
Modular and lightweight certification of polyhedral

abstract domains∗

Alexis Fouilhe, Sylvain Boulmé, and Michaël Périn

Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
{alexis.fouilhe,sylvain.boulme,michael.perin}@imag.fr

Abstract interpretation [5] provides a theory for static analysis of programs, where sets of
reachable states are over-approximated by elements of an abstract domain. In particular, the
domain of convex polyhedra [6] expresses postconditions as conjunctions of affine inequalities:
a polyhedron p encodes a formula “

∧
i

∑
j aij .xj≤bi”, where aij and bi are rational constants,

and xj are numerical variables of the program. Its semantics (or concretization) is the predicate
JpK defined as “λm.

∧
i

∑
j aij .m(xj)≤ bi”, where m is a total map from variables to rationals

representing a memory state. The analyzer computes postconditions in a given abstract domain
by performing a symbolic evaluation of programs that combines operators of this domain. Its
correctness relies on each domain operator over-approximating a given predicate transformer.

An abstract interpreter such as Astrée [3] is able to ensure the absence of undefined
behaviours in large critical programs from avionics. But Astrée is itself very complex and,
despite the care put in its development, it may contain bugs. This is probably also the case for
well-known abstract domain implementations, such as the PPL [1] and Apron [8]. Inspired by
the development in Coq of the CompCert certified compiler [10], the Verasco project aims
to build a certified abstract interpreter [4]. Our work in this project focuses on obtaining a
provably correct library for convex polyhedra, similar in features and performance to the core
of the PPL and Apron polyhedra libraries.

Proving correct the result of domain operators on polyhedra reduces to proving inclusions
of polyhedra: a polyhedron p is included in a polyhedron p′ iff ∀m, JpK(m) ⇒ Jp′K(m). If each
inequality of p′ is entailed by a positive linear combination of the inequalities of p, then inclusion
holds. Farkas’s lemma states that when inclusion holds, such a vector Λ of linear combinations
always exists.

Moreover, such a Λ can be considered as a certificate containing the necessary information
to build the result p′ of a given domain operator from its operands which are here expressed
as p. The result p′ = Λ.p satisfies the inclusion properties which guarantee its correctness, by
construction. Our certified abstract domain of polyhedra is built out of two components:

• An untrusted Ocaml backend which, for each operator, produces certificates.

• A frontend, developed in Coq, which builds proved-correct results using certificates pro-
vided by the backend.

This idea has previously been experimented by Frédéric Besson et al. [2]. Our work makes
the frontend more modular and more generic with respect to the backend. All that is required
from the backend is to be able to generate certificates in our format. The backend could use its
own data structures (e.g. double representation), or trade some precision for computationally
cheaper operators [11, 9]. Such flexibility is achieved reducing the coupling between the frontend
and the backend:

• Communication between the frontend and the backend is reduced to certificates, i.e.
descriptions of linear combinations of inequalities identified by integers.

∗This work was partially supported by ANR project “Verasco” (INS 2011).

http://verasco.imag.fr/


• The frontend ensures soundness but does not give formal precision guarantees. The
precision versus efficiency trade-off is delegated to the backend.

The frontend requires the backend to implement only a basic Ocaml interface. It is extended
in the frontend using functors: extra features are added in a modular way to any numerical
domain without relying on its specifics. For example, the predicate transformer for assignment
can be phrased in terms of more basic operators: intersection, projection and renaming. A
functor adds the operator to a basic domain and builds the required correctness proofs.

To complete our abstract domain, we built a backend using a constraints-only representation
of polyhedra [7]. Its operators use tweaked versions of standard algorithms so as to produce
certificates as a cheap by-product of computations. Experiments show that the overhead of
result verification is sufficiently low for our abstract domain to remain competitive with well-
established, but non-verifying, implementations.

In conclusion, result verification is particularly well suited for certifying polyhedral abstract
domains. Our work demonstrates an efficient, evolutive and reusable design, which could serve
as a guiding example for lightweight certification. We hope to extend this work to a whole
static analyzer.

References

[1] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1–2), 2008.

[2] F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result certification for relational program
analysis. Technical Report RR-6333, INRIA, 2007.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In PLDI. ACM, 2003.

[4] S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal Verification of a C Value Analysis
Based on Abstract Interpretation. In SAS, volume 7935 of LNCS. Springer, 2013.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL. ACM, 1977.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In POPL. ACM, 1978.

[7] A. Fouilhe, D. Monniaux, and M. Périn. Efficient Generation of Correctness Certificates for the
Abstract Domain of Polyhedra. In SAS, volume 7935. Springer, 2013.

[8] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis. In
CAV, 2009.

[9] V. Laviron and F. Logozzo. Subpolyhedra: a (more) scalable approach to infer linear inequalities.
In VMCAI, volume 5403 of LNCS, pages 229–244. Springer, 2009.

[10] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7), 2009.

[11] S. Sankaranarayanan, M. Colón, H. Sipma, and S. Manna. Efficient strongly relational polyhedral
analysis. In VMCAI, volume 3855 of LNCS, pages 111–125. Springer, 2006.


