Playing with Games: the Games Workbench

Juliusz Chroboczek

February 12, 2001

Introduction

The Games Workbench (GWB) is a Common Lisp program designed to serve
as a framework for experimenting with Game Semantics.

1 Using the Games Workbench

The user interacts with the interactive GWB toplevel. At the GWB prompt,
GWB>

the user may type any GWB command.

1.1 GWB commands

A GWB command is either a Lisp symbol, as in quit, or a list the first member
of which is a Lisp symbol, as in

(display Y-run)
You may obtain the full list of commands by typing help at the GWB toplevel.

1.1.1 Running and defining terms

The run command takes a single argument, which is a term to run. The syntax
of terms is defined in Section 1.2.

GWB> (run (+ 3 4))
7
5 moves played.

In order to avoid having to retype a term multiple times, it is possible to
define an abbreviation using the define command. Note that this abbreviation
is defined at the source level, and is recompiled every time it is used; such
abbreviation are very different from bound variables and imperative variables.

GWB> (define add (lambda (x y) (+ x y)))
ADD

GWB> (run (add 3 4))

7

91 moves played.

The clear command may be used to clear definitions.



1.1.2 Loading files

The load command executes the contents of a file as though it were typed at
the GWB toplevel. The file should consist of a sequence of GWB commands.

GWB> (load "fact.gwb")
FACTO
FACT

1.1.3 Inspecting positions

There are two basic ways in which it is possible to inspect the moves played by
a strategy, on-the-fly tracing and displaying remembered runs.

Tracing strategies If M is a term, then (trace M) behaves just like M,
but has the side-effect of printing out every move that is being played by the
strategy associated to M.

The trace form takes one or two arguments. The first is the term to trace;
the second is optional, and is an arbitrary name that can be used to track
multiple interleaved traces.

GWB> (run ((lambda x (+ x x)) (trace 5 five)))
FIVE 0 Q - ? NIL

FIVEP A-51

FIVE 0 Q - ? NIL

FIVEP A -51

10

25 moves played.

The columns printed out are, respectively, the name of the strategy, the player
who plays this move, whether the move is a question or an answer, the compo-
nent of the move, the token of the move, and its justification pointer, represented
as the number of moves that the pointer spans.

Remembering runs If M is a term, then (remember M n) behaves just
like M, but has the side-effect of remembering under the name n all the moves
played by M under the name n. Remembered runs take up memory, and they
should be erased using the forget command.

The GWB provides a number of commands that can be used to inspect
remembered runs; they all take a single argument which is the name of a re-
membered run. The simples is components, which simply lists the set of
components that contain moves. The command display-simple uses the same
format as trace except for the first column. The command display-tabular
which displays moves in columns corresponding to components. Finally, display
pops up a window with a graphic representation of a position.

The graphic representation may be saved in an EPS file by using the print-
eps command.

GWB> (run ((lambda x (+ x x)) (remember 5 five)))
10

25 moves played.

GWB> (display-simple five)



P Q- 7 NIL

0A-51

P Q- 7 NIL

0A-51

GWB> (display-tabular five)
?

5

?

5

GWB> (display five)
GWB> (print-eps five "five.eps")
1.2 Syntax of terms

The GWB implements a call-by-name programming language containing with
features from PCF and Idealised Algol, as well as non-local control operators in
the form of call/cc.

1.2.1 Functional core

The basic syntax consists of A — abstraction and function application:
(lambda x M)

(M N)

Two abbreviations are provided for convenience. The syntax
(lambda (21 z3---x) M)
is a shorthand for
(lambda z; (lambda x5 (--- (lambda x; M)---)))

The syntax
(My My --- My,)

is an abbreviation for

Functional constants The ground values are true, false and integers. In
addition, omega is used for representing looping terms, and top for broken
terms. (They are distinct as per the theory, but are actually implemented
alike.)

Higher order constants include the combinators compose, S, K, I, Y. The
constant = takes two integer arguments and returns a Boolean; the constant if
takes one Boolean argument and two arbitrary arguments.

Finally, the constants pair, p0 and pl implement (unlifted) products.

1.2.2 Control operators

The constant call/cc takes a single argument which is a function that takes the
current continuation as argument. This constant works at higher order.



1.2.3 Imperative features

The GWB implements the imperative features of Idealised Algol (with active
expressions). The basic construct is new, with the syntax

(new z n M)

where z is the name of the imperative variable, n is a litteral (compile-time)
integer that specifies the initial value, and M is the body where x is visible.
An imperative variable is dereferenced using the constant deref, which takes
a single imperative variable, and set using set, which takes an imperative vari-
able and a value.
Sequencing is provided in the form of seq, which takes two terms, evaluates
them in order, and returns the result of the second. As a convenience, the form

(begin My My - -- M)

is equivalent to
(seq M, (seqM, (seq --- My ---)))

The void imperative instruction, dear to some of my former lecturers, is provided
as the constant dummy.

Additional forms and constants The constant print behaves like the iden-
tity on the integers; it has the side effect of printing out the value of its argument
whenever it is being evaluated.

The forms trace and remember are described above.

1.3 Summary of syntax
1.3.1 Commands

e quit and help;

(load f);
run M);

define n M), list and clear;

display-simple n), (display-tabular n) and (display n);

(
(
e (components n);
(
(

print-eps n f).

1.3.2 Terms

Syntax:
e lambda-abstraction: (lambda z M) or (lambda (z1 ---x) M);
e function application: (M --- My);

e imperative variable binding: (new z n M).



Constants:

e true, false, integers, omega and top;
e compose, S, K, I Y, if;
e pair, p0, pl;

call/cc;

e set, deref, skip, seq;

e print.

Macros and special forms:

e (trace M [n]) and (remember M n);

e (begin M --- My).

2 Examples

2.1 Functional core
2.1.1 Recursive functions

The GWB does not provide for recursive function definitions; however, it does
provide a fixpoint combinator.

GWB> (define factO
(lambda (f n)

(if (= 0 n)
1
(xn (f (-1 1))))))
FACTO
GWB> (define fact
(Y fact0))
FACT

This is a call-by name factorial.

GWB> (run (fact 1))
1

641 moves played.
GWB> (run (fact 2))
2

1387 moves played.
GWB> (run (fact 3))
6

2425 moves played.
GWB> (run (fact 4))
24

3755 moves played.
GWB> (run (fact 5))
120

5377 moves played.



Let’s see what’s going on.

GWB> (run ((remember Y Y-run) factO 0))
1

187 moves played.

GWB> (display-simple Y-run)

P Q 11 7 NIL
0Qo11 71
P Qo010 7 1
0Q 10 7 3
PA100 1
0 A 010 0 3
PAOI11 15
0A11 17

GWB> (display-tabular Y-run)
v
?

e
0
0
1
1
GWB> (run ((remember Y Y-run) factO 1))
1

641 moves played.
GWB> (display Y-run)

The results of this last command are in Fig. 1.

2.1.2 Implementing lists

A list has three methods: the null predicate, car, and cdr. The latter two are
only defined for non-null lists.

GWB> (define cons
(lambda (head tail)
(pair false
(pair head
(pair tail top)))))
CONS
GWB> (define nil
(pair true top))
NIL
GWB> (define null p0)
NULL
GWB> (define car
(lambda (x)
(p0 (p1 x))))
CAR
GWB> (define cdr



000 001 010 011 10 11

Figure 1: The Y combinator combuting the factorial in call-by-name



(lambda (x)
(p0 (p1 (p1 x)))))
CDR

Let’s define a sample list and explore it:

GWB> (define 1 (cons 1 (cons 2 (cons 3 nil))))
L

GWB> (run (null 1))
FALSE

47 moves played.

GWB> (run (car 1))

1

121 moves played.

GWB> (run (car (cdr 1)))
2

317 moves played.

A function for summing lists:

GWB> (define sumO

(lambda f
(lambda (x)
(if (null x)

0

(+ (car x) (f (cdr x)))N)
SUMO
GWB> (define sum (Y sumO))
SUM
GWB> (run (sum 1))
6

4213 moves played.

GWB> (run (sum (remember 1 list-run)))
6

4213 moves played.

GWB> (display list-run)

(See Fig. 2.)

GWB> (run (Y (remember sumO sumO-run) 1))
6

4213 moves played.

GWB> (display sumO-run)

(See Fig.3.)

2.2 Control operators

GWB> (define add-or-leave
(lambda (n m k)
(if (= 0 n)
(k 0)
(+ nm)))



10 1100 11010110110010110101101100
5
false >
?
»
?
false >
?
2D
?
false >
?
30
?
true >

Figure 2: A list being explored



000 0010 00110000110001101100 o1 100 1010 1011001011010110110010100101101100 11
?

false

false

true

0
0

3
3

5
5

6

Figure 3: Summing a list

10



000 001 01 1

Figure 4: A position of call/cc

ADD-OR-LEAVE

GWB> (run (call/cc (lambda k (+ (add-or-leave O 47 k) omega))))
0

935 moves played.

GWB> (run (call/cc (lambda k (add-or-leave O omega k))))

0

925 moves played.

GWB> (run ((remember call/cc call/cc-run) (lambda k (add-or-leave O omega k))))
0

925 moves played.

GWB> (display call/cc-run)

(See Fig. 4.)

2.3 Imperative features
2.3.1 Simple imperative example

GWB> (define increment
(lambda x
(begin
(print (deref x))
(set x (+ 1 (deref x))))))
INCREMENT
GWB> (define thrice
(lambda f
(new x 0
(begin
(f x)
(f x)
(f x)
(deref x))))
THRICE
GWB> (run (thrice (remember increment increment-run)))

11



1289 moves played.
GWB> (display increment-run)

See Fig. 5.

2.3.2 Call-by-value

With imperative variables, we can force evaluation of an integer, and implement
call-by-value functions.

GWB> (define cbv-factO
(lambda (f n)
(new var 0O
(begin
(set var n)
(if (= 0 (deref var))
1
(x (deref var) (f (- (deref var) 1))))))))
CBV-FACTO
GWB> (define cbv-fact
(Y cbv-fact0))

CBV-FACT
GWB> (run ((remember Y Y-cbv-run) cbv-factO 1))
1

5831 moves played.

See Fig. 6 and compare with Fig. 1.

Acknowledgements

The GWB was initially written while I was working on my Ph.D. at the Univer-
sity of Edinburgh under the supervision of Samson Abramsky, who encouraged
me to explore the possibility to implement Game Semantics. I would also like
to acknowledge the encouragement I received from Kohei Honda.

12



read
vaue 0
read
vaue 0
set 1
ok

read
vaue 1
read
vaue 1
set 2
ok

read
vaue 2
read
vaue 2
set 3
ok

Figure 5: A position of the function increment

13



000 001 010 011 10 11

Figure 6: The Y combinator combuting the factorial in call-by-value

14



