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An important feature of type-theory based proof assistants is the possibility of extracting
certified programs from proofs [4, 2], in virtue of the Curry-Howard “proofs-as-programs”,
“propositions-as-types” isomorphism. The extracted programs are certified in the sense that
they are guaranteed to satisfy their specification, i.e. the properties represented by their types
in the proof assistant.

One limitation of this approach is that these programs are always purely functional. Non-
functional programming languages (e.g. imperative, distributed, concurrent,. . . ) hardly fea-
ture a type theory supporting a Curry-Howard isomorphism, and even if such a theory were
available, implementing a specific proof-assistant with its own extraction facilities would be a
daunting task.

In this talk we present a methodology for circumventing this problem using the extraction
mechanisms of existing proof assistants (namely Coq), generalizing previous work [3]. Basi-
cally, the idea is to incapsulate the non-functional aspects in a computational monad, as done
in Haskell, and using the extraction facilities of Coq for directly producing certified Haskell
code with monads.

Let us consider an algebraic specification (T,Σ,Γ) of a monad T . This consists of an abstract
type constructor T (i.e., for each type A, TA is the type of computations whose values have
type A), and a set Σ = {op1, . . . , opn} of (multi-sorted) constructors for the monadic types
TA. The behaviour of these constructors is specified by the set Γ = {s1 = t1, . . . , sm = tm}
of equational laws; terms si, ti in these equations are built using the operators in Σ, plus the
basic constructors of any monad returnA : A → TA and bindA,B : TA → (A → TB) → TB
(often written �=). For instance, the “maybe” monad M is defined by a single (polymorphic)
constructor nothingA : MA, and a single equation bindA,B(nothingA, f) = nothingB . Similarly,
the “global store” monad can be specified by two operations lookup and update, and seven
equational laws [7]. Many other computational aspects can be specified in this way; see e.g. [6].

The specification (T,Σ,Γ) is encoded in Coq as a module signature, i.e., Module Type
specializing MONAD_INTERFACE, like the following:

Module Type MAYBEMONAD_INTERFACE <: MONAD_INTERFACE.

Parameter Nothing : forall (A: Type), M A.

Axiom Strictness : forall (A B : Type) (f : A -> M B),

(Nothing A) >>= f = (Nothing B).

End MAYBEMONAD_INTERFACE.

Then, we can start reasoning about (and implementing) programs with effects by assuming
a monad implementing this signature. Program specifications can be given using the equational
logic at the Prop level of Coq. For instance, the specification of a program for in-place swapping
of two locations, in the monad for global store, is the following:

Module StateInstance <: STATEMONAD_INTERFACE.

Include STATEMONAD_INTERFACE.
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Include MemoryState.

Lemma swap_locs : forall (l1 l2 : loc), l1 <> l2 -> {c : M unit |

((c >>= (fun _ => lookUp l2)) =

(lookUp l1) >>= fun x => c >>= (fun _ => ret x)) /\

((c >>= (fun _ => lookUp l1)) =

(lookUp l2) >>= fun x => c >>= (fun _ => ret x)) /\

forall (l : loc), (l <> l1 /\ l <> l2) -> ((c >>= fun _ => lookUp(l))) =

((lookUp(l) >>= fun x => c >>= fun _ => ret x ))}.

This kind of Lemmata can be proved constructively as usual, by providing a program c and
proving that it meets the specification. This proof will make use of the abstract algebraic laws
declared in the monad signature (STATEMONAD_INTERFACE in this case). Notice that there is
no need to provide any real implementation of the monadic specification in Coq, in order to
program with the operators and prove the specification. Actually, it is not even advisable: for
proving that programs are compliant to their specifications we cannot rely on peculiar properties
of any specific implementation.

At this point, from these proofs we can extract Haskell programs by taking advantage of
the standard Coq Extraction facility. The programs so obtained cannot be executed, because
they will contain the constructors opi which have still to be defined. Differently from previous
work [3], we solve this issue by automatically replacing during the Extraction each opi with a
suitable Haskell code fragment, possibly using operators of the corresponding Haskell monad.
In the case of the “maybe” monad above, we declare:

Extract Constant Maybe.M "a" => "Maybe a".

Extract Constant Maybe.ret => "Just".

Extract Constant Maybe.bind => "(>>=)".

Extract Constant Maybe.Nothing => "Nothing".

This is the step where we provide the implementation of the monad; in general, each operator
can be mapped to an arbitrary complex code snippet. With these definitions, the extracted
code can be readily executed in the Haskell runtime, with the proper monads covering the
non-functional computational aspects.

Still, we have to prove that the mappings defined in the Extract Constant declarations are
sound. This corresponds to prove that the equational laws declared in the monad interface are
respected. The methodology for proving this soundness is general and uniform, and proceeds
as follows. Let s = t be an equational law of the monad specification, and let s′, t′ the two
Haskell programs obtained by extraction from s, t, respectively; we have to prove that s′ and t′

are semantically equivalent with respect to the semantics of Haskell.
Now, instead of working with the full-blown Haskell syntax and semantics, it is more con-

venient to work with the Core language, a very small, explicitly-typed, variant of System F
used as an intermediate language in ghc. On this language we can easily define an applicative
bisimulation M ≈ N à la Abramsky [1], which corresponds to the behavioural (i.e., contextual)
equivalence. Thus, for each pair s′, t′ as above, let s′′, t′′ be the corresponding two Core terms
produced by ghc (with suitable options); we have to prove that s′′ ≈ t′′. Once all equivalences
s′′ ≈ t′′ have been proved, we can assert that the mapping defined by the Extract Constant

clauses is correct with respect to the equational laws assumed in the monad signature, and
hence the extracted code with effects is certified.

These equivalences can be proved “on the paper”, following the usual techniques for applica-
tive bisimulation. However, these proofs can be quite long and error-prone, hence it is better
(and safer) to develop them within a proof assistant. To support these proofs we are currently



developing a formalization in Coq of the syntax, semantics and behavioural equivalence of Core
language, similar to that in [5]. The whole methodology is summarized in the following dia-
gram.
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