
Easing Software Component Repository Evolution ∗

Jérôme Vouillon
CNRS, PPS UMR 7126,

Univ Paris Diderot,
Sorbonne Paris Cité

jerome.vouillon@pps.univ-
paris-diderot.fr

Mehdi Dogguy
EDF S.A.,

Debian Release Team,
Debian Project

mehdi@debian.org

Roberto Di Cosmo
Univ Paris Diderot,

Sorbonne Paris Cité,
PPS, UMR 7126 CNRS, INRIA

roberto@dicosmo.org

ABSTRACT
Modern software systems are built by composing compo-
nents drawn from large repositories, whose size and com-
plexity increase at a fast pace. Maintaining and evolving
these software collections is a complex task, and a strict
qualification process needs to be enforced to ensure that the
modifications accepted into the reference repository do not
disrupt its useability. We studied in depth the Debian soft-
ware repository, one of the largest and most complex exist-
ing ones, which uses several separate repositories to stage
the acceptance of new components, and we developed comi-

grate, an extremely efficient tool that is able to identify
the largest sets of components that can migrate to the ref-
erence repository without violating its quality constraints.
This tool outperforms significantly existing tools, and pro-
vides detailed information that is crucial to understand the
reasons why some components cannot migrate. Extensive
validation on the Debian distribution has been performed.
The core architecture of the tool is quite general, and can
be easily adapted to other software repositories.

Keywords
component, repository, software lifecycle, open source

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.9 [Software Engineering]:
Management—Lifecycle

1. INTRODUCTION
Component-based software architectures, maintained in a

distributed fashion and evolving at a very quick pace have
been popularised by the wide adoption of free and open

∗This work was partially performed at IRILL, center for Free
Software Research and Innovation in Paris, France, http:
//www.irill.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

source software (FOSS). These components are usually made
available via a repository, which are storage locations from
which they can be retrieved. A large variety of repositories
are available, ranging from specialised ones for components
written in a given programming language, like CPAN, Hack-
age or PyPI, application-specific ones, like the Eclipse Plu-
gin collection [13], and more general repositories like Maven
Central [6] or most GNU/Linux distributions. All these
component repositories share the common concern of organ-
ising the process of integrating changes: new components
are regularly added (Debian grew by more than 8000 pack-
ages since the last stable release two years ago), outdated
versions are being replaced by more recent ones, and super-
seded or abandoned components get dropped.

To maintain the quality of a repository, it is necessary to
set up a formal process that allows to add, update and re-
move components in a safe place, where they will be tested
and qualified, before moving them to the official repository.
For large repositories, this process can only be enacted with
the help of automated tools. Existing tools are often unable
to cope with all the quality requirements that, depending on
the needs of the user community of a repository, may vary
from basic unit testing to extensive bug tracking to sophis-
ticated integration tests striving to ensure that components
can be combined with each other, a property known as co-
installability [22]. We have studied in depth the process used
to evolve the Debian distribution, which has been in place
for more than a decade, managing hundreds of thousands
of components, called packages, for multiple architectures;
since it is open to public inspection, we had access to its
formal requirements and we collaborated closely with the
Debian Release Team, of which the second author is a mem-
ber, on solving the problems faced by repository maintainers
due to the limitations of the current tools.

The Debian evolution process is organised around three
repositories (see Figure 1): stable, which contains the lat-
est official release and does not evolve anymore (apart for
security and critical updates); testing , a constantly evolv-
ing repository to which packages are added under stringent
qualification conditions, and that will eventually be released
as the new stable; and unstable, a repository in which ad-
ditions, removals and modifications are allowed under very
liberal conditions. A stringent set of requirements, which
are formally defined, must be satisfied by packages com-
ing from unstable to be accepted in testing (also known as
package migration), and the repository maintainers have re-
sponsibility for enforcing them with the help of ad hoc tools.
Unfortunately, maintainers are currently all too often con-

http://www.irill.org
http://www.irill.org

Figure 1: The Debian process (simplified)

fronted with large sets of packages that are stuck in un-
stable, due to complex package interdependencies, with no
useful clue to unblock them. A single package can prevent
the migration of hundreds of others, and without effective
tools to find the culprit, sometimes migration takes months
to complete, with a huge amount of manual intervention.
In other occasions, the current tool allows into testing pack-
ages that disrupt co-installability w.r.t. the previous state of
the repository, with dire consequences for the users. Indeed,
in Debian many applications are split into distinct package
that need to be installed together in order to obtain their full
functionality, and when this becomes impossible because of
an unfortunate modification to the repository, the user need
to file bugs, and the maintainers end up spending a signifi-
cant amount of energy to restore their co-installability.
This article presents comigrate, a powerful tool able to effi-
ciently compute maximal sets of packages that can migrate
from unstable to testing : it significantly advances the state
of the art by ensuring that no new co-installability issues
arise and providing highly valuable explanations for those
packages that cannot migrate, helping maintainers find the
fix; it is so fast that it can be used interactively to narrow
down repository issues; it has been validated on various com-
plex migration problems, in collaboration with the Debian
Release Team.

The comigrate tool is designed using a general architec-
ture, similar to the one of a Sat Modulo Theory solver [19]:
it uses a very efficient Boolean solver to quickly identify a
large set of packages candidate for migration, starting from
general migration criteria that can be encoded as Boolean
clauses, and then uses coinst-upgrade [23] to look for co-
installability issues; when some issues are found, new clauses
are added to prevent migration of problematic packages.
The process is iterated until a complete solution is found.
This general architecture can be reused for building similar
tools for other component-based repositories.

The article is structured as follows: in Section 2 we briefly
recall basic notions from package based distributions, and
give an overview of the Debian integration process with its
requirements; Section 3 presents in details an example of
how comigrate is used to manage a real complex migra-
tion; in Section 5, the full architecture of the tool and its
algorithm are described; extensions to the algorithm are pre-
sented in Section 6; the different ways to use the tools are
described in Section 4; Section 7 contains an evaluation of
the tool on the Debian integration process; related works are
discussed in Section 8 and Section 9 concludes.

2. PACKAGE MIGRATION IN DEBIAN

2.1 Packages and Repositories
Debian software components are called packages and come

in two flavours: binary packages contain the files to be in-
stalled on the end user machine, and source packages contain
all of the necessary files to build these binary packages.

A typical example of the metadata attached to a pack-
age is shown in Figure 2, where we can see that the logical
language used for expressing dependencies and conflicts is
quite powerful, as it allows conjunctions (symbol ‘,’), dis-
junctions (symbol ‘|’) and version constraints (the symbols
‘>=’, ‘<=’, ‘>>’ and ‘<<’ stand for the usual ≥,≤, > and <
operators); it is now well known that checking whether a
component is installable is an NP-complete problem [2, 4],
though real-world instances are tractable [14, 21, 7, 20].

In Figure 2, we find the binary package ocaml-base ver-
sion 3.12.1-4, which is built from the source package ocaml

version 3.12.1-4. Each binary package holds a pointer to
its source in the Source entry, which may have the same
version (in which case only its name is present), or not.

There is a different namespace for source packages and,
regarding binary packages, for each architecture, so there
can be both a source package and a collection of binary
packages named ocaml, one for each architecture. In a given
namespace, though, there cannot be two packages with the
same name and version, and with the notable exception of
unstable, there can only be one version of a package in any
given namespace.

1 Package: ocaml -base
2 Source: ocaml
3 Version: 3.12.1 -4
4 Architecture: amd64
5 Provides: ocaml -base -3.12.1
6 Depends: ocaml -base -nox , libc6 (>= 2.7),
7 libx11 -6, tcl8.5 (>= 8.5.0) , tk8.5 (>= 8.5.0) ,
8 ocaml -base -nox -3.12.1
9

10 Package: ocaml
11 Version: 3.12.1 -4
12 Build-Depends: debhelper (>= 8), pkg -config ,
13 autotools -dev , binutils -dev , tcl8.5-dev ,
14 tk8.5-dev , libncurses5 -dev , libgdbm -dev ,
15 bzip2 , dh-ocaml (>= 1.0.0~)

Figure 2: Inter-package relationships of the ocaml

source component and ocaml-base, one of the binary
packages generated from it.

The Debian distribution is huge: we gathered the follow-
ing statistics on February 28, 2013. The number of binary
packages is per architecture; an instance of each of these
packages is typically built for the thirteen supported archi-
tectures. All these instances have to be considered individ-
ually during the migration process.

source packages binary packages

unstable 18 768 38 903
testing 17 635 36 404
stable 14 968 29 326

A healthy installation is a set of packages in which all de-
pendencies are satisfied and with no conflict. If all is well,
the set of packages currently installed on your machine under

Debian is a healthy installation. A package is installable if
there exists at least one healthy installation that contains it.
A minimal requirement for a software repository is that all
packages are installable. A set of packages are co-installable
if there exists at least one healthy installation that contains
them all. It is normal to have conflicts between some pack-
ages, such as for instance between two mail transport agents.
Hence, one should not expect all subsets of a software repos-
itory to be co-installable. However, when switching to a new
version of a software repository, an end user expects to re-
main able to use all still supported packages. His installation
may need to be modified by removing some packages which
are no longer supported and by adding new packages, but
having to remove any still supported package should remain
exceptional. Hence, any set of packages present in both the
old and new version of the software repository and which
used to be co-installable should normally remain so.

2.2 Package Integration and Migration
The integration process of new packages, and new versions

of existing packages, in the Debian distribution involves two
repositories, testing and unstable, and is very complex. We
only provide here a general overview and refer the interested
reader to [10] for more details.

When a new version of a source package S is available, it
is introduced in unstable, and then the corresponding binary
packages are gradually built and added to unstable as well.
When a binary package is rebuilt, it replaces the previous
version, and when all binary packages are rebuilt, the old
version of S is dropped. Binary packages that are no longer
built from the new version of S are dropped as well. Building
binary packages can be a long process, because of compila-
tion errors and broken dependencies, so it is possible to find
in unstable several versions of the same source package, and
a mixture of binary packages coming from these different
versions of the same source.

After a quarantine period, which is useful to detect criti-
cal bugs and ranges from zero to ten days according to the
priority of a package, the following actions can be performed:

• replace a package in testing by a package of the same
name and a newer version available in unstable;

• remove a package that no longer exists in unstable;

• add a new package from unstable in testing .

Following the Debian Release Team, we call migration of
a package any of these operations1.

2.3 Constraints
Package migrations must satisfy many different quality

constraints, of different nature. Some of these constraints
can be checked by looking only locally at each set of packages
built from a source package:

bug reduction a package with new release critical bugs
cannot migrate;

binary with source binary and source packages migrate
together;

no downgrades packages that migrate have strictly greater
version number.

1The only anti-intuitive case being the second one, where
the migration leads to suppressing a package from testing .

Others require a global inspection of the repositories to be
assessed:

installability a new package accepted in testing should be
installable;

no breakage other packages in testing should not become
non-installable;

co-installability sets of packages that were compatible be-
fore migration should remain compatible afterwards.

Often, because of these quality constraints, many packages
have to migrate simultaneously: about 490 source packages
for the lastest migration of Haskell packages, for instance.
When such a large set of packages is stuck, it can be very
difficult to manually find out which ones have issues. We
need tools to find that out.

2.4 The Current Migration Tool
The tool currently used in Debian to help the Release

Team migrate packages from unstable to testing is a program
named britney, which heavily relies on heuristics: it first
tries to migrate individual source packages together with
the associated binary packages, and then looks for clusters
of packages that need to migrate together. Since britney is
unable to find all possible migrations by itself, it provides a
complex hint mechanism used by the team to help britney

find sets of packages that can migrate together (the hint and
easy hints) or, when nothing else goes, to force a migration
even when this breaks other packages (the force-hint hint).

The britney tool only checks for installability of individ-
ual packages, and not for co-installability of sets of packages,
which can have a significant impact on the quality of the
repository as we will see in Section 7. It can also be fairly
slow and can use up considerable computing resources, but
the main complaint from the repository managers is that it
provides little help when a migration does not go through.

In the next section we provide a real example of how our
replacement tool, comigrate, significantly improves over the
current state of the art.

3. FINDING MIGRATION ISSUES
On June 13, 2012, we investigated the ghc compiler and

other associated Haskell packages: the britney tool was
unable to migrate the ghc source package right away, and
this prevented the migration of hundreds of related binary
pacakges, a most unsatisfactory situation.
The only information at the disposal of the maintainers was
the cryptic output from britney that looked like:

Trying easy from autohinter: ghc/7.4.1-3 ...

leading: ghc,haskell-explicit-exception,haskell-hxt,...

start: 67+0: i-9:a-2:...

orig: 67+0: i-9:a-2:...

easy: 735+0: i-137:a-74:...

* i386: haskell-platform, haskell-platform-prof, ...

* amd64: libghc-attoparsec-text-dev, ...

...

FAILED

with each line containing hundreds of package names. Apart
from the very clear last line that stated that the migration
failed, there was no hint of what was going wrong.

1 > comigrate -c britney2.conf --migrate ghc
2 Package ghc cannot migrate:
3 Package ghc: binary package ghc -haddock/i386 cannot migrate.
4 Package ghc -haddock/i386: needs binary package libghc -happstack -state -doc
5 (would break package libghc -happstack -state -doc):
6 - libghc -happstack -state -doc (testing) depends on haddock -interface -16 {ghc -haddock (testing)}
7 Package libghc -happstack -state -doc/i386: a dependency would not be satisfied
8 (would break package libghc6 -happstack -state -doc):
9 - libghc6 -happstack -state -doc depends on libghc -happstack -state -doc {libghc -happstack -state -doc (testing)}

Figure 3: Output of comigrate explaining why package ghc cannot migrate.

Our comigrate tool is designed to provide valuable help
when a migration cannot be performed: running it on ex-
actly the same data, we got the output given in Figure 3,
that conveys concisely a wealth of information, using abbre-
viations and conventions that we detail below, and contains
a precious starting hint to explain the situation.

Line 1 says that we are attempting to migrate the source
package ghc, using the configuration file britney2.conf,
and line 2 shows that it cannot migrate right away. The
rest of the output explains why: line 3 tells us that the
source package ghc cannot migrate because one of the bi-
nary packages built from it, ghc-haddock, cannot migrate,
at least on architecture i386.

In turn, line 4 says that ghc-haddock cannot migrate un-
less the binary package libghc-happstack-state-doc mi-
grates (the architecture i386 is omitted, as it is the same as
for ghc-haddock). The fact that we read the excerpt (would
break package libghc-happstack-state-doc) right after,
in line 5, means that not migrating the two packages simulta-
neously would make package libghc-happstack-state-doc

non installable.
Indeed, the version of libghc-happstack-state-doc in

testing depends on haddock-interface-162, and we find in
line 6, inside the curly braces, all the packages that can
satisfy this dependency. As the binary package ghc-haddock
from testing is the only one appearing in the braces, we
know that this dependency is not satisfied by the version of
ghc-haddock in unstable, and migrating ghc-haddock alone
would render libghc-happstack-state-doc uninstallable.

But libghc-happstack-state-doc cannot migrate: on
line 7 and 8 we discover that its migration would break
libghc6-happstack-state-doc, and looking at the expla-
nation of this fact on line 9, we see that the dependency
libghc-happstack-state-doc is only satisfied by the ver-
sion present in testing . This tells us that the migration
of libghc-happstack-state-doc is actually a removal, and
that removing it from testing breaks an existing package.

Hence, following these few lines of comigrate output we
learned that migrating package ghc is not possible, as it
would break libghc6-happstack-state-doc.

So we focus on libghc6-happstack-state-doc and look-
ing at it we find out that it is in fact a bit special: it con-
tains no file and is just there to ease upgrades when a pack-
age is renamed3. Following the history of modifications to
this package, we discover that at some point in time all the
libghc6-* packages were renamed into libghc-* packages

2This is actually a virtual package, a named functionalities
that can be provided by more than one package, and on
which other packages may depend.
3This is known as a transitional dummy package, see http:
//wiki.debian.org/Renaming_a_Package

and a single source package haskell-dummy was introduced
in the distribution to build all the corresponding dummy
packages whose role was just to make sure that if somebody
needs a libghc6-* package, he will actually pull in the cor-
responding libghc-* one. But over time, some libghc-*

stopped being supported and were removed from unstable,
while the corresponding libghc6-* package were still gen-
erated by haskell-dummy. It thus seems worthwile to try
removing this source package: for simplicity, we focus on
the i386 architecture.

> comigrate -c britney2.conf --arches i386 \

--migrate ghc --remove haskell-dummy

Successful:

age-days 7 haskell-bindings-libzip/0.10-2

source package xmonad/0.10-4: fix bugs #663470

source package haskell-cryptocipher/0.3.3-1: fix

bugs #674811

age-days 9 haskell-platform/2012.2.0.0

easy [...]

This time, the tool has been able to find a way to perform
the migration: it is enough to fix two bugs, and to wait for
two packages to become old enough.

Making the migration go through on all architectures re-
quires some extra effort, because some binary packages were
not built successfully everywhere and have to be removed
as well. At the end, we get a list of packages to remove
and a large britney hint (489 source packages) which make
it possible to migrate the ghc package. We posted this in-
formation on the Debian-release mailing list4 and it helped
successfully migrate the whole set of packages involved.

This concrete example shows how comigrate can be used
to progressively (depending on the complexity of the mi-
gration problem) understand the actions needed to make
packages go through.

4. MAIN APPLICATIONS
The comigrate tool we have seen at work in Section 3

is highly flexible and very fast (see Section 7 for real world
benchmarks). This allows it to be be used for package mi-
gration in several ways.

4.1 Automatic Package Migration
By default, comigrate computes the largest set of pack-

ages that can migrate without breaking any other package
or violating any of the constraints defined in the Debian
migration process. In this modality, comigrate can output
the list of packages that should be in testing after migra-
tion. This allows it to be used as a drop-in replacement for
4http://lists.debian.org/debian-release/2012/06/
msg00317.html

http://wiki.debian.org/Renaming_a_Package
http://wiki.debian.org/Renaming_a_Package
http://lists.debian.org/debian-release/2012/06/msg00317.html
http://lists.debian.org/debian-release/2012/06/msg00317.html

the britney tool for automatic package migration. As an
option, comigrate can spend extra effort, as explained in
Section 6.1, to split the result in clusters of packages that
can migrate independently of each other. This makes it eas-
ier for humans to understand which package can migrate,
which packages need to migrate together, and allows main-
tainers to finely control the process if needed.

Clustered results can also be fed directly into britney in
the form of easy hints, easing the adoption of comigrate

that can then fruitfully coexist with britney for a period.
Sometimes, there are good reasons for some packages to

become incompatible after a migration, thus violating the
preservation of co-installability. To this end, one can use the
--break directive, followed by a list of one or more binary
packages (for instance, gnuplot-x11,gnuplot-nox), to spec-
ify that these packages, and just these packages, are allowed
to become non co-installable. An underscore can be used
as a wildcard: package libjpeg62-dev was at some point
superseded by the incompatible package libjpeg8-dev, and
one can write --break libjpeg62-dev,_ to specify that it is
allowed to become in conflict with any other package. This
option provides a means of controlling which set of packages
become non co-installable which is way more precise than
other approaches, like the force-hint hint of britney.

It can also be useful to temporarily remove a package that
prevents the migration of other more important packages. In
fact, this is a common way to guide package migration. To
this end, one can use the --remove directive, which corre-
sponds to the homonymous hint of britney. Followed by
a source package name, it makes the tool behave as if this
source package and all its associated binary packages had
been removed from unstable: comigrate will perform the
removal of these packages together with the expected migra-
tion if this preserves co-installability. An updated version of
the removed packages can be put back by a subsequent run
of the tool, but in this case, for comigrate, these will be new
packages, so it will only guarantee that they are installable.

4.2 Explaining Migration Failures
For the packages that cannot migrate, it is very impor-

tant to provide concise and informative explanations on the
reasons that block them. When used with the --excuses di-
rective, comigrate takes the set of constraints generated by
a migration attempt, and outputs an HTML report present-
ing them in a user-friendly way, giving for each package the
precise reasons that prevent its migration. In particular, a
graph like the ones shown in Figure 5, in SVG format, is gen-
erated for each co-installability issue detected. As we have
seen in the real-world example of Section 3, these explana-
tions are precious for finding a way to unblock a migration.

It is important to detect co-installability issues as soon as
possible, so that issues regarding a newly introduced package
can be immediately brought to the attention of the main-
tainers, and not only after the quarantine period of ten days.
Hence, the migration algorithm is run initially while omit-
ting age and bug constraints, so as to collect as much con-
straints due to co-installability issues as possible.

4.3 Focusing on a Given Package
As described in Section 3, one can use the --migrate di-

rective to focus on the migration of a particular source pack-
age. In this modality, comigrate drops progressively the less

Interface

Propositional solver

External verifiers

P
S

P,S
yes/(no,why)

Figure 4: Solver architecture used in comigrate

important constraints (age, number of new bugs, out of date
packages in unstable) that prevents this migration, until ei-
ther the migration succeeds, or a hard reason to refuse the
migration is reached. In case of success, the hints overrid-
ing these constraints and the list of packages that need to
migrate together are printed. Otherwise, the constraints
preventing the migration are printed.

By adding the --break and --remove directives described
above, the user can interact with comigrate to get a clear
view of all migration issues related to this particular package
and find the best possible course of action in order to allow
a given source package to migrate.

In conclusion, comigrate is a sophisticated and flexible tool
that allows a full range of modes of operation, from auto-
matic package migration, to fine grained, interactive analysis
of the reasons why a package cannot migrate, and progres-
sive relaxation of the migration constraints when needed.
Now it’s time to look at the internals of comigrate and de-
scribe how it works.

5. CORE ARCHITECTURE OF THE TOOL
As explained in Section 2.3, the constraints imposed on

migration can be broadly separated in two classes. The first
one contains constraints that can be easily expressed using
Boolean clauses (disjunctive Boolean formulas). Examples
of such clauses are “a binary package cannot migrate with-
out its source”, or “this binary package can only migrate if
these two other binary packages migrate as well.” The sec-
ond class contains constraints that cannot be easily encoded
using Boolean clauses, and generally need a global analysis
of the repository to be checked: ensuring that a package that
migrates to testing does not break existing packages requires
checking installability for all the packages in the candidate
new version of testing ; ensuring that co-installability is pre-
served by the migrations needs a special and sophisticated
algorithm to be checked efficiently, which is implemented in
a separate tool coinst-upgrade described in details in [22].

This is a quite interesting situation, that can be handled
by using an architecture inspired by the architecture of SMT
solvers, and summarised in Figure 4. To find a migration so-
lution for a particular repository configuration P, comigrate
uses a simple and fast Boolean solver on the constraints that
are easily encoded as Boolean clauses and comes up with
the largest possible candidate solution S satisfying them all;
then, a series of external verifiers are used to check whether
other constraints, not easily encoded as Boolean clauses, are
satisfied. If this is not the case, these verifiers return an ex-
planation, which is used to learn some extra Boolean clauses
that approximate soundly the constraints, and are added to
the original problem, on which the boolean solver is called

again, producing a smaller solution. The process is iterated
until a valid solution is found. In our case, there is always
at least one solution: performing no migration. Each learnt
clause forces at least one additional package not to migrate.
Thus, the process eventually terminates.

We now detail each component of this core architecture.

5.1 The Boolean Solver
The encoding of the migration problem uses one Boolean

variable per package, with the intended meaning that if the
variable is true, the package cannot migrate, and if the vari-
able is false, it can migrate. We have thus to deal with hun-
dreds of thousands of variables (one per package), and the
encoding of a typical Debian migration problem is quite big
(1 097 490 clauses in the migration on December 18, 2012),
so the choice of the Boolean solver has to be done carefully.

We observed that the clauses in the encoding that ex-
press constraints like“if some set of packages cannot migrate,
then a given package cannot migrate” or assertions like “this
package cannot migrate” are actually Horn clauses (Boolean
clauses with at most one positive literal). For instance, the
encoding of the fact that the binary package ocaml-base in
Example 2 needs to migrate together with its source ocaml

is the pair of clauses:

¬ocaml ∨ ocaml-base, ocaml ∨ ¬ocaml-base.

Indeed, with the exception of the constraints that come from
the external verifiers, all clauses in the encoding are Horn
clauses, and for this reason, in the current version of the
tool, we use a Horn clause solver, that has the following
important advantages:

• simplicity: we just need to implement resolution (if the
hypotheses of a rule hold, then so does its conclusion);
no backtracking is needed;

• speed: it is well known that satisfiability of Horn clauses
can be checked in linear time [12];

• optimality: if a set of Horn clauses is satisfiable, then
there exists a minimal solution setting to true the least
possible number of variables, and which can also be
found in linear time [12]; this means that the Horn
solver will propose the largest possible migration com-
patible with the constraints;

• flexibility: it is possible to remove some clauses and
update the solver state incrementally to find a new
minimal solution;

• easy explanation of why a variable is set: we can ex-
plain why a package cannot migrate by printing the
tree of Horn clauses which justify it.

In the rare cases when the external verifiers return a Boolean
clauses that is not a Horn clause, we approximate it using a
stronger Horn clause and when it happens we may not find
the optimal solution for the migration. As we will see in
Section 7.1, this happens so rarely that it is not an issue in
practice, and we have not felt the need to switch to a more
sophisticated solver.

In any case, we do not envision any difficulty in replacing
this solver with a full blown PMAX-SAT solver or pseudo-
Boolean solver, able to handle all kind of Boolean clauses,
with the addition of an optimisation function to maximise
the number of packages that migrate. The performance
should remain good: the fact that we are able to find optimal

solutions with the Horn solver means that little backtrack-
ing will be needed. But its a significant engineering effort
to integrate such a solver with our tool, in particular to still
be able to provide readable explanations.

5.2 The External Verifiers
Our Boolean solver specialised for Horn clauses finds a

solution that maximises the number of migrating packages
given the constraints it knows about. This solution cor-
responds to a candidate replacement repository for testing
that lies in-between testing and unstable, and we need to
check whether it contains violations of the second class of
quality constraints described in Subsection 2.3: new co-
installability issues and new packages that are not installable
(old packages that become non installable are an instance of
co-installability issues). The verification is performed inde-
pendently on each of the thirteen architectures supported
by Debian, and all the issues found are then used to learn
new clauses which are added to the constraints known to
the Boolean solver. We detail below the approach taken for
each of the two classes of constraints.

New co-installability issues.
The coinst-upgrades tool is used to find all co-instal-

lability issues introduced in the candidate repository with
respect to testing . This tool is extensively described in [23],
and we just recall here that it takes as input an old and a new
repository and computes what is called a cover of broken sets
of packages, which concisely subsumes all co-installability
issues introduced in the new repository. A broken set is a set
of packages which are co-installable in the old repository but
no longer in the new one. A cover is a collection of broken
sets such that any healthy installation of packages from the
old repository that cannot be successfully upgraded contains
at least one of these sets of packages.

All healthy installations can be successfully upgraded if
and only if there exists a (unique) empty cover, in which
case the check is successful. Otherwise, each broken set is
analysed in order to generate a clause to be added to the set
of constraints known to the Boolean solver. This analysis
was not performed by coinst-upgrades and had to be im-
plemented for comigrate. As a first step, we extract a small
graph of dependencies and conflicts, called full explanation
in [23], that summarises why the set of packages becomes
non co-installable in the candidate repository. Some exam-
ples of these explanations, drawn from actual migrations in
Debian, are given in Figure 5; they were produced using our
tool, with the --excuses directive (see Section 4.2 for de-
tails). The captions indicate what the tool learns, then how
each issue can be fixed by the distribution maintainers. In
these graphs, colored packages are the elements of the broken
set. Dependencies are represented by arrows, and conflicts
by lines connecting two packages. Packages, dependencies
and conflicts are drawn with different styles: solid lines in-
dicate an object present in both the old and new reposito-
ries, dashed lines indicate an object present only in the new
repository, and dotted lines indicate an object present only
in the old one. Thus, for instance, on the first graph, evince
depends in unstable on package libevview3-3 which is only
in unstable. On the second graph, mysql-common is present
both in testing and unstable, but the version in unstable
conflicts with mysql-server-core-5.1 both in testing and
unstable.

libevince3-3libevview3-3evince

(a) Package evince cannot migrate as it depends on a new library which conflicts with the old
libevince3-3 library; this latter library should be removed.

mysql-common mysql-server-core-5.1

(b) Package mysql-common cannot migrate as it conflicts with a previous
version of mysql-server-core; this old version should be removed.

piwigo smarty

(c) Package smarty cannot be removed as
package piwigo still depends on it; piwigo
needs to be removed as well.

libghc-hbro-dev NONE

(d) Package libghc-hbro-dev cannot migrate as it has
unsatisfied dependencies; it probably depends on a
package that has been updated, and should be recompiled.

libghc-darcs-dev libghc-text-dev

(e) Package libghc-darcs-dev in testing (resp. unstable)
depends on package libghc-text-dev in testing (resp.
unstable), hence both packages must migrate together.

Figure 5: Examples of full explanations.

These small graphs explain why the proposed migration
creates a co-installability issue, but do not indicate which
parts of the proposed migration are the root cause of the
problem. For example, looking at the second graph, we
know that the boolean solver has proposed to migrate both
mysql-common and mysql-server-core-5.1, and that this
creates an issue. But it would be inefficient to just con-
clude that they cannot migrate together and learn the clause
mysql-common ∨ mysql-server-core-5.1. Indeed, one can
see that the actual reason for this problem is the migra-
tion of mysql-common, as it conflicts with all versions of
mysql-server-core-5.1, and we can learn the much more
informative clause mysql-common, which also happens to be
a Horn clause, while the first one was not.

To extract a clause from an explanation, we proceeds by
iteratively relaxing the constraints on the individual pack-
ages in the explanation (allowing some packages to come
from either testing or unstable rather than just from the
candidate repository) until we have a minimal set of con-
straints (packages forced to come from testing or unstable)
that still make the co-installability issue appear. Then, we
know that for the co-installability issue to disappear, at least
one of the corresponding packages should not take part in
the migration. This gives us the Boolean clause we will pass
back to the Boolean solver.

If we apply this process on the first four graphs shown
in Figure 5, we learn that evince, mysql-common, smarty

and libghc-hbro-dev should not migrate, which all provide
unit clauses. In the last graph, where the proposed migra-
tion contains the new version of libghc-darcs-dev and the
old version of libghc-text-dev, the clause is already mini-
mal, and we learn that either libghc-darcs-dev should not
migrate or libghc-text-dev should migrate.

Since the verifier finds co-installability issues caused by
the proposed migrations, each Boolean clause contains at
least one positive literal, which leads to removing the corre-
sponding package from the migration candidates (a variable
set to true means that the corresponding package cannot mi-
grate). If there is a single positive literal, the clause is a Horn
clause, and can be passed back to the Boolean solver as is. If
there are more than one positive literal (examples are given
in Section 7.1), we approximate the clause by only keeping a
single positive literal: we know that several packages cannot
migrate together and make the decision to keep one back
arbitrarily, which may lead to suboptimal solutions.

In order to reduce the risk of making suboptimal choices,
we delay any choice resulting in information loss by ignoring
non-Horn clauses as long as the analysis of the architecture
produces at least a Horn clause.

New non installable packages.
A SAT solver is used to decide which new packages of the

candidate repository are not installable. From the output of
this solver, we can produce for each non-installable package
an explanation of the same shape as the ones produced by
coinst-upgrades. Then, Boolean clauses can be computed
in exactly the same way as described previously.

5.3 Speeding Things Up

amd64i386

Controller
sources

amd64 s390x... s390x

Figure 6: Parallel structure of comigrate.

Since the verifiers work independently on 13 different ar-
chitectures, performance can be greatly improved by us-
ing multiple processes as depicted in Figure 6. A main
process handles source packages and runs the Horn clause
solver. There is one secondary process per architecture. It
parses the per-architecture binary package description files
and sends to the main process the constraints correspond-
ing to these packages; after that, it behaves as an external
verifier for its specific architecture, reading the candidate
solution from the main process and sending back clauses to
be learnt when issues are found.

6. EXTENSIONS
The algorithm described up to now produces the largest

possible migration candidates, except possibly in the rare
cases where one non-Horn clause was produced by the ex-
ternal verifiers. It ensures the absence of co-installability
issues. This core algorithm has been extended to accom-
modate two additional needs, described below, that lead to
interesting variations in the results obtained.

6.1 Clustering Migrating Packages
Instead of writing out the whole set of packages that can

migrate as a single huge easy hint, an effort is made to clus-
ter packages in sets of packages which can migrate indepen-
dently of one another, in any order. This approach makes
it easier for a human being to understand what a partic-
ular migration does; smaller sets are also more resilient to
last-minute changes to the repositories while the migration
is computed.

Each source package define a group of packages: the source
package and its associated binary packages. We need a way
to find out which groups need to migrate together to avoid
co-installability issues. The idea is to encode in package de-
pendencies all possible configurations of group migrations,
and then use an approximation of the coinst-upgrade al-
gorithm to find out which configurations may result in co-
installability issues. Package dependencies are thus anno-
tated with special literals that indicate whether they hold
when a group migrates, or when it does not. For instance
the dependency g/old∨h/new∨d says that the dependency
d must be satisfied when group g does not migrate (we have
the old version of the group) and group h does (we have
the new version). We know from [23] that to have a co-
installability issue, one must have either a new conflict or
a set of new dependencies (which did not exist in testing)
connected through conflicts. Thus, to avoid co-installability
issues, it is enough to put together the groups of packages
connected by a new conflict as well as those which occur in
pairs of new dependencies connected through a conflict.

This gives us a collection of independent migrations that
correspond to the original global migration. We do not claim
the result to be minimal (grouping together packages as we
do is a sufficient condition, but not a necessary condition
to avoid co-installability issues), although in practice the
results are quite satisfactory.

As seen in Section 4, comigrate can output its results in
hint format so that it can be used as an external migration
solver to help out britney. A so-called easy hint lists source
packages that britney should attempt to migrate simulta-
neously together with their associated binary packages5.

6.2 Preserving Just Installability
It is possible to run the comigrate with an option that

makes it preserve just package installability instead of co-
installability, even though this is not a good idea in general,
as the users of the repository may face serious problems
when co-installability is not preserved (see Section 7).

Due to the architecture of the tool, this is just a matter of
replacing the external verifier based on coinst-upgrades,
which computes a collection of sets of packages which are
no longer co-installable, with an external verifier that com-
putes a collection of singleton sets of packages which are
no longer installable, using for instance the now standard
edos-debcheck tool [14].

Checking installability may seem a simpler task than check-
ing co-installability, but in fact, surprisingly, this is not the
case, and running comigrate in such a mode takes longer
than in the default mode. Indeed, non co-installability is

5A new version of some binary packages are sometimes built
on a given architecture without changing their source pack-
age; their migration can be specified by giving a pair formed
of the source package name and the architecture. We ignore
this case here for the sake of clarity.

a property which is more local than installability. For in-
stance, when a conflict is added between two packages p

and q, it is sufficient to report the broken set {p, q} when
checking co-installability; on the other hand, when looking
for new installability issues, one may need to check the in-
stallability of the possibly huge number of packages that
depend, directly or not, on these two packages to see if any
needs both. So, in our case, it turns out that asking for a
less precise analysis will actually take more time, even if not
prohibilitively more so.

7. EVALUATION AND VALIDATION
We have performed a number of experiments and analyses

to assess comigrate, comparing it with both britney, the
official tool used in Debian today, and SAT-britney[8], an
experimental tool based on a satisfiability solver.

We wanted to check the following points. First, to replace
britney, our tool should be at least as good at migrat-
ing packages; our systematic approach should ensure that
our tool can deal with complex migration situations where
britney’s heuristics fail, but the fact that we do not use a
complete Boolean solver could be a concern. Second, a key
novelty of our tool is that it can be used interactively to trou-
bleshoot migration issues; it should be fast enough for this
task: less than one minute is fine, more than ten minutes
is way too slow. Third, our tool is able to perform more
stringent checks than britney or SAT-britney, preserving
not just package installability but also co-installability; we
need to verify that this is indeed useful and that the amount
of real issues found outweighs the burden of false positives.

To check all this, we have taken a snapshot of all the
information needed for package migration twice a day for
about two months, from June 24th, 2013 to September 8th,
20136 (which gives 152 samples) and we have run the three
tools on these configurations. We have also investigated
co-installability issues for a longer period, between January
2010 and June 2012 (start of the freeze period), using the
historical information on the state of the Debian reposito-
ries which is publicly available through the Debian snapshot
archive [9]. We could not reproduce accurately migrations
over this longer period as some of the required information
(number of bugs, package ages, . . .) is not archived.

7.1 Tool Comparison: Migrations
We have compared the quality of the migrations performed

by britney and comigrate for the 152 situations mentioned
above. To get a meaningful comparison, comigrate has been
configured with the option to only check for installability.
We have not been able to run SAT-britney on all the archi-
tectures simultaneously, as its memory usage exceeded the
eight gigabytes of RAM available on our testing machines.
Hence, we are not able to provide a meaningful comparison
with the output of SAT-britney.

We found out that comigrate almost always migrates
more packages than britney, which failed on eleven oc-
casions to find a suitable set of packages that had to mi-
grate together. In fact, we found a single corner case where
comigrate migrates less packages than britney: when the

6On June 15th, 2013, after a freeze period started in June
2012 during which most migrations were blocked, Debian re-
leased its new stable repository, and migration were allowed
again, so we finally had new, fresh data to analyse.

britney

comigrate
(installability)

comigrate
(co-installability)

SAT-britney

 10 18 30 55 100 180 300 550 1000 1800 3000 5500 10000 18000 30000 55000 100000
Running time (seconds)

Figure 7: Performance comparison of the different migration tools, on a logarithmic scale. We use standard
box plots: the central vertical bar is the median time, the rectangle spans from the first to the third quartiles
(it contains half the data), whiskers denote the largest and smallest data within 1.5 times the interquartile
range, outliers are represented as isolated dots. Actual data are plotted just below with some vertical jitter.

source used to build a binary package changes, britney

sometime removes the package from testing without waiting
for the new version of the package to migrate from unsta-
ble. In this situation, the extra migration makes the package
unavailable for some time, and comigrate rightfully refuses
to allow it. As a remarkable example, the arrival of KDE
4.10 in testing required to migrate 138 packages at once: our
tool was able to find automatically which packages had to
migrate simultaneously, while a force-hint was used by the
Debian Release Team to bypass britney’s checks and make
the packages go through.

We could also verify in all of the 152 runs that comigrate
never made any suboptimal choice due to the limitations of
the solver.

7.2 Tool Comparison: Execution Time
The execution times taken by each tool to compute pack-

age migrations, on a 8 GiB desktop computer using an In-
tel Core i7-870 at 2.93GHz, are shown in Figure 7. The
comigrate tool takes reliably well less than a minute to
compute possible package migrations when only checking
for installability issues across upgrades, and is quite faster
in the default mode that also checks for co-installability. The
britney tool is usually one order of magnitude slower, but
can occasionally take much longer to complete: we observed
a maximum of eight hours over the two month period. We
could run SAT-britney on only seven of the thirteen archi-
tectures. It is much slower than the other tools, even when
running on this limited subset of the distribution, to the
point that we aborted the experiment after just a few runs.

7.3 Relevance of Preserving Co-installability
We have compared the output of comigrate while check-

ing for co-installability or just installability in the 152 situ-
ations mentioned above. We comment shortly on the result.
A few packages (libphonon4, liboss4-salsa-asound2 and
libgl1-mesa-swx11) are incompatible with a huge number
of other packages, and there is no point in keeping them co-
installable with other packages. A break directive can be
added once and for all to deal with them. Often, when
switching to a new version of a library, the packages of
the old version are kept for some time in testing . If there
is any incompatibility between these packages, comigrate

will report many harmless conflicts during the transition.
This can be avoided by using break directives to indicate
that the old library is deprecated. We encountered five

such transitions. In some case, lots of conflicts are intro-
duced. For instance, on September 10th, there were 16
packages depending on libopenmpi1.6 and 172 packages de-
pending on the conflicting package libopenmpi1.3. It is
thus not possible to use any of the 16 packages with any of
the other 172 packages. Temporarily introducing incompat-
ibilities this way can sometimes be justified in order to ease
package migration, but britney does not provide any way to
control precisely what incompatibilities are introduced, and
member of the Release Team are sometimes not even aware
of them. Genuine issues can justify new conflicts between
packages. We counted ten of them. For instance, package
quantum now conflicts with python-cjson as the latter is a
seriously buggy JSON encoder/decoder; package parallel

conflicts with moreutils as they both provide a binary of
the same name but with a different semantics (though, in
fact, it is not clear this is allowed at all in Debian); pack-
age lxsession now replaces package lxpolkit and therefore
conflicts with it. Sometimes, maintainers can introduce bugs
when attempting to fix this kind of issue: the maintainer
of colord meant to add a conflict with previous versions
of colorhug-client as the packages contained a common
file, which is not allowed, but he added a conflict with the
current version as well. In fact, we encountered three in-
stances of overly strong dependencies or conflicts such as the
colord one. In four cases, the conflicts preventing migration
was with a broken or obsolete package that should be re-
moved: mingw-w64 conflicts with libpthreads-mingw-w64,
kde-window-manager conflicts with kwin-style-dekorator.
Finally, in six cases, a package migrated when it should
have waited for another package remaining in unstable. In
particular, package bandwidthd, meant to be used with a
Web server, is in conflict with the version of Apache in
testing ; the FreeBSD kernel kfreebsd-image-9.1-1-amd64
(kfreebsd-amd64 architecture) is incompatible with the boot-
loader grub-common; package scrapbook, a Firefox exten-
sion, is incompatible with Firefox.

We have also checked all co-installability issues introduced
each week over two years and a half from January 2010 to
June 2012, which we can find thanks to our previous tool
coinst-upgrades [23], and have assessed their impact. They
were most often due to britney only checking for installa-
bility, rather than being introduced by the Release Team by
forcing the migration of a package: we verified this by check-
ing that the culprit packages could migrate without help. We
observed that they were real issues in the large majority of

Figure 8: Impact of not preserving co-installability.

cases, where britney migrated a package that did not break
installability of any other package, and yet made an ap-
plication unusable. We found about fifteen occurrences of a
package migrating in isolation when it should have migrated
together with a new version of one or more other packages.
In some cases, packages remained kept back in unstable for
some time, with a disruptive impact on Debian users. We
could verify the importance of this impact by analysing the
statistics of Debian package installations automatically col-
lected from the users of the popularity-contest package,
and for which an historical archive is available. The two
graphs in Figure 8 show how many users of the package
popularity-contest have the packages tesseract-ocr and
openclipart-libreoffice installed, over a period of time
before and after the disruptive migration takes place. The
vertical bar indicates the date of migration of a new version
of respectively tesseract-ocr-eng (as well as other simi-
lar packages) and openclipart-libreoffice. These pack-
ages conflicts with the versions of their companion packages
tesseract-ocr and libreoffice-common in testing , while
the new versions of these latter packages remained kept back
in unstable. One can clearly see that this wrong migration
caused tesseract-ocr and openclipart-libreoffice to be
removed on a large fraction of the user base. As a conse-
quence, the application tesseract that is split in a com-
mon core and a series of language packs became unusable;
similarly the Open Clip Art Library could not be used in
integration with libreoffice.

Overall, checking for co-installability is a significant im-
provement: while there is some additional work when new
conflicts are justified, it does not harm to double check them,
and one gains better control on which incompatibilities are
introduced, allowing to find a significant number of bugs.

7.4 Validation with the Debian Release Team
A close connection with the Debian Release Team has

been established over the past year, and comigrate has been
shown to consistently provide valid results, and very useful
information to track down the reasons why large package
sets cannot migrate (the case shown in Section 3 is an actual
example). It is now being seriously considered for inclusion
in the Debian release management process.

8. RELATED WORK
Ensuring the correct behaviour of components when com-

posed into an assembly is a fundamental concern and has
been extensively studied. One may detect automatically be-
havioural incompatibilities from the component source code
[15, 16], or deploy and upgrade such systems [5]. Inter-
module dependencies have been used to predict failures [17,
26, 17, 18], identifying sensitive components [26] or used as
a guideline for testing component-based systems [24, 25].

Maintaining large collections of interrelated software com-
ponents, and in particular GNU/Linux distributions, poses
new challenges, that only recently become subject of re-
search. We know how to identify what other components a
package will always need [1] and what pairs of packages are
incompatible [11]; sophisticated algorithms allow to answer
all the questions about package co-installability [22]. We
can identify the component upgrades that are more likely to
break installability in a repository [3], and efficiently identify
the co-installability issues introduced in a new version of a
repository [23]. Package migration is encoded as a PMAX-
SAT instance in the SAT-Britney tool [8], which only ensures
preservation of installability.

9. CONCLUSIONS
We developed comigrate, an efficient tool able to compute

migration candidates for evolving the Debian repositories ac-
cording to the stringent quality constraints imposed by the
policy, ensuring that no co-installability issues arise, and
providing concise and precise explanations when some pack-
ages cannot migrate. The unique combination of speed and
explanations enable for the first time to perform interactive
tuning of the migration process, even when hundreds of in-
terrelated packages are involved. Extensive testing and vali-
dation has been performed on real-world problem instances,
in collaboration with the Debian release team.

The core architecture of comigrate is particularly suit-
able for handling migrations. It should be straightforward
to adapt it to any other integration process where the qual-
ity requirements are composed of a mixture of simple con-
straints and complex conditions verified by external tools.
Source Code is at http://coinst.irill.org/comigrate

http://qa.debian.org/popcon-graph.php?packages=tesseract-ocr&show_installed=on&from_date=2011-11-01&to_date=2013-02-10&hlght_date=2012-02-16&beenhere=1
http://qa.debian.org/popcon-graph.php?packages=openclipart-libreoffice&show_installed=on&from_date=2012-01-01&to_date=2013-01-01&hlght_date=2012-04-10&beenhere=1
http://coinst.irill.org/comigrate

10. REFERENCES
[1] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli.

Strong dependencies between software components. In
ESEM, pages 89–99. IEEE Press, Oct. 2009.
doi:10.1109/ESEM.2009.5316017.

[2] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli.
Dependency solving: a separate concern in component
evolution management. Journal of System and
Software Science, 85(10):2228 – 2240, 2012.
Automated Software Evolution. URL:
http://www.sciencedirect.com/science/article/

pii/S0164121212000477,
doi:10.1016/j.jss.2012.02.018.

[3] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli.
Learning from the Future of Component Repositories.
In 15th International ACM SIGSOFT Symposium on
Component Based Software Engineering (CBSE-2012),
Bertinoro, Italie, June 2012. ACM.
doi:10.1145/2304736.2304747.

[4] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli.
A modular package manager architecture. Information
and Software Technology, 55(2):459 – 474, 2013.
Special Section: Component-Based Software
Engineering (CBSE), 2011. URL:
http://www.sciencedirect.com/science/article/

pii/S0950584912001851,
doi:10.1016/j.infsof.2012.09.002.

[5] S. Ajmani, B. Liskov, and L. Shrira. Modular software
upgrades for distributed systems. In ECOOP, pages
452–476, 2006. doi:10.1007/11785477_26.

[6] Apache Software Foundation. Guide to uploading
artifacts to the central repository. [Online; accessed
1-March-2013], 2013. URL:
http://maven.apache.org/guides/mini/

guide-central-repository-upload.html.

[7] D. L. Berre and A. Parrain. On sat technologies for
dependency management and beyond. In SPLC (2),
pages 197–200, 2008.

[8] J. Breitner. Tackling the testing migration problem
with SAT-solvers, 2012. arXiv:1204.2974.

[9] Debian Project. The debian snapshot archive. [Online;
accessed 1-March-2013], 2013. URL:
http://snapshot.debian.org/.

[10] Debian Project. Debian “testing” distribution. [Online;
accessed 1-March-2013], 2013. URL:
http://www.debian.org/devel/testing.

[11] R. Di Cosmo and J. Boender. Using strong conflicts to
detect quality issues in component-based complex
systems. In ISEC ’10: Proceedings of the 3rd India
software engineering conference, pages 163–172, New
York, NY, USA, 2010. ACM.
doi:10.1145/1730874.1730905.

[12] W. F. Dowling and J. H. Gallier. Linear-time
algorithms for testing the satisfiability of propositional
Horn formulae. J. Log. Program., 1(3):267–284, 1984.
doi:10.1016/0743-1066(84)90014-1.

[13] Eclipse Foundation. Eclipse marketplace. [Online;
accessed 1-March-2013], 2013. URL:
http://marketplace.eclipse.org/.

[14] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source

package-based software distributions. In Automated
Software Engineering (ASE), pages 199–208, 2006.
doi:10.1109/ASE.2006.49.

[15] S. McCamant and M. D. Ernst. Predicting problems
caused by component upgrades. In ESEC / SIGSOFT
FSE, pages 287–296, 2003.
doi:10.1145/940071.940110.

[16] S. McCamant and M. D. Ernst. Early identification of
incompatibilities in multi-component upgrades. In
ECOOP, pages 440–464, 2004.
doi:10.1007/978-3-540-24851-4_20.

[17] N. Nagappan and T. Ball. Using software
dependencies and churn metrics to predict field
failures: An empirical case study. ESEM 2007, pages
364–373, 2007. doi:10.1109/ESEM.2007.13.

[18] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. In
Proceedings of CCS 2007, pages 529–540, 2007.
doi:10.1145/1315245.1315311.

[19] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving
sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to
dpll(t). J. ACM, 53(6):937–977, 2006.

[20] P. Trezentos, I. Lynce, and A. L. Oliveira. Apt-pbo:
solving the software dependency problem using
pseudo-boolean optimization. In Automated Software
Engineering (ASE), pages 427–436, 2010.

[21] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner.
Opium: Optimal package install/uninstall manager. In
International Conference on Software Engineering
(ICSE), pages 178–188, 2007.

[22] J. Vouillon and R. Di Cosmo. On software component
co-installability. In SIGSOFT FSE, pages 256–266,
2011. doi:10.1145/2025113.2025149.

[23] J. Vouillon and R. Di Cosmo. Broken sets in software
repository evolution. In International Conference on
Software Engineering (ICSE), 2013. URL:
http://www.pps.univ-paris-diderot.fr/

~vouillon/publi/upgrades.pdf.

[24] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Direct-dependency-based software compatibility
testing. In Automated Software Engineering (ASE),
pages 409–412, New York, NY, USA, 2007. ACM.
doi:10.1145/1321631.1321696.

[25] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Effective and scalable software compatibility testing.
In Proceedings of ISSTA ’08, pages 63–74, New York,
NY, USA, 2008. ACM.
doi:10.1145/1390630.1390640.

[26] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In
International Conference on Software Engineering
(ICSE), pages 531–540. ACM, 2008.
doi:10.1145/1368088.1368161.

http://dx.doi.org/10.1109/ESEM.2009.5316017
http://www.sciencedirect.com/science/article/pii/S0164121212000477
http://www.sciencedirect.com/science/article/pii/S0164121212000477
http://dx.doi.org/10.1016/j.jss.2012.02.018
http://dx.doi.org/10.1145/2304736.2304747
http://www.sciencedirect.com/science/article/pii/S0950584912001851
http://www.sciencedirect.com/science/article/pii/S0950584912001851
http://dx.doi.org/10.1016/j.infsof.2012.09.002
http://dx.doi.org/10.1007/11785477_26
http://maven.apache.org/guides/mini/guide-central-repository-upload.html
http://maven.apache.org/guides/mini/guide-central-repository-upload.html
http://arxiv.org/abs/1204.2974
http://snapshot.debian.org/
http://www.debian.org/devel/testing
http://dx.doi.org/10.1145/1730874.1730905
http://dx.doi.org/10.1016/0743-1066(84)90014-1
http://marketplace.eclipse.org/
http://dx.doi.org/10.1109/ASE.2006.49
http://dx.doi.org/10.1145/940071.940110
http://dx.doi.org/10.1007/978-3-540-24851-4_20
http://dx.doi.org/10.1109/ESEM.2007.13
http://dx.doi.org/10.1145/1315245.1315311
http://dx.doi.org/10.1145/2025113.2025149
http://www.pps.univ-paris-diderot.fr/~vouillon/publi/upgrades.pdf
http://www.pps.univ-paris-diderot.fr/~vouillon/publi/upgrades.pdf
http://dx.doi.org/10.1145/1321631.1321696
http://dx.doi.org/10.1145/1390630.1390640
http://dx.doi.org/10.1145/1368088.1368161

	Introduction
	Package migration in Debian
	Packages and Repositories
	Package Integration and Migration
	Constraints
	The Current Migration Tool

	Finding Migration Issues
	Main applications
	Automatic Package Migration
	Explaining Migration Failures
	Focusing on a Given Package

	Core Architecture of the tool
	The Boolean Solver
	The External Verifiers
	Speeding Things Up

	Extensions
	Clustering Migrating Packages
	Preserving Just Installability

	Evaluation and Validation
	Tool Comparison: Migrations
	Tool Comparison: Execution Time
	Relevance of Preserving Co-installability
	Validation with the Debian Release Team

	Related Work
	Conclusions
	References

