′ ≃A a
α̊(x) ∶= (x ≃A y)[α//y] α ∶= α̊(a′)(r(a′))

In particular, for a∗ ∶ a0 ≃A a, we have α̊(a0)(a∗) ∶ a0 ≃A a′.
Higher-dimensional fillers can be constructed following this pattern.
The

↬

e∗ operation is an “exchange law” used when higher cells are substituted over higher
cells, as, for example, in the clause for path substitution over reflexivity:

r(B)[a∗//x] = ↬

r(B[a∗//x])

75

Dialectica: From Gödel to Curry-Howard

Pierre-Marie Pédrot1

PPS, πr2 team, Univ. Paris Diderot, Sorbonne Paris Cité,
UMR 7126 CNRS, INRIA Paris-Rocquencourt, Paris, France

pierre-marie.pedrot@inria.fr

Originally introduced by Gödel in the eponymous Dialectica journal in 1958 [6], the Di-
alectica transformation was a tentative workaround to the then-perceived cataclysm of the
incompleteness theorems. As classical logic could not be considered a firm ground for the
foundations of mathematics anymore, one had to rely upon constructive arguments.

Similarly to its predecessor, the double-negation translation, Dialectica aimed at providing
classical logic with computational roots, through a transformation of HA into system T [1].
Unlike the double-negation translation, Dialectica is more fine-grained. Indeed, while retaining
the disjunction and existence properties of intuitionistic logic, Dialectica realizes two semi-
classical principles, namely Markov’s principle (MP) and independence of premises (IP), which,
given any decidable proposition P on natural numbers, are usually stated as:

¬(∀nN.¬P n)
MP ∃nN. P n

(∀mN. P m)→ ∃nN. R n
IP∃nN. (∀mN. P m)→ Rn

While representing a major breakthrough at the time of its publication, the Dialectica
transformation looks rather bizarre by modern standards of proof theory. First, as already
observed by then [3], the translation of the contraction rule required the atomic propositions
to be decidable. Second, and more worrisome in the Curry-Howard paradigmatic view, the
translation does not preserve β-equivalence.

In her PhD thesis [2], De Paiva proposed a categorical presentation of the Dialectica trans-
lation that somehow solved both issues at once. This presentation made the crucial observation
that the original Dialectica could be understood as a translation acting over linear logic rather
than intuitionistic logic, using Girard’s historical call-by-name decomposition of the arrow [4].
This categorical presentation led to more intricate constructions [9, 8], allowing both to factor-
ize models of linear logic from the literature through this Dialectica-like transformation, and to
easily design new ones by following the same pattern.

Conversely, and strangely enough, to the best of our knowledge, the Dialectica translation
by itself did not benefit from this categorical apparatus. In particular, a clear understanding
of the computational effects at work in the translation remained to be found. What does the
program corresponding to the translation of a proof actually do?

We answer this legitimate question by providing our own syntactical, untyped presentation
of Dialectica in a slightly extended λ-calculus, based on De Paivas’s work. It happens that
the very computational content of this translation can be easily explained thanks to the usual
Krivine abstract machine (KAM) with closures, in an approach quite similar to the one of
classical realizability [10, 12]. Essentially, Dialectica allows to capture the current stack of the
machine when accessing a variable in the environment.

This feature can be seen as a weak form of delimited control, embodied by the operator

M : (A⇒ B)⇒ A⇒ ∼B ⇒M(∼A)

where ∼X denotes the type of stacks of X and MX the finite multiset over X. Here, stacks
are given a first-class citizenship and made inspectable, which is fairly stronger than the usual

76

arrow type of continuations. Given any function f : A⇒ B, any argument t : A and any return
stack π : ∼B,M f t π computes the multiset of stacks {ρ1, . . . , ρn} where each ρi is the current
stack of the machine for each corresponding use of t by f , delimited by π.

There is an intriguing mismatch, though. Indeed, the KAM produces the stacks in a definite
order, because of the sequentiality of the reduction, but the Dialectica translation does not,
because it constructs a multiset instead of a list. Yet, there is no obvious way to tweak the
Dialectica transformation to recover the sequentiality in the list of produced stacks. This defect
actually seems deeply rooted in the linear decomposition itself.

Our syntactical presentation has the advantage to be compatible with the usual construc-
tions around λ-calculus. For instance, we can easily apply it to more complicated settings, like
dependent types. We obtain a Dialectica translation for CCω [11] almost trivially. The transla-
tion is also applicable to the dependent elimination of inductives, hinting towards a translation
for the full-fledged CIC system.

In a more general way, the dependently-typed Dialectica gives interesting hindsights into
what could be (or not) linear dependent types, and provides more generally enlightening in-
tuitions about effects and continuations in a dependent type theory. Finally, we believe that
we could design similar transformations inspired by its computational content able to provide
well-behaved versions of delimited control.

References

[1] Jeremy Avigad and Solomon Feferman. Gödel’s functional (”Dialectica”) interpretation, 1998.

[2] Valeria de Paiva. A dialectica-like model of linear logic. In Category Theory and Computer Science,
pages 341–356, 1989.

[3] Justus Diller. Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen.
Archiv für mathematische Logik und Grundlagenforschung, 16(1-2):49–66, 1974.

[4] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[5] Jean-Yves Girard. The Blind Spot: Lectures on Logic. European Mathematical Society, 2011.

[6] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialec-
tica, 12:280–287, 1958.

[7] Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. LICS, pages 50–56, 2010.

[8] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic, 114(1-3):43–78, 2002.

[9] Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic. Theor.
Comput. Sci., 294(1/2):183–231, 2003.

[10] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci., 308(1-3):259–
276, 2003.

[11] Zhaohui Luo. An extended calculus of constructions, 1990.

[12] Alexandre Miquel. Forcing as a program transformation. In LICS, pages 197–206, 2011.

[13] Paulo Oliva. Unifying functional interpretations. Notre Dame Journal of Formal Logic, 47(2):263–
290, 2006.

[14] Thomas Streicher and Ulrich Kohlenbach. Shoenfield is Gödel after Krivine. Math. Log. Q.,
53(2):176–179, 2007.

77

A formalization of the Quipper quantum programming

language

Neil J. Ross

Dalhousie University, Halifax, Canada
neil.jr.ross@dal.ca

Quipper is a programming language for quantum computation ([1], [2]). At the moment,
Quipper is implemented as an embedded language, whose host language is Haskell. This means
that Quipper can be seen as a collection of predefined Haskell functions and data types, together
with a preferred style of writing embedded programs, called an idiom.

Developing a programming language as an embedded language has many advantages. In
particular, it allows for the rapid implementation of a large-scale system. This is one of the rea-
sons why Quipper is already a rich language. However, there are also disadvantages to Quipper
being an embedded language. One of these is that the Haskell type system, while providing
many type-safety properties, is not in general strong enough to ensure full type-safety of the
quantum programs. In the current Quipper implementation, it is therefore the programmer’s
responsibility to ensure that quantum components are plugged together in physically meaning-
ful ways. This means that certain types of programming errors will not be prevented by the
compiler. In the worst case, this may lead to ill-formed output or run-time errors.

In this talk, we present a quantum programming language which we call Proto-Quipper.
This language formalizes a fragment of Quipper and is defined as a typed lambda calculus
equipped with a reduction strategy. It is a type-safe language in the sense that it enjoys the
usual Subject Reduction and Progress properties. Proto-Quipper provides a foundation for
the development of a stand-alone (i.e., non-embedded) version of Quipper. It is designed to
“enforce the physics”, in the sense that it would detect, at compile-time, programming errors
that could lead to ill-formed or undefined circuits.

In designing the Proto-Quipper language, our approach was to start with a limited, but still
expressive, fragment of the Quipper language and make it completely type-safe. This fragment
will serve as a robust basis for future language extensions. The idea is to eventually close the
gap between Proto-Quipper and Quipper by extending Proto-Quipper with one feature at a
time while retaining type-safety.

Our main inspiration for the design of Proto-Quipper is the quantum lambda calculus of
[3]. One of the main differences between Quipper and the quantum lambda calculus is that
Quipper acts as a circuit description language. It provides the ability to treat circuits as
data, and to manipulate them as a whole. For example, Quipper has operators for reversing
circuits, decomposing them into gate sets, etc. By contrast, the quantum lambda calculus
only manipulates qubits and all quantum operations are immediately carried out on a quantum
device, not stored for symbolic manipulation.

We therefore extend the quantum lambda calculus with the minimal set of features that
makes it Quipper-like. The current version of Proto-Quipper is designed to:

• incorporate Quipper’s ability to generate and act on quantum circuits, and

• provide a linear type system to guarantee that the produced circuits are physically mean-
ingful (in particular, properties like no-cloning are respected).

78

To achieve these goals, we extend the types of the quantum lambda calculus with a type
Circ(T,U) of circuits, and add constant terms to capture some of Quipper’s circuit-level oper-
ations, like reversing. The execution of Proto-Quipper programs is formalized as a reduction
relation on pairs [C, t] of a term t of the language and a so-called circuit state C. The state C
represents the circuit currently being built. The reduction is defined as a rewrite procedure on
such pairs, with the state being affected by redexes involving quantum constants.

This is joint work with Henri Chataing and Peter Selinger.

References

[1] A.S. Green, P. Lefanu Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. An introduction to
quantum programming in quipper. In Proceedings of the 5th International Conference on Reversible
Computation (RC 2013), Victoria, BC, Canada, volume 7948, pages 110–124. Springer Lecture
Notes in Computer Science, 2013.

[2] A.S. Green, P. Lefanu Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. Quipper: A scalable
quantum programming language. In Proceedings of the 34th Annual ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2013), Seattle, volume 48(6), pages
333–342, 2013.

[3] P. Selinger and B. Valiron. Quantum lambda calculus. In S. Gay and I. Mackie, editors, Semantic
Techniques in Quantum Computation, pages 135–172. Cambridge University Press, 2009.

79

Exceptions in Dependent Type Theory

Jorge Luis Sacchini∗

Carnegie Mellon University, Doha, Qatar
sacchini@qatar.cmu.edu

Exceptions provide a convenient mechanism for signaling errors in a program. Signaling is
performed by raising an exception, which effectively causes a non-local transfer to a dynamically-
installed handler that can capture the exception and perform some action, e.g. recover from
the error situation. If no handler is found, execution is aborted. Most modern programming
languages provide built-in mechanisms for raising and handling exceptions.

In dependently-typed programming languages, such as Agda [5], Coq [6], exceptions can
be encoded using sum-types. For example, a division function could be given type nat →
nat → nat+div by zero. By giving such types a monadic structure, an approach popularized by
Haskell, programming with encoded exceptions is rather straightforward. One of the benefits of
this approach is that exceptions are encoded in types, which means that a compiler can enforce
that all exceptions are handled. Furthermore, in the case of Coq and Agda, logical consistency
is preserved, as the language is not changed.

On the other hand, having a primitive notion of exceptions has a number of advantages
over encoded exceptions. First, primitive exceptions are more convenient for programming.
For example, the expression 1 + div 1 0 is valid (when executed it would raise an exception),
while in the encoding given above, we first have to analyze the value returned by div before
proceeding with the addition. This affects performance as well, as we have to pack and unpack
the encoded exceptions at every use. Second, exceptions have better support for modularity
and code reuse [3]. For example, a higher-order function can be passed as argument a function
that may raise exceptions without jeopardizing type safety.

Adding support for first-class exceptions in dependent type theory poses several challenges.
First, exceptions usually can have any type; for example 0 and raise div by zero can have both
type nat. This is undesirable in a dependent type theory as it would lead to logical inconsis-
tencies. To overcome this problem, we need to keep track of exceptions in the type system.
We follow the approach given by Lebresne [4]. He proposes a type constructor of the form
A ?∪ ψ, where A is a type and ψ is a set of exceptions. This type is essentially a sum type
between regular and exceptional values. Hence, 0 has type nat, while raise div by zero has type
nat ?∪ {div by zero}.

Second, exception impose a fixed evaluation order—usually, but not always, call-by-value
(CBV). In a dependent type theory, where we intent to reason about open terms, we do not
want to commit to any evaluation order. To solve this problem, David and Mounier [2] and
also Lebresne [4] consider call-by-name exceptions. The idea is to have the reduction rules:

(λx.t)u→ t[u/x] (raise ε)u→ raise ε

So that (λx.t) (raise ε) reduces to t[raise ε/x]. This reduction rules, including the usual behavior
for handling exceptions, result in a confluent relation.

Third, we mentioned that one advantage of the exception mechanism is better support for
modularity and code reuse. The typical example is a sorting function that takes a comparison

∗This work was made possible by a NPRP grant (NPRP 09-1107-1-168) from the Qatar National Research
Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the
author.

80

function of type, let us say, nat → nat → bool. If we pass an argument of type nat → nat →
bool ?∪{ε}, we expect that the result will still be well typed, even if it may raise exception ε when
applied to a list (i.e. we expect the result to be of type list nat ?∪ {ε}). Lebresne [4] introduces
corrupted types to allow this behavior. A corrupted type has the form Aψ, where ψ is a set
of exceptions. A term of type Aψ can be seen as a term of type A where some subexpression
is replaced by raise ε (with ε ∈ ψ). Corruption has nice properties like distribution across
function types: (A → B)ψ = Aψ → Bψ; this means that a sorting function can have type
(natψ → natψ → boolψ) → listψ nat → listψ nat, for any ψ (including ∅), effectively allowing
reuse of the function in the presence of exceptions.

In general, we expect that, in any well-typed program of A, replacing any subexpression by
raise ε would result in a well-typed program of type Aψ. However, this works in simply-typed
systems, but not in the presence of dependent types. For example, consider a function P of
dependent type

Πx:nat. case (try x ow ε⇒ SO) of
| O ⇒ nat → nat
| Sx⇒ nat

Then P OO has type nat, but P (raise ε)O is not well typed. Although this example is a bit
artificial, it shows that corruption cannot be applied freely in the presence of dependent types.

In this proposed talk, we will present λΠ,ε, a predicative type theory with inductive types
and call-by-name exceptions. The type system features union types of the form T ?∪ ψ to
account for exceptions at top level, and corrupted types of the form Iψ, for inductive types I,
meaning that an exception can occur under constructors. λΠ,ε enjoys desirable metatheoretical
properties such as subject reduction and strong normalization (proved using a modified Λ-set
model [1]).

However, for the reasons explained above, λΠ,ε does not feature a full corruption operator.
This implies that, although λΠ,ε is more convenient to use than encoded exceptions, it still does
not have all the advantages of using primitive exceptions. In this talk, we will also discuss the
limitations of λΠ,ε and possible ways to overcome them.

References

[1] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, Uni-
versity of Edinburgh, November 1993.

[2] R. David and G. Mounier. An intuitionistic Λ-calculus with exceptions. J. Funct. Program.,
15(1):33–52, January 2005.

[3] Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, C. A. R. Hoare, and Simon Marlow. A
semantics for imprecise exceptions. In Barbara G. Ryder and Benjamin G. Zorn, editors, PLDI,
pages 25–36. ACM, 1999.

[4] Sylvain Lebresne. A system F with call-by-name exceptions. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 323–335. Springer, 2008.

[5] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers University of Technology, 2007.

[6] The Coq Development Team. The Coq Reference Manual, version 8.3, 2009. Distributed electron-
ically at http://coq.inria.fr/doc.

81

http://coq.inria.fr/doc

Deciding unique inhabitants with sums

(work in progress)

Gabriel Scherer

INRIA – Gallium

Our ongoing work focuses on types that have a unique inhabitant—modulo program equiva-
lence. If we were able to detect when such types appear in a program, we could perform program
inference to releave the programmer from the obligation to write the less-interesting parts of
the program. Unicity of inhabitant is a strong form of principality: inference cannot make a
“wrong” guess as there is only one choice. This property can be contrasted to two different
notions, inhabited types and subtyping coercions, that it respectively refines and extends:

• The usual provability notion of “having at least an inhabitant”, which is the one of concern
when using strongly-typed lambda-calculi to prove mathematical facts. In this setting,
the dynamic semantics of terms is ignored, which makes it unsuited to program inference.

• The common programming notion of erasable subtyping between two types A ≤ B: in-
ference systems for subtyping can be seen as a restrictive type system for functions whose
terms have a computational interpretation which is always the identity function—when
it is inhabited, A ≤ B has a unique inhabitant. On the contrary, some types have unique
inhabitants that are not the identity functions, such as swap : ∀AB. (A∗B)→ (B ∗A).

To decide uniqueness, we must be able to enumerate the distinct terms at a given type.
As a first step, we consider the simply-typed lambda-calculus with arrows, product and sums.
We are looking for a term enumeration process that is complete, i.e., it does not miss any
computational behavior, and canonical, i.e., it has no duplicates. We propose an approach
based on saturation, with encouraging results, although termination is still a conjecture.

Computational completeness Some existing proof calculi, such as contraction-free cal-
culi [Dyc13], make simplifications designed to make provability decision tractable, but throw
away some behaviors, loosing computational completeness. The following rule, which drops a
function after its first invocation, preserves provability even in a contraction-free calculus:

Γ, A→ B ` A Γ, B ` C
Γ, A→ B ` C

Consider a datatype A ∗ (A → (A ∗ B)) of infinite streams of B with internal state A. If
the generating function is dropped after its first result, there is exactly one proof of A ∗ (A→
(A∗B)) ` B (getting the first element of the stream), while there are infinitely many observably
distinct programs at that type.

Focusing Focusing [And92] imposes a phase discipline on derivations by distinguishing in-
vertible and non-invertible inference rules—invertible rules are those whose inverse is derivable.
In absence of sums, focused proofs are in exact correspondance to β-short η-long proof terms;
it is computationally complete. Starting from a grammar for values and neutrals:

v ::= λ(x :A) v | (v, v) | n
n ::= n v | π1 n | π2 n | x

we can define the set Val(Γ ` A) of (distinct) values of type A in the environment Γ, along
with the set Ne(Γ ` A) of neutrals at this type, by lifting notations from terms to sets of terms:

82

Val(Γ ` A→ B) := λ(x :A) Val(Γ, x :A ` B)
Val(Γ ` A ∗B) := (Val(Γ ` A), Val(Γ ` B))
Val(Γ ` X) := Ne(Γ ` X) (Xatomic)

Ne(Γ ` Ai) ⊇ πi Ne(Γ ` A1 ∗A2)
Ne(Γ ` B) ⊇ Ne(Γ ` A→ B) Val(Γ ` B)
Ne(Γ ` N) ⊇ {x | (x :N) ∈ Γ}

Note that Val is structurally recursive on the input type; it corresponds to the invertible rules.
On the contrary, Ne corresponds to non-invertible rules, and is defined as a least fixpoint: this is
where the aforementioned termination control techniques are necessary. The following property
is key to showing that this enumeration is canonical:

Lemma 1 (Canonicity of negative neutrals). For any n1, n2 ∈ Ne(Γ ` A), if n1 and n2 are
syntactically distinct, then they are distinct for contextual equivalence.

This specification can be turned into a decision procedure; termination arguments are of
two sorts. First, the subformula property gives a finite bound on the number of types that will
be considered. Second, cycles in the equations defining Ne (in particular types with an infinite
number of distinct inhabitants, such as Church integers X → (X → X) → X) can be worked
upon using a graph-based representation in the style of Wells and Yakobowski [WY04].

Unfortunately, focusing alone does not capture the notably difficult η-equivalence for sums.
Writing δ(e1, x.e2, y.e3) for (match e1 with inlx→ e2 | inr y → e3), the two following terms
correspond to distinct, but observationally equivalent, focused proofs of (1→ A+B)→ A+B:
(λ(f) δ(f 1, x. inlx, y. inr y)) and (λ(f) δ(f 1, x. inlx, y. δ(f 1, x′. inlx′, y′. inr y′))).

Saturation Coupling an enumeration of focused proofs with an equivalence checking proce-
dure for sums [Lin07] does not work, as there may be infinitely many redundant copies. The
main idea of these algorithms is to move sum elimination as high in the term as possible. We
thus propose to eliminate sums as early as possible during term generation, by simutaneously
eliminating all neutrals of any positive type P when the goal is itself a positive Q:

Val(Γ, x : (A+B) ` C) := δ(x, y.Val(Γ, y :A ` C), z.Val(Γ, z :B ` C))

Ne(Γ ` A1 +A2) ⊇i∈{1,2} σi Ne(Γ ` Ai)
Val(Γ ` Q) := Ne(Γ ` Q) ∪ (let ∆ = (∪P Ne(Γ ` P)) in Val(Γ,∆ ` Q))

This saturation process is complete and canonical. Remarkably, it is strongly related to the
notion of “maximal multi-focusing” [CMS08]; our proofs are also maximal in this sense.

While completeness and non-duplicability are relatively simple, termination is still a conjec-
ture. In addition to the “inner” non-termination related to the definition of Ne(Γ ` A) (infinite
number of distinct terms), there is now an “outer” termination problem of infinite alternance
of Val and Ne layers. Previous approaches gave either completeness and termination (focus-
ing, with duplicates) or canonicity and termination (incomplete provability calculi), while this
presentation is naturally complete and canonical, but not yet proved terminating.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297–347, 1992.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-
focusing. In IFIP TCS, pages 383–396, 2008.

[Dyc13] Roy Dyckhoff. Intuitionistic decision procedures since gentzen. In Advances in Proof Theory,
2013.

[Lin07] Sam Lindley. Extensional rewriting with sums. In TLCA, pages 255–271, 2007.

[WY04] J. B. Wells and Boris Yakobowski. Graph-based proof counting and enumeration with appli-
cations for program fragment synthesis. In LOPSTR, pages 262–277, 2004.

83

On the Complexity of Negative Quanti�cation∗

Aleksy Schubert, Paweª Urzyczyn,1 and Konrad Zdanowski2

1 University of Warsaw
[alx,urzy]@mimuw.edu.pl

2 Cardinal Stefan Wyszy«ski University in Warsaw
k.zdanowski@uksw.edu.pl

Abstract

Universal quanti�ers in �rst-order formulas are classi�ed as positive (co-variant) and
negative (contra-variant) depending on their position. We de�ne the negative fragment of
a logic so that it consists of formulas where all quanti�ers are negative. We prove that
the decision problem for the negative forall-arrow fragment of intuitionistic predicate logic
becomes co-Nexptime complete under the restriction that all predicates are of �xed arity.
This contrasts with an earlier result that the full negative logic is Expspace complete.

The usual way of classifying the quanti�er complexity of a formula is by counting the number
of quanti�er alternations. This concept can be de�ned even if formulas of a given logic have no
equivalent prenex normal form. One simply counts alternations between positive and negative
occurrences of quanti�ers. In the context of intuitionistic logic this gives the, so called, Mints
hierarchy [1]. Here, we are interested in the �rst level of this hierarchy consisting of formulas
with only negative occurrences of quanti�ers. For the logic with universal quanti�cation and
implication only this class may be de�ned by the following grammar, where quanti�er free
formulas are represented by ∆:

• Σ1 ::= ∆ | Π1 → Σ1;

• Π1 ::= ∆ | Σ1 → Π1 | ∀xΠ1 .

We establish the complexity of the set of Σ1 theorems of intuitionistic predicate logic in a vo-
cabulary with predicates of bounded arity and with no function symbols. We show that this
fragment is co-Nexptime complete. This may be compared with the earlier work which shows
that Σ1 fragment with no restriction on the arity of predicates is Expspace complete [3], as
well as with Π1 fragment which is 2-co-Nexptime hard [2]. The higher classes in the hierarchy,
Σ2 and Π2, become undecidable even in the monadic vocabulary [3].

To obtain a lower bound we de�ne a tiling problem of covering the space N × {0, 1}∗ with
a �nite set of tiles T , according to a given set of deterministic rules G : T 4 → T 2. The set of
tiles T is assumed to include two distinguished elements, E and ok. Rules in G de�ne a tiling
function TG : N× {0, 1}∗ → T , given by:

• TG(n,w) = E, when n = 0 or w = ε.

• TG(m+1, wi) = πi(G(K,L,M,N)), for i = 0, 1, where πi stands for the i-th projection,
and K = TG(m,wi), L = TG(m,w), M = TG(m+1, w), and N = TG(m+2, w);

One can imagine a tiling of N× {0, 1}∗ as a full binary tree labeled by rows of tiles (the label
of a node w ∈ {0, 1}∗ is the sequence of tiles TG(n,w), for all n).

∗Project supported through NCN grant DEC-2012/07/B/ST6/01532.

84

Let s ∈ N. The problem G is s-solvable i�, for every w with |w| = s, there is a pre�x w′

of w and a number m ≤ s such that TG(m,w′) = ok. That is, an ok tile must be reached at
every branch of the tree of length s and it must be at most the s-th tile in the row.

Since s is presented in binary, one can show by a routine argument that the problem whether
a given G is s-solvable belongs to the class of co-Nexptime complete problems. We show how
to code this problem by a Σ1 formula ϕ such that s�solvability of G corresponds to provability
of ϕ. Moreover, ϕ can be written as ∀ȳ1ψ1 → · · · → ∀ȳkψk → ψk+1, where all ψi are quanti�er
free. After encoding s-solvability of G using predicates of arity 2, we use a syntactic translation
to replace them by monadic predicates.

For the upper bound we de�ne a refutation system for the Σ1 fragment of intuitionistic

logic. We show that the size of a refutation may be bounded by 2n
k

, where n is the length of
a disproved formula ϕ and k corresponds, roughly, to the maximal arity of predicates in ϕ.

The main ingredient here is the observation that while proving a Σ1 formula ϕ from the set
of Π1 assumptions Γ there is no need of introducing new variables besides those which are free
in ϕ and Γ (assuming that there is at least one). The above restricts the number of possible
sequents that may occur in an alleged proof of Γ ` ϕ. After constructing a refutation tree one
can show that some of its branches can be cut o� so that the existence of the full refutation
tree follows from the existence of its fragment of exponential size.

References

[1] G.E. Mints. Solvability of the problem of deducibility in LJ for a class of formulas not containing
negative occurrences of quanti�ers. Steklov Inst., 98:135�145, 1968.

[2] Aleksy Schubert, Paweª Urzyczyn, and Daria Walukiewicz-Chrz¡szcz. Positive logic is 2-exptime
hard. In Types 2013, pages 72�73. 2013.

[3] Aleksy Schubert, Paweª Urzyczyn, and Konrad Zdanowski. On the Mints hierarchy in �rst-order
intuitionistic logic, 2014. Submitted.

85

Higher Inductive Types as Homotopy-Initial Algebras

Kristina Sojakova

Carnegie Mellon University, Pittsburgh, USA
kristinas@cmu.edu

Homotopy Type Theory (HoTT, [9]) is a new field of mathematics based on the recently-
discovered correspondence between Martin-Löfs constructive type theory and abstract homo-
topy theory. Under this new interpretation, types are topological spaces, terms are points in
spaces, and proofs of identity are paths between points. Since proofs of identity are themselves
terms (of an identity type), we can also talk about higher paths, for instance, proofs that two
proofs of identity are equal, and so on.

Type-theoretically, HoTT is an extension of the intensional Martin-Löf dependent type
theory, with two new features motivated by abstract homotopy theory: Voevodsky’s univalence
axiom [3] and higher inductive types ([5, 6]). The theory remains intensional in the sense that
no form of Streicher’s K-rule [8] or the identity reflection rule are admissible (as the groupoid
model constructed in [2] shows). In fact, the former is incompatible with univalence.

Higher inductive types are important because they allow us to represent a variety of math-
ematical objects - such as spheres, tori, pushouts, and quotients - within the type theory.
Ordinarily, an inductive type X can be understood as being freely generated by a collection of
constructors for X. A higher inductive types X also permits constructors involving path spaces
of X: for example, the circle S1 can be represented as the higher inductive type generated by
a single point constructor base : S1 and a single path constructor loop : base =S1 base, where
we use = to denote propositional equality. The induction principle associated with this simple
definition is powerful enough to show, e.g., that the fundamental group of S1 is the group of
integers (see [4]).

We investigate a variant of higher inductive types whose computational behavior is deter-
mined up to a higher path. We show that in this setting, higher inductive types are character-
ized by the universal property of being a homotopy-initial algebra. In the case of the circle S1,
the data (S1, base, loop) together can be thought of as defining an S1-algebra. The recursion
principle for the circle then says that given any other S1-algebra (X,x, s), where X is a type,
x : X is a point, and s is a loop based at x, there exist an S1-homomorphism (f, β, θ) from
(S1, base, loop) to (X,x, s).

An S1-homomorphism (f, β, θ) between S1-algebras (X,x, s) and (Y, y, r) consists of a map
f : X → Y , a path β : f(x) = y, and a higher path θ : f(s) � β = β � r, where f(s) records the
effect of the map f on the path s. An S1-algebra is called homotopy-initial [1] if the type of
homomorphisms to any other algebra is contractible, meaning it consists of an element which
is unique up to a higher path, which is itself unique up to a higher path, and so on.

Theorem 1. An S1-algebra satisfies the formation, introduction, elimination, and computation
rules for a circle if and only if it is homotopy-initial.

This theorem follows from an analogous result for a more general class of higher inductive
types we call W-suspensions. For the full account we refer to [7].

References

[1] S. Awodey, N. Gambino, and K. Sojakova. Inductive types in Homotopy Type Theory. In Logic in
Computer Science (LICS 2012), pages 95–104. IEEE Computer Society, 2012.

86

[2] M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In Twenty-five years
of constructive type theory 1995, volume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ.
Press, 1998.

[3] C. Kapulkin, P. Lumsdaine, and V. Voevodsky. The simplicial model of univalent foundations.
Available at arxiv.org as arXiv:1211.2851v1, 2012.

[4] D. Licata and M. Shulman. Calculating the fundamental group of the circle in Homotopy Type
Theory. In Logic in Computer Science (LICS 2013), pages 223–232. IEEE Computer Society, 2013.

[5] P. Lumsdaine. Higher inductive types: a tour of the menagerie, 2011. Post
on the Homotopy Type Theory blog. http://homotopytypetheory.org/2011/04/24/

higher-inductive-types-a-tour-of-the-menagerie/.

[6] M. Shulman. Homotopy Type Theory, VI, 2011. Post on the n-category cafe blog. http://golem.
ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html.

[7] K. Sojakova. Higher inductive types as homotopy-initial algebras. Technical Report CMU-CS-14-
101, Carnegie Mellon University, 2014. Available at http://reports-archive.adm.cs.cmu.edu/.

[8] T. Streicher. Investigations into intensional type theory, 1993. Habilitation Thesis. Available from
the authors web page.

[9] The Univalent Foundations Program, Institute for Advanced Study. Homotopy Type Theory -
Univalent Foundations of Mathematics. Univalent Foundations Project, 2013.

87

http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
http://reports-archive.adm.cs.cmu.edu/

Proof-relevant rewriting strategies in Coq

Matthieu Sozeau

Inria Paris & PPS, Univ Paris Diderot (UMR-CNRS 7126)
matthieu.sozeau@inria.fr

Abstract

We introduce various enhancements of the generalized rewriting system of Coq. First, we show
how the framework can be lifted to proof-relevant relations using the newly introduced universe
polymorphic definitions in Coq. Second, we introduce rewriting strategies as a monadic combinator
library on top of this framework, resembling the LogicT monad for proof-search (i.e., with back-
tracking, well-behaved choice and composition). These new features combine to provide a general
tool for fine-tuned automated rewriting applicable not only to propositional relations but also gen-
eral computational type-valued relations. Last, we will also present an idea to handle dependent
rewriting, e.g. the ability to rewrite in the domain of a dependent product and get corresponding
transportation obligations.

1 Proof-relevant rewriting

The new universe polymorphic extension of Coq [1] is crucial to allow a straightforward generalization
of the generalized rewriting framework in Coq [2]. Indeed, the basic notion of proper morphism was
previously defined only on propositional relations:

Class Proper {A : Type} (R : A → A → Prop) (x : A) :=
proper prf : R x x .

Although this definition could be written with a Type-valued relation instead in previous versions,
generic lemmas about Proper would immediately fix the universe level and would force all relations for
which rewriting was used to live at the same level, i.e., a no-go. With universe polymorphism, Proper
can be made polymorphic on the Typel codomain of the relation and similarly generic lemmas can be
instantiated at arbitrary, potentially unrelated levels (for example, Proper itself can be shown to be proper
for equivalent relations). Examples of useful proof-relevant rewriting relations abound: the appartness
predicate of the reals in the CoRN library, the paths relation of Homotopy Type Theory, and in general,
Hom-types of categories are naturally formalized using Type-valued relations.

2 Rewriting strategies

The generalized rewriting tactic is based on a monolithic function that folds through a term and pro-
duces type-class constraints for showing that constants are morphisms and applies the rewriting at the
appropriate places.

We propose a generalization of this design based on a set of strategies that can be combined to obtain
custom rewriting procedures. Its set of strategies is based on Elan’s rewriting strategies [3]. Rewriting
strategies are applied using the tactic rewrite strat s where s is a strategy expression (already part
of Coq 8.4, although undocumented). Strategies are defined inductively as described by the grammar
given in Figure 1. Actually a few of these are defined in term of the others using a primitive fixpoint
operator:

try s = s || id
any s = fix u.try (s ; u)
repeat s = s ; any s
bottomup s = fix bu.((progress (subterms bu)) || s) ; try bu
topdown s = fix td.(s || (progress (subterms td))) ; try td
innermost s = fix i.((subterm i) || s)
outermost s = fix o.(s || (subterm o))

88

http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x

s, t, u ::= (<-)? c (right to left?) lemma
| fail | id failure | identity
| refl reflexivity
| progress s progress
| try s failure catch
| s ; u composition
| s || t left-biased choice
| repeat s iteration (+)
| any s iteration (*)
| subterm(s)? s one or all subterms
| innermost s innermost first
| outermost s outermost first
| bottomup s bottom-up
| topdown s top-down
| hints hintdb apply first matching hint
| terms c . . . c any of the terms
| eval redexpr apply reduction
| fold c fold expression
| pattern p pattern matching

Figure 1: Rewriting strategy syntax

Apart from the basic control strategies, we have lemmas strategies allowing to apply any of a set of
rewrite rules (hints, terms), an evaluation strategy that applies anywhere and reduces according to a se-
lection of the usual βδιζ-laws of CIC, and a fold strategy that can refold constants up to unification. The
special pattern strategy succeeds only when the term pattern-matches its argument, allowing selective
rewriting. With these combinators, we can subsume a few existing tactics of Coq: variants of rewrite,
autorewrite, eval/unfold and fold, in the generalized rewriting setting. We also allow user-defined,
fine-tuned strategies, whose performance improves on the repeat rewrite strategy implemented by the
autorewrite tactic for example.

On the implementation side, these strategies are implemented using a success-failure continuation
monad, similar to the LogicT monad [4], which has efficient backtracking and clear semantics while
keeping the code modular. In particular, the combination with universe polymorphism was easy to
add thanks to this modularity and the hiding of state passing which is required when manipulating
polymorphic constants in the ML tactic.

3 Conclusion

These new features make generalized rewriting a viable framework to work with proof-relevant relations,
in particular the paths type of Homotopy Type Theory, and other proof-relevant notions of equality like
isomorphisms of types or appartness in real number formalizations. We hope to apply the enhanced
tactic to real-world formalizations in the future.

References

[1] Sozeau, M., Tabareau, N.: Universe Polymorphism in Coq. In: ITP’14. (2014) To appear.

[2] Sozeau, M.: A New Look at Generalized Rewriting in Type Theory. Journal of Formalized Reasoning 2(1)
(December 2009) 41–62

[3] Luttik, S.P., Visser, E.: Specification of Rewriting Strategies. In: 2nd International Workshop on the Theory
and Practice of Algebraic Specifications (ASF+SDF’97), Electronic Workshops in Computing, Springer-Verlag
(1997)

[4] Kiselyov, O., Shan, C.c., Friedman, D.P., Sabry, A.: Backtracking, interleaving, and terminating monad
transformers: (functional pearl). In: ICFP ’05: Proceedings of the tenth ACM SIGPLAN international
conference on Functional programming, New York, NY, USA, ACM (2005) 192–203

89

http://mattam.org/research/publications/drafts/univpoly.pdf
http://jfr.cib.unibo.it/article/view/1574/1077
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
http://portal.acm.org/ft_gateway.cfm?id=1086390&type=pdf&coll=Portal&dl=GUIDE&CFID=28832090&CFTOKEN=51771456
http://portal.acm.org/ft_gateway.cfm?id=1086390&type=pdf&coll=Portal&dl=GUIDE&CFID=28832090&CFTOKEN=51771456

Towards an Internalization of the Groupoid Interpretation of

Type Theory

Matthieu Sozeau1 and Nicolas Tabareau2

1 Inria πr2, Preuves, Programmes et Systèmes (PPS)
2 Inria Ascola, Laboratoire d’Informatique de Nantes Altantique (LINA)

firstname.surname@inria.fr

Abstract

Homotopical interpretations of Martin-Löf type theory lead toward an interpretation of equality
as a richer, more extensional notion. Extensional or axiomatic presentations of the theory with
principles based on such models do not yet fully benefit from the power of dependent type theory,
that is its computational character. Reconciling intensional type theory with this richer notion
of equality requires to move to higher-dimensional structures where equality reasoning is explicit.
In this paper, we follow this idea and develop an internalization of a groupoid interpretation of
Martin-Löf type theory with one universe respecting the invariance by isomorphism principle. Our
formal development relies crucially on ad-hoc polymorphism to overload notions of equality and on
a conservative extension of Coq’s universe mechanism with polymorphism.

1 Introduction

Our work here concentrates on the internalization in Coq of Hofmann and Streicher’s groupoid model
where we can have a self-contained definition of the structures involved.

Our first motivation to implement this translation is to explore the interpretation of type theory in
groupoids in a completely intensional setting and in the type theoretic language, leaving no space for
imprecision on the notions of equality and coherence involved. We also hope to give with this translation
a basic exposition of the possible type theoretic implications of the groupoid/homotopy models, bridging
a gap in the literature. On the technical side, the definition of the groupoid model actually requires to
reason at a 2-dimensional level. This is due to the way we interpret the strictness in the definition of
groupoids. Indeed, interpreting strictness by the fact that the internal equality coincides with the identity
type requires the functional extensionlaty axiom when it comes to define for instance the groupoid on
the function space. Our interpretation of strictness is closer to the idea that a groupoid is a weak ω-
groupoid for which all equalities at dimension 2 are the same. That is, we only use identity types to
express triviality of higher dimension, not coherences themselves. As the model that we use does not
have the uniqueness of identity proof principle, the two ways of formalizing groupoids mentionned above
are different. Our presentation requires less properties on identity types, but we still need the axiom of
functional extensionality. Also, this indicates that if we scale to ω-groupoids, the presence of identity
types in the core type theory will not be necessary anymore and so the core type theory will be axiom
free. Thus, our work can be seen as a proof of concept that it is possible to interpret homotopy type
theory into type theory without identity types.

We use an extension of the Coq proof assistant [1] with universe polymorphism to formally define our
translation [2]. We studied a restricted source theory resembling a cut-down version of the core language
of the Coq system, with only one Type universe (see [3] for an in-depth study of this system). This is
basically Martin-Löf Type Theory (without Type : Type), with Π, Σ, Id types and a single universe U .

Universe and Type Equivalence. The universe U is closed under Σ, Π, O, 1, 2 and Id in elements
of U , not type equivalences. For T and U in U , the type of (Set)-isomorphisms T ≡ U , is definable
directly using the other type constructors. The new, proof-relevant type equivalence in the source theory
for which we want to give a computational model appears in the rule below, extending the formation
rules of identity types on U . The J rule for type equivalences witnesses the invariance under isomorphism
principle of the source type theory.

Γ ` i : Elt(A) ≡ Elt(B)

Γ ` equiv i : IdU A B

90

2 Formalization of groupoids

We formalize groupoids using type classes. Contrarily to what is done in the setoid translation, the basic
notion of a morphism is an inhabitant of a relation on a type T in Type (i.e., a proof-relevant relation).

In our definition of the type Type1 of groupoids, we do not ask that the internal equality coincides
with the identity type but we model explicitly coherence laws with an equality at dimension 2, which
is assumed to be irrelevant. This irrelevance is defined using a notion of contractibility expressed with
identity types. One can then define groupoid morphisms (functors) preserving homs which form a pre-
category with natural transformations and modifications. Groupoid equivalence itself is formalized using
adjoint equivalences. We can define the pre-groupoid Type11 of groupoids and homotopy equivalences.
However, groupoids together with homotopy equivalences do not form a groupoid but rather a 2-groupoid.
As we only have a formalization of groupoids, this can not be expressed in our setting. Nevertheless,
we can state that setoids (inhabitants of Type0, which are the targets in the interpretation of the types
of our universe U) form a groupoid. The proof that it is indeed a groupoid makes use of functional
extensionality to prove contractibility of higher cells. As Type1 appears both in the term and in the type,
the use of polymorphic universe is crucial here to avoid an inconsistency.

3 Interpretation of the source type theory

Our formalization of groupoids can be organized into a model of dependent type theory. The interpre-
tation is based on the notion of categories with families introduced by Dybjer [4] later used in [5]. This
interpretation can also be seen as an extension of the Takeuti-Gandy interpretation of simple type theory,
recently generalized to dependent type theory by Coquand et al. using Kan semisimplicial sets or cubi-
cal sets [6]. In our interpretation, we take advantage of universe polymorphism to interpret dependent
types directly as functors into Type10. We interpret contexts as groupoids. The empty context being
the groupoid with exactly one element at each dimension. Types in a context Γ are (context) functors
from Γ to the groupoid of setoids Type10. Thus, a judgment Γ ` A : Type is represented as a term A of
type Typ Γ. Context extension (Rule Decl) is given by dependent sums, i.e., the judgment Γ, x : A `
is represented as Σ A. Substitution and all typing rules can be interpreted this way. For conversion,
we just have (trivial) metatheoretical result that we preserve conversion in the interpretation, as the
intepretation of types just adds compatibility terms to a type, so two convertible types in the source
language just get interpreted as two pairs with convertible first projections in the shallow embedding.

4 Related Work

The groupoid interpretation is due to Hofmann and Streicher [5]. This interpretation is based on the
notion of categories with families introduced by Dybjer [4]. This framework has recently been used
by Coquand et al. to give an interpretation in semi-simplicial sets and cubical sets [6, 7]. Although
very promising, the interpretation based on cubical sets has not yet been mechanically checked, only an
Haskell implementation exists. Observational Type Theory (OTT) [8], an intentional type theory where
functional extensionality is native, but equality in the universe is structural.

References

[1] The Coq development team: Coq 8.4 Reference Manual. Inria. (2012)

[2] Sozeau, M., Tabareau, N.: Universe Polymorphism in Coq. In: ITP’14. (2014) To appear.

[3] Hoffman, M.: Syntax and Semantics of Dependent Types. In: Semantics and Logics of Computation. (1997)

[4] Dybjer, P.: Internal type theory. In : Types for Proofs and Programs. LNCS 1158 (1996)

[5] Hofmann, M., Streicher, T.: The Groupoid Interpretation of Type Theory. In: Twenty-five years of construc-
tive type theory (Venice, 1995). Volume 36 of Oxford Logic Guides. Oxford Univ. Press (1998) 83–111

[6] Barras, B., Coquand, T., Huber, S.: A Generalization of Takeuti-Gandy Interpretation. (2013)

[7] Bezem, M., Coquand, T., Huber, S.: A Model of Type Theory in Cubical Sets. (December 2013)

[8] Altenkirch, T., McBride, C., Swierstra, W.: Observational Equality, Now! In: PLPV’07, Freiburg, Germany
(2007)

91

http://coq.inria.fr/distrib/V8.4pl3/refman/
http://mattam.org/research/publications/drafts/univpoly.pdf
http://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
http://dx.doi.org/10.1007/3-540-61780-9_66
http://www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/venedig.ps
http://uf-ias-2012.wikispaces.com/file/view/semi.pdf
http://www.cse.chalmers.se/~coquand/mod1.pdf
http://www.cs.nott.ac.uk/~txa/publ/obseqnow.pdf

Type system for automated generation of
reversible circuits (abstract)

Benoı̂t Valiron

PPS, UMR 7126, Université Paris Diderot,
Sorbonne Paris Cité, F-75205 Paris, France,
benoit.valiron@monoidal.net

Summary of the abstract

Reversible circuits are boolean circuits made of reversible elementary gates. Such circuits are
particularly useful in the context of quantum computation as quantum oracles. A quantum oracle is the
circuit representation of a conventional, classical function. In this abstract, we aim at a simple method
for generating reversible circuits out of a higher-order functional programming language. We expose
the drawbacks of this approach and discuss how a type system could solve some of these problems.

Introduction. Reversible circuits are special kinds of boolean circuits, where wires are horizontal and
parallel, and where elementary operations (called gates) are reversible. Wires host bits flowing from left
to right, all at the same pace. When some bits meet a gate, the corresponding operation is applied on the
wires attached to the gate. The overall circuit is reversible by making the bits flow backward.

x • x

z ⊕ z ⊕ x
x • x

y • y

z ⊕ z ⊕ xy

The gates we consider here are multi-controlled-not gates. A
not gate is simply ⊕ . The corresponding operation is the
flip of the value flowing in the wire. The controlled-not gate, also
denoted CNOT, is the first gate on the right, while the doubly-controlled gate, also denoted Toffoli is the
second. A controlled-not flips the bit only when the controlling wires all have value “true” (or 1).

The main use we have in mind for reversible circuits in this abstract is quantum computation. In
quantum computation, reversible circuits are mostly used as oracle: the description of the problem to
solve. Usually, this description is given as a classical, conventional algorithm. This abstract is concerned
with the design of reversible circuits derived from such algorithms, when given as programs in a PCF-
like language: the language we aim at is minimal but expressive enough to encode most algorithms
found in quantum oracles. It should feature recursion, pairs, booleans and lists, and easily be extended
with additional structures if needed. We are therefore interested in the compilation of a program into
a reversible circuit. In this abstract, we present the type system for a small subset of the language,
nonetheless enough to discuss an example of term where optimization can happen.
Reversible circuits from programs. Compiling a program into a reversible circuit is fundamentally
different from compiling to a regular back-end: there is no notion of “loop”, no real control flow, and all
branches will be explored during the execution. In essence, a reversible circuit is the trace of all possible
executions of a given program, and the compilation of a program essentially amounts to its evaluation.

As described by Landauer and Bennett, a conventional, classical algorithm computing a boolean
function f : bitn → bitm can be mechanically transformed into a reversible circuit sending the
triplet (x,~0,~0) to (x, trace, f(x)). The input wires are not modified by the circuit, and the trace of all

x • x

1 ⊕ 1⊕ x

x • x

y • y

0 ⊕ xy

intermediate results are kept in garbage wires. For example, the
Landauer embeddings for negation and conjunction are respec-
tively shown in the right: they are simply CNOT and Toffoli
gates, together with some auxiliary wires initialized to some constant boolean value 0 or 1.

Because of their particular structure, the Landauer embeddings of functions g and h can be composed
to give a Landauer embedding of the composition h◦g: the trace of the execution of both g and h are kept
in garbage wires. For example, one can construct the embedding of the disjunction as the composition

92

x • x

y • y

1 ⊕ • 1⊕ x
1 ⊕ • 1⊕ y
0 ⊕ • (1⊕ x)(1⊕ y)
1 ⊕ x⊕ y ⊕ xy

of the embeddings for the negation and the conjunction,
as shown on the right. The disjunction of x and y is
¬(¬x ∧ ¬y). The Landauer embeddings of negation and
conjunction are composed in order to build all intermediary
results, until we reach x ⊕ y ⊕ xy, which is indeed x ∨ y.
The two first CNOTs compute the inner negations, the Tof-
foli computes the conjunction, while the last CNOT makes the outer negation. As we said above, all
intermediary results are retained.

One can use this technique to design the compilation of any lambda-calculus manipulating booleans
into a reversible circuit. Therefore, if not and and have their obvious meanings, the two programs

x, y : bit ` not(and(not x)(not y)) : bit (1)
x, y : bit ` (((λz.λt.λs.s (and t z))(not x))(not y)) not : bit (2)

will generate the same circuit for disjunction shown above, regardless of the lambda abstractions in-
volved in the term of Eq. (2).
Circuit optimization and type system. In the naive implementation of the disjunction in Eq. (1),
the intermediate result of and cannot be reused later on as it is not stored in a variable. So instead of
creating a new fresh variable, the outer not could simply reuse the wire of the intermediate result of
and and update it with a ⊕ gate. In Eq. (1), this optimization can be realized at circuit-generation time
by simple subterm inspection. In Eq. (2), it is not so clear: we claim that a specific type system is the
right tool to untangle the terms and decide whether a particular wire is used several times. Terms can
then be annotated with type information that is used at circuit-generation time to decide whether a fresh
wire should be created or not.

Formally, the language consists of terms, types and sorts. For illustration, in this abstract we only
give the subset needed to type Eqs (1) and (2). Terms are M,N ::= x | λx.M |MN | and | not, types
are A,B ::= α | A→ B, while sorts are τ ::= 0 | 1 | +. Sorts come with a transitive relation < defined
by 0 < 0 < 1 < + < +. The type α ranges over an infinite alphabet, and it stands for a bit wire. So
with respect to Eqs (1) and (2), we essentially have a type bit annotated with wires. A wire α of sort 0
is intuitively not used. A wire of sort 1 is used only once in the generated circuit while a wire of sort +
is used more than once. A typing judgement is of the form

α1 : τ1 . . . αn : τn | x1 : A1 . . . xm : Am `M : B,
and the typing rules enforce the property that wires can be shared amongst several variables but are
themselves linear. If |X| stands for the set of wires in X , then

|∆| = |A|
∆ | x : A ` x : A

∆ | Γ, x : A `M : B

∆ | Γ ` λx.M : A→ B

Γ1 |∆ ` N : A Γ2 |∆ `M : A(B

Γ1 ∪ Γ2 |∆ `MN : B

Finally, constants are typed with α : τ1, β : τ2 ` not : α → β when τ1 ≥ 1, and α : τ1, β : τ2, γ :
τ3 ` and : α → β → γ when τ1, τ2 ≥ 1. In the typing rule for application appears a union of contexts
of sorts: (α1 : τ1 . . . αn : τn, β1 : σ1 . . . βm : σm) ∪ (α1 : τ ′1 . . . αn : τ ′n, βm+1 : σm+1 . . . βk : σk) is
equal to (α1 : max(τ1, τ

′
1) . . . αn : max(τn, τ

′
n), β1 : σ1 . . . βk : σk) where max(τ, τ ′) is the smallest

value σ such that τ, τ ′ ≤ σ and σ is strictly greater than one of τ and τ ′. Since (<) is reflexive on sort
0, if a wire α is neither “used” in M nor in N , then it is not used in MN . Again, (<) is not reflexive on
sort 1: a wire α used once both in M and N is used “many” times (aka “+”) on MN .

Thus, during the compilation of a term, every not whose first argument is of sort 1 in the final term
(i.e. the bottom of the typing derivation) can safely be compiled into a NOT gate, not generating a
fresh wire. In the case of Eqs (1) and (2), one can type both terms with the pair of context and type
. . . , α : 1, β : 1, γ : 0 | x : α, y : β ` − : γ and the outer not has an argument of sort 1 in both cases,
as desired.

93

94

Author Index

Abel, Andreas, 15
Ahman, Danel, 17
Ahrens, Benedikt, 19
Alves, Sandra, 72
Anand, Abhishek, 21
Assaf, Ali, 23, 29

Bickford, Mark, 21, 25
Boulmé, Sylvain, 42

Capriotti, Paolo, 27
Cauderlier, Raphaël, 29
Cockx, Jesper, 31
Constable, Robert, 21, 25
Coquand, Thierry, 7

de Amorim, Arthur Azevedo, 33
Devriese, Dominique, 31
Dı́az-Caro, Alejandro, 35
Dowek, Gilles, 35
Dubois, Catherine, 29

Fabbro, Sara, 37
Felty, Amy, 40
Florido, Mário, 72
Fouilhe, Alexis, 42
Fuchs, Laurent, 61

Gaboardi, Marco, 33
Gallego Arias, Emilio Jesús, 33
Geraedts, Wouter, 47
Geron, Bram, 47
Geuvers, Herman, 44, 47
Ghilezan, Silvia, 49
Guenot, Nicolas, 51

Herbelin, Hugo, 70
Hou, Kuen-Bang, 53
Hsu, Justin, 33

Ivetic, Jelena, 49

Kraus, Nicolai, 27, 54
Krebbers, Robbert, 56

Lasson, Marc, 58
Leivant, Daniel, 60
Leroy, Xavier, 9
Likavec, Silvia, 49

Magaud, Nicolas, 61
Maietti, Maria Emilia, 63
Maschio, Samuele, 63
Miculan, Marino, 37
Momigliano, Alberto, 40

Mulligan, Dominic, 65

Parmann, Erik, 67
Patey, Ludovic, 70
Pédrot, Pierre-Marie, 76
Pereira, Mário, 72
Périn, Michaël, 42
Pientka, Brigitte, 40
Piessens, Frank, 31
Pitts, Andrew M., 11
Polonsky, Andrew, 74

Rahli, Vincent, 21
Ross, Neil J., 78

Sacchini, Jorge Luis, 80
Sacerdoti Coen, Claudio, 65
Sattler, Christian, 54
Scherer, Gabriel, 82
Schubert, Aleksy, 84
Sojakova, Kristina, 86
Sozeau, Matthieu, 88, 90
Spadotti, Régis, 19

Tabareau, Nicolas, 90

Urzyczyn, Pawel, 84
Uustalu, Tarmo, 17

Valiron, Benôıt, 92
van Stegeren, Judith, 47

Zdanowski, Konrad, 84

95

