
Objects and subtyping in the λΠ-calculus modulo

Ali Assaf12, Raphaël Cauderlier13, and Catherine Dubois34

1 INRIA Paris-Rocquencourt, Paris, France
2 École Polytechnique, Paris, France

3 CNAM, Paris, France
4 ENSIIE, Évry, France

In this talk, we present a shallow embedding of an object calculus, the ς-calculus, in the
λΠ-calculus modulo. The main difficulty is the encoding of subtyping. We propose a solution
that makes use of rewriting in order to ease the handling of subtyping proofs.

Motivations The λΠ-calculus modulo is an extension of the λΠ-calculus [7] with rewrite
rules. Implemented in the Dedukti type-checker [9], it can be used as a logical framework for
the implementation of formal systems [5]. In this framework, rewrite rules can be introduced
in addition to β-reduction to extend the conversion relation between terms.

Cousineau and Dowek [4] showed that any functional pure type system can be encoded in
the λΠ-calculus modulo using appropriate rewrite rules. The main emphasis of this embedding
is that it is shallow, as opposed to deep embeddings. As much as possible, the features of the
object language are implemented by the corresponding features in the meta-language: bindings
are represented using binders, typing using typing, reduction using reduction, etc. Besides
avoiding the reimplementation of these features, shallow embeddings have the advantage of
being more compact, more readable, and more efficient than deep embeddings.

While encoding languages with functional features in the λΠ-calculus modulo seems natural,
encoding object-oriented languages, that share no feature with the λΠ-calculus modulo, is less
obvious. In particular, encoding subtyping is a challenging problem, because it is absent from
the target language. In the λΠ-calculus modulo, each term has a unique type. If M has type
A and A is not convertible to B then M does not have type B. Moreover, it is not possible to
rewrite A to B, as then any term of type B would also have type A, which would be unsound.

Related work A lot of work has been done in the field of encoding of objects. Several such
encodings in System Fω

<: have been proposed and compared [8, 2]. They often rely on existential
types and some form of recursion.

In 1996, Abadi and Cardelli [1] defined several object calculi which consider objects as a
primitive notion instead of encoding them in a λ-calculus. These calculi are very primitive in
the sense that they can be used to represent both object-based and class-based languages and
they do not distinguish methods from fields. These calculi have been used as examples for
testing the effectivity of deep embeddings in the Coq proof assistant [6, 3].

One of these calculi is the simply-typed ς-calculus. It represents objects as records of the
form [li = ς(x : A)ti]i=1...n, and each method has only one parameter, introduced by the ς
binder, which represents self. This calculus has simple typing rules and operational semantics.

Γ, x : A ` ti : Ai ∀i = 1 . . . n

Γ ` t : A
where A = [li : Ai] and t = [li = ς(x : A)ti]i=1...n

t.lj −→ tj{x := t} (method selection)
t.lj ⇐ ς(x : A)u −→ t {lj := ς(x : A)u} (method update)



Subtyping is defined by [li : Ai]i=1...n+m <: [li : Ai]i=1...n , so A is a subtype of B if and only if
A and B coincide on the labels of B. With its minimalist definition, the simply-typed ς-calculus
is an ideal candidate for the study of encodings of object-oriented mechanisms.

Contributions We give an encoding of the simply-typed ς-calculus in the λΠ calculus mod-
ulo. We encode types and objects using association lists. Since sub-lists of well-typed objects
need not be well-typed, we have to introduce partially constructed (ill-typed) objects. Selection
and update of methods are performed using

select : ΠA : type,Object A→ Πl : Label,Object (assoc A l)
update : ΠA : type,Object A→ Πl : Label, (Object A→ Object (assoc A l))→ Object A

and the operational semantics is translated to the following rewrite rules:

select A [l = m, . . .] l ↪→ m [l = m, . . .]
update A [l = m, . . .] l m′ ↪→ [l = m′, . . .]

We use explicit coercions to handle subtyping. The coercion function

coerce : ΠA,B : type, proof(A <: B)→ Object A→ Object B

takes an extra logical argument of type proof(A <: B). We show how to make special use of
rewrite rules and reflection to reduce proof(A <: B) to proof > and thus avoid carrying big
subtyping proofs.

This encoding has been implemented in Dedukti and tested on the examples from Abadi and
Cardelli [1] which illustrate all the features of the simply-typed ς-calculus. Our implementation
can be found online at: https://www.rocq.inria.fr/deducteam/Sigmaid.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. Springer New
York, 1996.

[2] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information and Compu-
tation, 155(1/2):108–133, November 1999.

[3] A. Ciaffaglione, L. Liquori, and M. Miculan. Reasoning about object-based calculi in (co)inductive
type theory and the theory of contexts. J. Autom. Reasoning, 39(1):1–47, 2007.

[4] D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-calculus modulo. In
S. Ronchi Della Rocca, editor, TLCA, volume 4583 of LNCS, pages 102–117. Springer, 2007.

[5] G. Dowek. A theory independent curry-de bruijn-howard correspondence. In Proceedings of the
39th International Colloquium Conference on Automata, Languages, and Programming - Volume
Part II, ICALP’12, pages 13–15, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] G. Gillard. A formalization of a concurrent object calculus up to alpha-conversion. In D. A.
McAllester, editor, CADE, volume 1831 of LNCS, pages 417–432. Springer, 2000.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 40(1):143–184,
January 1993.

[8] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for object-oriented programming.
Journal of Functional Programming, 4(2):207–247, April 1994.

[9] R. Saillard. Dedukti: a universal proof checker. In Foundation of Mathematics for Computer-Aided
Formalization Workshop, Padova, 2013.

https://www.rocq.inria.fr/deducteam/Sigmaid

