Classical realizability for the Calculus of Constructions

Alexandre Miquel
Plume team – LIP/ENS Lyon

February 14th, 2011
πr² team – INRIA Paris-Rocquencourt
Motivation

Bridging different conceptions of the Curry-Howard correspondence:

The calculi of constructions (1985–)
- Type theory, intuitionistic logic, proof-theoretically very strong
- Strong evaluation, relies on confluence (conversion)
- Automated extraction (intuitionistic only)
- Long-term collaborative effort, successful implementation (Coq)
- Big machinery, difficult to extend

Krivine’s classical realizability (1990–)
- Realizability, classical logic, defined in 2nd order arithmetic (PA2)
- Weak head evaluation, no need for confluence
- Supports the axiom of dependent choices
- Creation of a single mathematician (elitist conception)
- Light machinery, easy to extend (for those who understand it)
Plan

1. Classical realizability

2. The Π-set model

3. Extensions

4. Optimizing realizers (or why realizability is useful for the hacker)
Plan

1. Classical realizability
2. The Π-set model
3. Extensions
4. Optimizing realizers (or why realizability is useful for the hacker)
Classical realizability: the language of realizers

The language λ_c (Krivine)

| Terms | $t, u ::= x | \lambda x . t | tu | \alpha | \cdots | k_\pi$ |
|----------------|--|
| Quasi-proofs | $\forall u, \pi$ closed |
| Stacks | $\pi ::= \alpha | u \cdot \pi$ (u, π closed) |
| Processes | $p, q ::= t \star \pi$ (t, π closed) |

Evaluation rules (Krivine’s Abstract Machine)

<table>
<thead>
<tr>
<th>Rule</th>
<th>$tu \star \pi \Rightarrow t \star u \cdot \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Push)</td>
<td></td>
</tr>
<tr>
<td>(Grab)</td>
<td>$\lambda x . t \star u \cdot \pi \Rightarrow t{x:=u} \star \pi$</td>
</tr>
<tr>
<td>(Save)</td>
<td>$\alpha \star t \cdot \pi \Rightarrow t \star k_\pi \cdot \pi$</td>
</tr>
<tr>
<td>(Restore)</td>
<td>$k_\pi \star t \cdot \pi' \Rightarrow t \star \pi$</td>
</tr>
</tbody>
</table>

...
Classical realizability: principles

- **Intuitions:**
 - term = “proof” / stack = “counter-proof”
 - process = “contradiction” (slogan: never trust a classical realizer!)

- Classical realizability model parameterized by a pole \(\bot \)
 = set of processes closed under anti-evaluation

- Each formula \(A \) is interpreted as two sets:
 - A set of stacks \(\|A\| \) (falsity value)
 - A set of terms \(|A| \) (truth value)

- Falsity value \(\|A\| \) defined by induction on \(A \) (negative interpretation)

- Truth value \(|A| \) defined by orthogonality:
 \[
 |A| = \|A\|^{\bot} = \{ t \in \Lambda : \forall \pi \in \|A\| \quad t \ast \pi \in \bot \} \]
Semantics of \(\Rightarrow \) and \(\forall \)

1. The point of view of stacks (opponents):

\[
\| A \Rightarrow B \|_\rho = |A|_\rho \cdot |B|_\rho = \{ t \cdot \pi : t \in |A|_\rho, \, \pi \in |B|_\rho \}
\]

\[
\| \forall x \ A \|_\rho = \bigcup_{v \in D} |A|_{\rho, x \leftarrow v} \quad (D = \text{domain of quantification})
\]

2. The point of view of terms (truth value):

Def:

\[
|A|_\rho = \{ t \in \Lambda : \forall \pi \in |A| \quad t \star \pi \in \bot \}
\]

\[
|A \Rightarrow B|_\rho \subseteq |A|_\rho \to |B|_\rho
\]

\[
|\forall x \ A|_\rho = \bigcap_{v \in D} |A|_{\rho, x \leftarrow v}
\]

Notation:

\[
t \vdash A \iff t \in |A|\quad \text{(w.r.t. a fixed pole } \bot)\]
Properties of realizability

- The computational behavior of a term determines the formulae it realizes

Example:
\[\alpha \star t \cdot \pi \supset t \star k_\pi \cdot \pi \]
\[k_\pi \star t \cdot \pi' \supset t \star \pi \]

1. If \(\pi \in \|A\| \), then \(k_\pi \in |A \Rightarrow B| \)
2. \(\alpha \in |((A \Rightarrow B) \Rightarrow A) \Rightarrow A| \)

- As for BHK semantics (Kleene’s realizability), Krivine’s semantics is compatible with the typing rules of AF2:

Proposition (Adequacy)

If \(x_1 : A_1, \ldots, x_n : A_n \vdash t : B \) (in AF2) then for all poles \(\bot \) and for all realizers \(u_1 \vdash A_1, \ldots, u_n \vdash A_n \) we have

\[t\{x_1 := u_1; \ldots; x_n := u_n\} \vdash B \]
Provability and realizability

- In 2nd-order arithmetic:
 - All provable formulæ of 2nd-order logic are realized (adequacy), including the (relativized) induction principle
 - Other Peano axioms have (very) simple realizers
 - We can realize the axiom of dependent choices using a suitable extra instruction (‘quote’ or ‘clock’) [Krivine’03]
 - Witness extraction techniques for Σ^0_1/Π^0_2 formulas [Miquel’10]

- Classical realizability model of PA2 extends to:
 - Higher-order arithmetic (PAω) [Raffalli, Miquel]
 - Zermelo-Fraenkel set theory (ZF) [Krivine’01]
 - The calculus of constructions with universes [Miquel’07]

- Classical realizability is compatible with forcing [Krivine’08,’09,’10]
| 1 | Classical realizability |
| 2 | The Π-set model |
| 3 | Extensions |
| 4 | Optimizing realizers (or why realizability is useful for the hacker) |
From ω-sets to Π-sets (1/2)

- Intuitionistic realizability model of CC
 based on Hyland’s notion of a ω-set:

 ω-sets

 An ω-set is a pair $A = \langle |A|, \models_A \rangle$ formed by:
 - A carrier $|A|$ (carrier)
 - A binary relation $n \models_A x$ ($n \in \omega, x \in |A|$)

- Generalized to:
 - Arbitrary PCAs (D-sets)
 - Saturated sets (Λ-sets)

- Compatible with Prop/Set impredicative

[Longo-Moggi, Luo]

[Streicher]

[Altenkirch]
From ω-sets to Π-sets \hspace{1cm} (2/2)

Π-sets

A Π-set is a pair $A = \langle |A|, \perp_A \rangle$ formed by

- A set $|A|$ (carrier)
- A binary relation $x \perp_A \pi$ ($x \in |A|$, $\pi \in \Pi$)

Notation: $A(x) = \{\pi \in \Pi : x \perp_A \pi\}$

- Realizability parameterized by a pole \perp:

 $t \vdash x \in A \equiv t \in (A(x))^\perp$

 $\equiv \forall \pi \ (x \perp_A \pi \Rightarrow t \star \pi \in \perp)$

- A Π-set A is coarse when $\perp_A = \emptyset$ (computational irrelevance)

 - By orthogonality: $t \vdash x \in A$ for all $t \in \Lambda$
 - Given a set E, we write: coarse(E) = $\langle E, \emptyset \rangle$
Interpreting dependent products

- Given
 - a Π-set A
 - a family of Π-sets $(B_x)_{x \in |A|}$,
the dependent product $\prod_{x \in A} B_x$ is the Π-set defined by

$$\left| \prod_{x \in A} B_x \right| = \prod_{x \in |A|} |B_x|$$

(set-theoretic, no restriction)

$$(\prod_{x \in A} B_x)(f) = \{ t \cdot \pi : \exists x \in |A| (t \vdash x \in A \land f(x) \perp_{B_x} \pi) \}$$

- Remarks:
 - Mixture of $\forall (\exists x \in |A| \ldots)$ and $\Rightarrow (t \vdash \cdots$ and $\cdots \perp_{B_x} \pi)$
 - The definition of $\prod_{x \in A} B_x$ depends on the pole \perp
Interpreting propositions

- A Π-set A is **degenerated** if $|A| = \{\bullet\}$ (proof-irrelevance)
 - A is fully determined by $A(\bullet) \subseteq \Pi$ (falsity value)
 - The set of all degenerated Π-sets is isomorphic to $\mathcal{P}(\Pi)$

- Using Aczel’s encoding of functions, we can identify every constant function $(x \in E \mapsto \bullet)$ with the proof-object \bullet

Impredicativity of degenerated Π-set

The product of a family of degenerated Π-sets $(B_x)_{x \in |A|}$ indexed by an arbitrary Π-set A is a degenerated Π-set

- **Particular case:** implication $A \Rightarrow B$ (A, B degenerated)
 \[(A \Rightarrow B)(\bullet) = (A(\bullet))^{\perp} \cdot B(\bullet)\]

- We let $\sem{\text{Prop}} = \text{coarse}\{\langle\{\bullet\}, \{\bullet\} \times S\} : S \in \mathcal{P}(\Pi)\}$
Interpreting the hierarchy of predicative universes

- Given a set of sets \mathcal{U}, we write
 \[\mathcal{U}^{(\Pi)} = \{ A \in \Pi\text{-set} : |A| \in \mathcal{U} \} \]
 (set of all Π-sets whose carrier is in \mathcal{U})

- Given an increasing sequence of inaccessible cardinals $(\mu_i)_{i \geq 1}$ we let
 \[\llbracket \text{Type}_i \rrbracket = \text{coarse}((V_{\mu_i}^*)^{(\Pi)}) \]
 writing
 \[V_{\mu_i}^* = V_{\mu_i} \setminus \{ \emptyset \} \]
 (using Veblen's hierarchy $(V_\alpha)_{\alpha \in \text{On}}$)

- **Remark:** To keep consistent w.r.t. Krivine realizability, we only allow in the model Π-sets with a nonempty carrier
Building the model

- The interpretation $\llbracket M \rrbracket_{\bot, \rho}$ of a term M of \mathbb{CC}_ω depends on a fixed pole \bot and on a valuation ρ.

- Propositions are interpreted as degenerated Π-sets.
 Proof-terms are interpreted by \bullet.

- Predicative universes are interpreted using large cardinals.

- Abstraction/application interpreted set-theoretically
 + Aczel's trick to identify $(v \in |X| \mapsto \bullet)$ with \bullet.

Proposition (Soundness)

If $\Gamma \vdash M : T$, then for all valuations $\rho \in \llbracket \Gamma \rrbracket_{\bot}$:

1. $\llbracket T \rrbracket_{\bot, \rho}$ is a Π-set
2. $\llbracket M \rrbracket_{\bot, \rho} \in |\llbracket T \rrbracket_{\bot, \rho}|$
We define an extraction function $M \mapsto M^*$ from CC_ω to λ_c:

- $x^* = x$
- $(\lambda x : T . M)^* = \lambda x . M^*$
- $(MN)^* = M^* N^*$
- $\text{Prop}^* = \text{any } \lambda_c\text{-term}$
- $\text{Type}_i^* = \text{any } \lambda_c\text{-term}$
- $(\Pi x : T . U)^* = \text{any } \lambda_c\text{-term}$

Proposition (Adequacy)

If $x_1 : T_1, \ldots, x_n : T_n \vdash M : U$ (in $\text{CC}^{\text{irr}}_\omega$),

then for all $\rho \in \mathbb{G}$, for all $v_1 \in \llbracket T_1 \rrbracket_\rho, \ldots, v_n \in \llbracket T_n \rrbracket_\rho$

and for all realizers $u_1 \vdash v_1 \in \llbracket T_1 \rrbracket_\rho, \ldots, u_n \vdash v_n \in \llbracket T_n \rrbracket_\rho$

$$M^*\{x_1 := u_1; \ldots; x_n := u_n\} \vdash \llbracket M \rrbracket_\rho \in \llbracket U \rrbracket_\rho$$

(independently from the choice of \bot)
In the classical realizability model of CC_ω, we can interpret the typed equality judgment

$$\Gamma \vdash M_1 = M_2 : T$$

by $[M_1] = [M_2]$ (equality of denotations)

The usual inference rules for equality are sound and adequate, including the rule of proof-irrelevance:

$$\Gamma \vdash M_1 : T \quad \Gamma \vdash M_2 : T \quad \Gamma \vdash T : Prop$$

$$\Gamma \vdash M_1 = M_2 : T$$

In this system, we can give a proof-term for

$$\Pi A : Prop . \Pi x, y : A . x =_A y$$

(where $=_A$ stands for Leibniz equality on A)
What we **cannot** (?) realize

- The law of Peirce in Type\textsubscript{i}
 \[\not\mathcal{V} \quad \Pi A, B : \text{Type}_i . ((A \to B) \to A) \to A \]

- Similarly for the excluded middle in Type\textsubscript{i}

- The equivalence between total functional relations and functions:
 \[\not\mathcal{V} \quad \Pi A, B : \text{Type}_i . \Pi R : (A \to B \to \text{Prop}) . \\
 \text{Functional } R \to \text{Total } R \to \\
 \Sigma f : (A \to B) . \Pi x : A . R x (f x) \]

- Intuitions:
 - Functions \(\subsetneq \) FuncRel \(\cap \) TotalRel
 - Functions \(f : A \to B \) remain computable, at least in some sense
 - **Total functional relations** represent the **classical notion of function**, including (for instance) the Halting function
Plan

1. Classical realizability
2. The Π-set model
3. Extensions
4. Optimizing realizers (or why realizability is useful for the hacker)
Example: adding a constant for Peirce’s law

- Let us add a constant Peirce with the typing rule:

\[\text{Peirce} : \prod A, B : \text{Prop} . ((A \rightarrow B) \rightarrow A) \rightarrow A \]

- In the model, we interpret the constant Peirce by \([\text{Peirce}] = \bullet\) and we extend the extraction function \(M \mapsto M^*\) by

\[(\text{Peirce})^* = \lambda__, _. \alpha \]

- This extension is both sound and adequate

Remark: The constant Peirce is given no computation rule!

- This is not necessary, since the system is proof irrelevant

- The computational strength of the law of Peirce is only activated through the extraction function \(M \mapsto M^*\) (in \(\lambda_c\))
Enriching \mathbb{CC}_ω with new constants (1/2)

- To interpret a new constant $c : T$ (with an equational theory), we must define in the model:
 - A denotation $\llbracket c \rrbracket \in \llbracket T \rrbracket$ (satisfying the equational theory)
 - A realizer $c^* \vdash \llbracket c \rrbracket \in \llbracket T \rrbracket$ (i.e. $c^* \in (\llbracket T \rrbracket(\llbracket c \rrbracket))^\perp$)
 - No other constraint on c^*: computational transparency

Example: If $c : T$ is a type ($T \equiv \text{Prop}/\text{Type}_i$):

- $\llbracket c \rrbracket$ must be a Π-set
 - whose carrier is the set-theoretic equivalent of c in the model (For instance: $\llbracket \text{nat} \rrbracket = \mathbb{N}$)
 - whose local refutation relation defines the representation of data of type c in the extracted code (unary of binary natural numbers?)
- $c^* = \text{any closed } \lambda_c\text{-term}$ (since $\llbracket T \rrbracket$ is a coarse Π-set)
Enriching CC_ω with new constants (2/2)

- If c is a function, for instance: $\text{plus} : \text{nat} \to \text{nat} \to \text{nat}$
 - The choice of $[c]$ is (in general) dictated by the equations de c, here: $[\text{plus}] = +_\mathbb{N}$
 - But we usually have several possible choices for c^*...
 (In the case of unary integers: do we define c^* by recursion on the first argument or by recursion on the second argument?)

- If $c : T$ is an axiom ($T : \text{Prop}$):
 - $[c] = \bullet$ (no other possible choice)
 - $c^* = \text{any quasi-proof } t \vdash \bullet \in [T]$ (if there is some)

- The same holds if c is a theorem ($c := M : T : \text{Prop}$)
 - We can choose: $c^* = M^*$... (default realizer)
 - Or we can take any other quasi-proof $c^* \vdash \bullet \in [T]$
 \rightsquigarrow Allows to introduce optimized realizers
Example: unary natural numbers

We extend $CC^{irr}_\omega + \text{Peirce}$ with the constants

<table>
<thead>
<tr>
<th>nat</th>
<th>Type₁</th>
<th>0</th>
<th>nat</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>nat → nat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nat_ind</td>
<td>$\Pi X : \text{nat} → \text{Prop} \ (X 0 \rightarrow \Pi y : \text{nat} \ . \ (Xy \rightarrow X(Sy)) \rightarrow \Pi x : \text{nat} \ . \ Xx)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nat_recᵢ</td>
<td>$\Pi X : \text{nat} → \text{Typeᵢ} \ . \ (X 0 \rightarrow \Pi y : \text{nat} \ . \ (Xy \rightarrow X(Sy)) \rightarrow \Pi x : \text{nat} \ . \ Xx)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

interpreted and realized by:

$\lbrack\text{nat}\rbrack = \langle \mathbb{N}, \bot_{\mathbb{N}} \rangle$ where $n \downarrow_{\mathbb{N}} \pi$ iff $\pi \in \Vert \text{Nat}(n) \Vert$ (2nd-order encoding)

$\lbrack 0 \rbrack = 0 \quad \lbrack S \rbrack = (n \mapsto n + 1) \quad \lbrack \text{nat}_\text{rec}_i \rbrack = \text{set-theoretic recursor}$

$\text{nat}^* = \text{any closed quasi-proof}$

$0^* = \lambda xf . x \quad S^* = \lambda n xf . f(n xf)$

$\text{nat}_\text{ind}^* = \lambda x fn . n (\lambda z . z 0^* x) (\lambda p . p (\lambda m y z . z (s^* m) (f m y))) (\lambda x y . y)$

$\text{nat}_\text{rec}_i^* = \text{nat}_\text{ind}^*$

(Expected equations for nat_rec_i are true in the model)
Relating classical realizability in $\text{CC}^{\text{irr}}_\omega$ and in PA_2

The common fragment

\[
\begin{align*}
\text{PA}_2 & : A, B ::= X(t_1, \ldots, t_n) \mid A \Rightarrow B \\
& \quad \mid \forall x (\text{Nat}(x) \Rightarrow A) \mid \forall X (\top \Rightarrow A)
\end{align*}
\]

\[
\begin{align*}
\text{CC}^{\text{irr}}_\omega & : A, B ::= X \, t_1 \cdots t_n \mid A \rightarrow B \\
& \quad \mid \Pi x : \text{nat} . A \mid \Pi X : \text{Prop} . A
\end{align*}
\]

Classical realizability in $\text{CC}^{\text{irr}}_\omega$ coincides with Krivine’s realizability in PA_2 on the common fragment:

Proposition

If A is a formula/proposition of the common fragment, then:

\[
\begin{align*}
\llbracket A \rrbracket^{\text{CC}^{\text{irr}}_\omega} &= \langle \{ \bullet \}, \{ \bullet \} \rangle \times \| A \|^{\text{PA}_2} \\
\equiv & \quad A \text{ has the same realizers in the two realizability models}
\end{align*}
\]

In [CSL’07], we enrich the syntax of $\text{CC}^{\text{irr}}_\omega$ to get $\text{PA}_2 \subset \text{CC}^{\text{irr}}_\omega$
Plan

1. Classical realizability

2. The Π-set model

3. Extensions

4. Optimizing realizers (or why realizability is useful for the hacker)
Introducing primitive numerals in λ_c (1/2)

- We enrich the language λ_c with the following instructions:
 - For every $n \in \mathbb{N}$, an instruction \hat{n} with no evaluation rule
 \[
 \hat{n} \star \pi \succ \text{segfault}
 \]
 Intuition:

 - For every primitive recursive function $f : \mathbb{N}^k \to \mathbb{N}$, an instruction \tilde{f} with the evaluation rule
 \[
 \tilde{f} \star \hat{n}_1 \cdots \hat{n}_k \cdot u \cdot \pi \succ u \star \hat{m} \cdot \pi \quad \text{where } m = f(n_1, \ldots, n_k)
 \]
 (We can do the same for other total or partial recursive functions)

 - An instruction null with the evaluation rule
 \[
 \text{null} \star \hat{n} \cdot u_0 \cdot u_1 \cdot \pi \succ \begin{cases} u_0 \star \pi & \text{if } n = 0 \\ u_1 \star \pi & \text{otherwise} \end{cases}
 \]
 (We can add similar instructions for other tests)
Introducing primitive numerals in λ_c (2/2)

- We enrich the language of formulas of PA2 with a new connective $\{e\} \Rightarrow B$ interpreted in the classical realizability model (of PA2) by
 $$\|\{e\} \Rightarrow B\| = \{\hat{n} \cdot \pi : n = [e], \pi \in \|B\|\}$$

 - Intuition: $\{e\} \Rightarrow A$ is the type of all functions mapping the value of e (as a primitive numeral \hat{n}) to an object of type B

- Let $\text{nat}'(x) \equiv \forall Z ((\{x\} \Rightarrow Z) \Rightarrow Z)$

 - Intuitively: the type of lazy numerals of value x

 - For all $n \in \mathbb{N}$: $\lambda z. z \hat{n} \vdash \text{nat}'(n)$

 - We can realize the equivalence
 $$\forall x (\text{nat}(x) \Leftrightarrow \text{nat}'(x))$$

 (using coercions between the two representations)
Introducing primitive numerals in the model

- We change the interpretation of natural numbers as follows:

\[
\begin{align*}
\llbracket \text{nat} \rrbracket &= \langle \mathbb{N}, \bot_{\mathbb{N}} \rangle \\
\text{where } n \bot_{\mathbb{N}} \pi &\text{ iff } \pi \in \llbracket \text{Nat}'(n) \rrbracket \quad \text{(Lazy numerals)}
\end{align*}
\]

\[
\begin{align*}
\llbracket 0 \rrbracket &= 0 \\
\llbracket S \rrbracket &= (n \mapsto n + 1) \\
\llbracket \text{nat}_{\text{rec}} \rrbracket &= \text{set-theoretic recursor}
\end{align*}
\]

and update the corresponding realizers:

\[
\begin{align*}
\text{nat}^* &= \text{any closed quasi-proof} \\
0^* &= \lambda z. z \hat{0} \\
S^* &= \lambda n z. n (\lambda n'. \check{s} n' z) \\
\text{nat}_{\text{ind}}^* &= \lambda x f n (\lambda n' . \text{null} n' x (\check{p} \text{red} n' (\lambda p f (\lambda z z p) (\text{nat}_{\text{ind}}^* x f (\lambda z z p)))))) \\
\text{nat}_{\text{rec}}^*_i &= \text{nat}_{\text{ind}}^*
\end{align*}
\]
Computational transparency

- Once the denotation $[c] \in \left[\left[T \right] \right]$ has been defined (and fulfils the accompanying equational theory), we can take for c^* any realizer $t \vdash [c] \in \left[T \right]$.

- **Crucial point:** The realizer c^* does not necessarily have to compute (in λ_c) using the same rules as c (in CC_ω).

- **Example:** In Coq, addition and multiplication are defined by induction on the unary representation of natural numbers.

 But through the extraction function, we can let instead:

 $$\text{plus}^* = \lambda n m z. n (\lambda n . m (\lambda m . \hat{+} n m z))$$
 $$\text{mult}^* = \lambda n m z. n (\lambda n . m (\lambda m . \hat{\times} n m z))$$

- The same can be done for lemmas/theorems of stdlib.
Example: commutativity of $+_{\text{nat}}$

Coq.Init.Datatypes.nat_rect = \P\f\f0 .fix_1_1 (\F\n Coq.Init.Datatypes.nat%case n f (\n f0 n (F n)))

Coq.Init.Datatypes.nat_ind = \P Coq.Init.Datatypes.nat_rect P

Coq.Init.Peano.plus_n_0 = \n
Coq.Init.Datatypes.nat_ind .type (Coq.Init.Logic.refl_equal .type (nat 0))
(\n\IHn
Coq.Init.Logic.f_equal .type .type Coq.Init.Datatypes.S n (Coq.Init.Peano.plus n (nat 0))
IHn) n

Coq.Init.Peano.plus_n_Sm = \n\m

Coq.Init.Datatypes.nat_ind .type (Coq.Init.Peano.plus_n_O m)
(\y\H
Coq.Init.Logic.eq_ind .type (Coq.Init.Datatypes.S (Coq.Init.Peano.plus m y)) .type
(Coq.Init.Logic.f_equal .type .type Coq.Init.Datatypes.S (Coq.Init.Peano.plus y m)
(Coq.Init.Peano.plus m y) H)
(Coq.Init.Peano.plus m (Coq.Init.Datatypes.S y))
(Coq.Init.Peano.plus_n_Sm m y)) n

Coq.Arith.Plus.plus_comm = \n\m

Coq.Init.Datatypes.nat_ind .type (Coq.Init.Peano.plus_n_0 m)
(\y\H
Coq.Init.Logic.eq_ind .type (Coq.Init.Datatypes.S (Coq.Init.Peano.plus m y)) .type
(Coq.Init.Logic.f_equal .type .type Coq.Init.Datatypes.S (Coq.Init.Peano.plus y m)
(Coq.Init.Peano.plus m y) H)
(Coq.Init.Peano.plus m (Coq.Init.Datatypes.S y))
(Coq.Init.Peano.plus_n_Sm m y)) n
Example: commutativity of $+_{\text{nat}}$

Coq.Arith.Plus.plus_comm = \n\m\z z
Why optimizing realizers in Prop?

- In intuitionistic realizability, proof terms (sort Prop) can be completely dropped during the extraction process... [Letouzey’02]
 ... but this is no more possible in classical realizability!

- **Reason**: As in intuitionistic realizability, a classical realizer of a closed existential formula $\exists x : \text{nat}, A(x)$ contains both:
 - A natural number $n \in \mathbb{N}$ (witness)
 - A realizer $t \models A(n)$ (justification)

- But the witness n may be wrong, in which case we need t to initiate backtracking (never trust a classical realizer!)

- Keeping all the information in Prop, we can implement several witness extraction techniques [Miquel’10]
Conclusion

- Krivine’s classical realizability model extends to \mathbb{CC}_ω
 - Realizability model based on Π-sets rather than on ω-sets
 - Incompatible with Set impredicative

- The classical realizability model of \mathbb{CC}_ω coincides with Krivine’s on the common fragment ($\approx \text{PA2}$)
 - We can thus import classical realizability results from PA2: classical logic, axiom of dependent choices, witness extraction techniques, ...

- Classical reasoning confined in Prop
 - The predicative hierarchy remains intuitionistic
 - All the information in Prop is relevant! (\neq Letouzey’s extraction)
 - Allows witness extraction from classical existence proofs in Prop