
Toward a New Formulation of Extensional Type Theory

Andrew Polonsky

VU Amsterdam

We report progress on the design of a type system with extensional equality that would
admit decidable type checking by avoiding the propositional reflection rule.

Our approach is similar to Observational Type Theory of Altenkirch et al, in that extensional
equality is generated from a logical relation defined by induction on type structure. Equality
on Π-types is defined to be pointwise equality of functions.

Our contribution is to reflect the logical relation by a dedicated type constructor (which
inhabitants represent type equalities) in such a way that extensionality witnesses exist for every
term in the same type universe. This allows us to define a higher-dimensional substitution
operation:

Γ, x ∶ A ⊢ t ∶ T Γ ⊢ a ∶ A

Γ ⊢ t[a/x] ∶ T [a/x]

Γ, x ∶ A ⊢ t ∶ T Γ ⊢ a∗ ∶ a ≃A a
′

Γ ⊢ t[a∗//x] ∶ t[a/x] ∼T [a∗//x] t[a
′
/x]

The fact that T and t[a] ∼T [a∗] t[a
′
] belong to the same type hierarchy allows the operation to

be iterated to arbitrary dimensions.
Every type has the structure of a globular set with reflexivities, which furthermore satisfies a

certain kind of Kan filling condition. The condition is realized by new operators which formally
witness the homotopy lifting property.

For simplicity, we present our system as an extension of λ∗, with the understanding that
the stratified version is conjectured to be strongly normalizing.

A, t, e, γ ∶∶= ∗ ∣ x ∣ Πx∶A.B ∣ Σx∶A.B ∣ A ≃ B ∣ a ∼e b ∣ a ≃A a
′

∣ λx∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t∣ s.t

∣ ∗
∗
∣ Π∗

[x,x′, x∗]∶A∗.B∗
∣ Σ∗

[x,x′, x∗]∶A∗.B∗
∣ ≃

∗A∗B∗

∣ r(t) ∣ e(t) ∣ ē(t) ∣ te ∣ te ∣ γ

↬

e∗γ
′

This system has three kinds of equality relations.
The constructor A ≃ B represents the type of equalities between types:

A ∶ ∗ B ∶ ∗

A ≃ B ∶ ∗

Any term e ∶ A ≃ B of this type induces a binary relation between the corresponding types:

e ∶ A ≃ B a ∶ A b ∶ B
a ∼e b ∶ ∗

The term former ∼e ∶ A → B → ∗ can thus be seen as the eliminator for the type A ≃ B. The
constructors for this type are the symbols ∗∗,Π∗,Σ∗,≃∗, which witness the fact that equality
is a congruence with respect to all type constructors (including ≃ itself).

The type A ≃ B enjoys the following computation rules:

A ∼∗∗ B Ð→ A ≃ B

f ∼Π∗[x,x′,x∗]∶A∗B∗ f
′
Ð→ Πa∶AΠa′∶A′Πa∗ ∶ a ∼A∗ a

′. fx ∼B∗[a/x,a′/x′,a∗/x∗] f
′x′

p ∼Σ∗[x,x′,x∗]∶A∗B∗ p
′
Ð→ Σa∗ ∶ π1p ∼A∗ π1p

′. π2p ∼B∗[π1p/x,π1p′/x′,a∗/x∗] π2p
′

e ∼≃∗A∗B∗ e
′
Ð→ Πa∶AΠa′∶A′Πa∗ ∶ a ∼A∗ a

′

Πb∶BΠb′∶B′ Πb∗ ∶ b ∼B∗ b
′. (a ∼e b) ≃ (a′ ∼e′ b

′
)



The type a ≃A a
′ is the extensional equality type on A:

A ∶ ∗ a ∶ A a′ ∶ A
a ≃A a

′
∶ ∗

a ∶ A
r(a) ∶ a ≃A a

The following identities are valid:

t[a∗//x] = r(t) if x ∉ FV(t)

a ≃A a
′

= a ∼r(A) a
′

A ≃ B = A ≃∗ B

In particular, (A ≃ B) = (A ≃∗ B) = (A ∼r(∗) B) = (A ∼∗[a∗//x] B), justifying the typing of the
higher-dimensional substitution.

For example, one can define in this system the “mapOnPaths” operation

Γ ⊢ t ∶ Πx∶A.B Γ ⊢ α ∶ a1 ≃A a2

Γ ⊢ t.α ∶ ta1 ∼B[α//x] ta2

by taking t.α ∶= r(t)a1a2α. It computes as

(λx∶A.b).α Ð→ b[α//x]

So far, the equality type gives each type the structure of a globular set with reflexivities.
For higher-dimensional compositions, this structure must also satisfy a certain filling condition.
We obtain this by adding operations which allow one to transfer terms from one side of type
equality to another.

e ∶ A ≃ B a ∶ A
e(a) ∶ B

ae ∶ a ∼e e(a)

e ∶ A ≃ B b ∶ B
ē(b) ∶ A

be ∶ ē(b) ∼e b

These are operations with reduction rules. As they can be used in any context, they have
the effect of witnessing the homotopy lifting property:

Γ, x ∶ A ⊢ B(x) ∶ ∗ Γ ⊢ a∗ ∶ a ≃A a
′ Γ ⊢ b ∶ B(a)

Γ ⊢ bB(a∗) ∶ b ∼B(a∗) B(a∗)(b)

where B(a∗) = B[a∗//x] ∶ B(a) ≃ B(a′).
Composition and symmetry are defined as follows. For α ∶ a ≃A a

′, we have

α̊(x) ∶ (x ≃A a) ≃ (x ≃A a
′
) α ∶ a′ ≃A a

α̊(x) ∶= (x ≃A y)[α//y] α ∶= α̊(a′)(r(a′))

In particular, for a∗ ∶ a0 ≃A a, we have α̊(a0)(a
∗
) ∶ a0 ≃A a

′.
Higher-dimensional fillers can be constructed following this pattern.
The

↬

e∗ operation is an “exchange law” used when higher cells are substituted over higher
cells, as, for example, in the clause for path substitution over reflexivity:

r(B)[a∗//x] =

↬

r(B[a∗//x])


