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@ Invent your first monad

@ More examples of monads

@ Monads and their laws

@ Program transformations and monads

@ Monads as a general programming technique

@ Monads and ML Functors
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Exception-returning style, state-passing style, and continuation-passing style of
the previous part are all special cases of monads

Monads are thus a technical device that factor out commonalities between
many program transformations ...
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Exception-returning style, state-passing style, and continuation-passing style of
the previous part are all special cases of monads

Monads are thus a technical device that factor out commonalities between
many program transformations ...

.. but this is just one possible viewpoint. Besides that, they can be used

@ To structure denotational semantics and make them easy to extend with
new language features. (E. Moggi, 1989.)

@ As a powerful programming techniques in pure functional languages,
primary in Haskell. (P. Wadler, 1992).
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@ Invent your first monad
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Invent your first monad

Probably the best way to understand monads is to define one. Or better, arrive
to a point where you realize that you need one (even if you do not know that it
is a monad).

Many of the problems that monads try to solve are related to the issue of side
effects. So we’ll start with them.
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Side Effects: Debugging Pure Functions

Input: We have functions £ and g that both map floats to floats.
f,g : float -> float
Goal: Modify these functions to output their calls for debugging purposes
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Side Effects: Debugging Pure Functions

Input: We have functions £ and g that both map floats to floats.
f,g : float -> float
Goal: Modify these functions to output their calls for debugging purposes

If we do not admit side effects, then the modified version £ and g’ must return
the output

f’,g’> : float -> float * string

—— "f was called; "
X—> £
— f(x)
"g was called; "
X—> g;
— g(x)

We can think of these as 'debuggable’ functions.
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Problem: How to debug the composition of two ‘debuggable’ functions?

Intuition: We want the composition to have type float -> float * string
but types no longer work!

Solution: Use concatenation for the debug messages and add some plumbing

let (y,s)
let (z,t)

g’ x in
f’ y in (z,s"t) (where ~ denotes string concatenation)

G. Castagna (CNRS) Cours de Programmation Avancée 331/599



Problem: How to debug the composition of two ‘debuggable’ functions?

Intuition: We want the composition to have type float -> float * string
but types no longer work!

Solution: Use concatenation for the debug messages and add some plumbing

let (y,s)
let (z,t)

g’ x in
f’ y in (z,s"t) (where ~ denotes string concatenation)

Diagrammatically:

/ ~ > "g was called; f was called; "
X—> ) L —
g £

— £(g(x))
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The bind function

Plumbing is ok ... once. To do it uniformly we need a higher-order function
doing the plumbing for us. We need a function bind that upgrades £’ so that it
can be plugged in the output of g’. That is, we would like:

bind £’ : (float*string) -> (float*string)
which implies that
bind : (float -> (float*string)) -> ( (float*string) -> (float*string))
bind must

@ apply £’ to the correct part of g’ x and

@ concatenate the string returned by g’ with the string returned by £°.
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The bind function

Plumbing is ok ... once. To do it uniformly we need a higher-order function
doing the plumbing for us. We need a function bind that upgrades £’ so that it
can be plugged in the output of g’. That is, we would like:

bind £’ : (float*string) -> (float*string)
which implies that
bind : (float -> (float*string)) -> ( (float*string) -> (float*string))
bind must

@ apply £’ to the correct part of g’ x and
@ concatenate the string returned by g’ with the string returned by £°.

Write the function bind. I
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The bind function

Plumbing is ok ... once. To do it uniformly we need a higher-order function
doing the plumbing for us. We need a function bind that upgrades £’ so that it
can be plugged in the output of g’. That is, we would like:

bind £’ : (float*string) -> (float*string)

which implies that

bind : (float -> (float*string)) -> ( (float*string) -> (float*string))
bind must

@ apply £’ to the correct part of g’ x and
@ concatenate the string returned by g’ with the string returned by £°.

Write the function bind. I

# let bind £’ (gx,gs) = let (fx,fs) = £’ gx in (fx,gs"fs)
val bind : (’a -> ’b * string) -> ’a * string -> ’b * string = <fun>
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The return function

Given two debuggable functions, £’ and g’, now they can be composed by
bind

(bind £°) . g’ (where “.” is Haskell’s infix composition).
Write this composition as £’o0 g’.

We look for a “debuggable” identity function return such that for every
debuggable function f one has return o f = f o return = f.
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The return function

Given two debuggable functions, £’ and g’, now they can be composed by
bind

(bind £°) . g’ (where “.” is Haskell’s infix composition).
Write this composition as £’o0 g’.
We look for a “debuggable” identity function return such that for every
debuggable function f one has return o f = f o return = f.

Define return. I
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The return function

Given two debuggable functions, £’ and g’, now they can be composed by
bind

(bind £°) . g’ (where “.” is Haskell’s infix composition).
Write this composition as £’o0 g’.
We look for a “debuggable” identity function return such that for every
debuggable function f one has return o f = f o return = f.

Define return. I

# let return x = (x,"");;
val return : ’a -> ’a * string = <fun>
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The return function

Given two debuggable functions, £’ and g’, now they can be composed by
bind

(bind £°) . g’ (where “.” is Haskell’s infix composition).
Write this composition as £’o0 g’.
We look for a “debuggable” identity function return such that for every
debuggable function f one has return o f = f o return = f.

Define return. I

# let return x = (x,"");;
val return : ’a -> ’a * string = <fun>

In Haskell (from now on we switch to this language):

Prelude> let return x = (x,"")

Prelude> :type return

return :: t -> (t, [Char]) --t is a schema variable, String = Char list
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The return function

Given two debuggable functions, £’ and g’, now they can be composed by
bind

(bind £°) . g’ (where “.” is Haskell’s infix composition).
Write this composition as £’o0 g’.
We look for a “debuggable” identity function return such that for every
debuggable function f one has return o f = f o return = f.

Define return. \

# let return x = (x,"");;
val return : ’a -> ’a * string = <fun>

In Haskell (from now on we switch to this language):

Prelude> let return x = (x,"")
Prelude> :type return
return :: t -> (t, [Char]) --t is a schema variable, String = Char list

In summary, the function return lifts the result of a function into the result of a
“debuggable” function.
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The 1ift function

The return allows us to “lift” any function into a debuggable one:

let 1ift f = return . f (of type (a -> b) -> a -> (b, [Charl))
that is (in Ocaml) let 1ift f x = (f x,"")

The lifted version does much the same as the original function and, quite
reasonably, it produces the empty string as a side effect.
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The 1ift function

The return allows us to “lift” any function into a debuggable one:
let 1ift f = return . f (of type (a -> b) -> a -> (b, [Charl))
that is (in Ocaml) let 1ift f x = (f x,"")

The lifted version does much the same as the original function and, quite
reasonably, it produces the empty string as a side effect.

Show that 1ift £ o 1lift g = lift (f.g) I
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The 1ift function

The return allows us to “lift” any function into a debuggable one:
let 1ift f = return . f (of type (a -> b) -> a -> (b, [Charl))
that is (in Ocaml) let 1ift f x = (f x,"")

The lifted version does much the same as the original function and, quite
reasonably, it produces the empty string as a side effect.

Show that 1ift £ o 1lift g = lift (f.g) \

The functions, bind and return, allow us to compose debuggable functions in
a straightforward way, and compose ordinary functions with debuggable
functions in a natural way.
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The 1ift function

The return allows us to “lift” any function into a debuggable one:
let 1ift f = return . f (of type (a -> b) -> a -> (b, [Charl))
that is (in Ocaml) let 1ift f x = (f x,"")

The lifted version does much the same as the original function and, quite
reasonably, it produces the empty string as a side effect.

Show that 1ift £ o 1lift g = lift (f.g) \

Summary

The functions, bind and return, allow us to compose debuggable functions in
a straightforward way, and compose ordinary functions with debuggable
functions in a natural way.

We just defined our first monad

4
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The 1ift function

The return allows us to “lift” any function into a debuggable one:
let 1ift f = return . f (of type (a -> b) -> a -> (b, [Charl))
that is (in Ocaml) let 1ift f x = (f x,"")

The lifted version does much the same as the original function and, quite
reasonably, it produces the empty string as a side effect.

Show that 1ift £ o 1lift g = lift (f.g) \

Summary

The functions, bind and return, allow us to compose debuggable functions in
a straightforward way, and compose ordinary functions with debuggable
functions in a natural way.

We just defined our first monad
Let us see more examples

4
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@ More examples of monads
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A Container: Multivalued Functions

Consider sqrt and cbrt that compute the square root and cube root of a real

number:
’ sqrt,cbrt :: Float -> Float ‘

Consider the complex version for these functions. They must return lists of
results (two square roots and three cube roots)'

’ sqrt’,cbrt’ :: Complex -> [Complex] ‘

since they are multi-valued functions.

"Complex should be instead written Complex Float, since it is a Haskell module
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A Container: Multivalued Functions

Consider sqrt and cbrt that compute the square root and cube root of a real
number:
’ sqrt,cbrt :: Float -> Float ‘

Consider the complex version for these functions. They must return lists of
results (two square roots and three cube roots)'
’ sqrt’,cbrt’ :: Complex -> [Complex] ‘

since they are multi-valued functions.
We can compose sqrt and cbrt to obtain the sixth root function
’sixthrt x = sqrt (cbrt x) ‘

Problem How to compose sqrt’ and cbrt’?

"Complex should be instead written Complex Float, since it is a Haskell module
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A Container: Multivalued Functions

Consider sqrt and cbrt that compute the square root and cube root of a real

number:
’ sqrt,cbrt :: Float -> Float ‘

Consider the complex version for these functions. They must return lists of
results (two square roots and three cube roots)'

’ sqrt’,cbrt’ :: Complex -> [Complex] ‘

since they are multi-valued functions.
We can compose sqrt and cbrt to obtain the sixth root function

’sixthrt x = sqrt (cbrt x) ‘

Problem How to compose sqrt’ and cbrt’?

We need a bind function that lifts cbrt’ so that it can be applied to all the
results of sqrt”’

"Complex should be instead written Complex Float, since it is a Haskell module
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])

Diagrammatically:

— 2
cbrt’ [ —1+ivV3
— —1—i\/3
64
—1 sqrt’
\ L > o
Cbrt’ —> “ee
.
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])

Diagrammatically:

— 2
cbrt’ [ —1+ivV3
— —1—i\/3
64
—1 sqrt’
\ L > o
Cbrt’ —> “ee
.

Write an implementation of bind I
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])

Diagrammatically:

— 2
cbrt’ [~ —1+iV3

— —1—iy/3

64
—1 sqrt’

/
N

P

cbrt?’

Write an implementation of bind I

Solution:
’bind f x = concat (map f x) ‘
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result
of a normal function and transforms it into a result of multi-valued functions:
’ return :: a -> [a] ‘
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result
of a normal function and transforms it into a result of multi-valued functions:
’ return :: a -> [a] ‘

Define return l
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:
’ return :: a -> [a]

Define return l

Solution:

’return x = [x] ‘

Again
foreturn = returnof =f£

while 1ift f = return . £ transforms an ordinary function into a
multivalued one: lift :: (a -> b) -> a -> [b]
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:
’ return :: a -> [a]

Define return \

Solution:

’return x = [x] ‘

Again
foreturn = returnof =f£

while 1ift f = return . £ transforms an ordinary function into a
multivalued one: lift :: (a -> b) -> a -> [b]

We just defined our second monad J
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:
’ return :: a -> [a]

Define return \

Solution:

’return x = [x] ‘

Again
foreturn = returnof =f£

while 1ift f = return . £ transforms an ordinary function into a
multivalued one: lift :: (a -> b) -> a -> [b]

We just defined our second monad
Let us see a last one and then recap J
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A more complex side effect: Random Numbers

The Haskell random function looks like this
random :: StdGen — (a,StdGen)
@ To generate a random number you need a seed (of type StdGen)

@ After you've generated the number you update the seed to a new value

@ In a non-pure language the seed can be a global reference. In Haskell the
new seed needs to be passed in and out explicitly.
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A more complex side effect: Random Numbers

The Haskell random function looks like this

random :: StdGen — (a,StdGen)

@ To generate a random number you need a seed (of type StdGen)

@ After you've generated the number you update the seed to a new value

@ In a non-pure language the seed can be a global reference. In Haskell the
new seed needs to be passed in and out explicitly.

So a function of type a -> b that needs random numbers must be lifted to a
“randomized” function of type a -> StdGen -> (b,StdGen)

@ Wirite the type of the bind function to compose two “randomized”
functions.

© Write an implementation of bind
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A more complex side effect: Random Numbers

Solution:
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A more complex side effect: Random Numbers

Solution:
@ bvind :: (a—StdGen— (b,StdGen))
— (StdGen— (a,StdGen) ) — (StdGen — (b,StdGen))
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A more complex side effect: Random Numbers

Solution:
@ bvind :: (a—StdGen— (b,StdGen))

— (StdGen— (a,StdGen) ) — (StdGen — (b,StdGen))
@ bind f x seed =
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A more complex side effect: Random Numbers

Solution:
@ bvind :: (a—StdGen— (b,StdGen))

— (StdGen— (a,StdGen) ) — (StdGen — (b,StdGen))
@ bind f x seed =1let (x’,seed’) = x seed in f x’ seed’
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A more complex side effect: Random Numbers

Solution:
@ bvind :: (a—StdGen— (b,StdGen))
— (StdGen— (a,StdGen) ) — (StdGen — (b,StdGen))
@ bind f x seed =1let (x’,seed’) = x seed in f x’ seed’

Define the ’identity’ randomized function. This needs to be of type

return :: a — (StdGen — (a,StdGen))

and should leave the seed unmodified.
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A more complex side effect: Random Numbers

Solution:
@ bvind :: (a—StdGen— (b,StdGen))

— (StdGen— (a,StdGen) ) — (StdGen — (b,StdGen))
@ bind f x seed =1let (x’,seed’) = x seed in f x’ seed’

Define the ’identity’ randomized function. This needs to be of type

return :: a — (StdGen — (a,StdGen))

and should leave the seed unmodified.

Solution
return x g = (x,g)

Again, 1ift £ = return . f turns an ordinary function into a randomized
one that leaves the seed unchanged.

While f oreturn = returnof = f and liftfoliftg = 1ift(f.g) where
fog=(bindf).g
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@ Monads and their laws
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Step 1: Transform a type a into the type of particular computations on a.
-- The debuggable computations on a
type Debuggable a = (a,String)
-- The multivalued computation on a
type Multivalued a = [a]
-- The randomized computations on a
type Randomized a = StdGen -> (a,StdGen)
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Step 1: Transform a type a into the type of particular computations on a.

-- The debuggable computations on a
type Debuggable a = (a,String)

-- The multivalued computation on a
type Multivalued a = [a]

-- The randomized computations on a
type Randomized a = StdGen -> (a,StdGen)

Step 2: Define the “plumbing” to lift functions on given types into functions on
the “m computations” on these types where “m” is either Debuggable, or

Multivalued, or Randomized.
bind :: (a ->mb) -> (ma ->mb)
return :: a ->m a

with f oreturn = returnof = f and lift folift g =1ift (f.g),
where ’o’ and 1ift are defined in terms of return and bind.
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Step 1: Transform a type a into the type of particular computations on a.

-- The debuggable computations on a
type Debuggable a = (a,String)

-- The multivalued computation on a
type Multivalued a = [a]

-- The randomized computations on a
type Randomized a = StdGen -> (a,StdGen)

Step 2: Define the “plumbing” to lift functions on given types into functions on
the “m computations” on these types where “m” is either Debuggable, or
Multivalued, or Randomized.

bind :: (a ->mb) -> (ma ->mb)
return :: a ->m a

with f oreturn = returnof = f and lift folift g =1ift (f.g),
where ’o’ and 1ift are defined in terms of return and bind.

A monad is a triple formed by a type constructor m and two functions bind and
return whose type and behavior is as described above.
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Monads in Haskell

In Haskell, the bind function:
@ it is written >>=
@ itis infix
@ itstypeism a -> (a ->mb) ->mb (arguments are swapped)
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Monads in Haskell

In Haskell, the bind function:

@ it is written >>=

@ itis infix

@ itstypeism a -> (a ->mb) ->mb (arguments are swapped)
This can be expressed by typeclasses:

class Monad m where
-- chain computations

(>>=) ::ma->(a->mb) ->mb
-- inject
return :: a ->m a
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Monads in Haskell

In Haskell, the bind function:

@ it is written >>=

@ itis infix

@ itstypeism a -> (a ->mb) ->mb (arguments are swapped)
This can be expressed by typeclasses:

class Monad m where
-- chain computations

(>>=) ::ma->(a->mb) ->mb
-- inject
return :: a ->m a

The properties of bind and return cannot be enforced, but monadic
computation demands that the following equations hold

return x >>=f = fx
m >>= return = m
m >>= (Ax.(fx >>= g)) = (m>=f) >>=g
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Monad laws

We already saw some of these properties:

return x >>=f = fx (1)
m >>= return = m (2)
m >>= (Ax.fx >>=g) = (m>=1f) >>=g (3)
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Monad laws

We already saw some of these properties:

return x >>=f = fx (1)
m >>= return = m (2)
m >>= (Ax.fx >>=g) = (m>=1f) >>=g (3)

Let us rewrite them in terms of our old bind function (with the different
argument order we used before)
@ In (1) abstract the x then you have the left identity:

(bind f).return = foreturn = f

G. Castagna (CNRS) Cours de Programmation Avancée 344/599



Monad laws

We already saw some of these properties:

return x >>=f = fx (1)
m >>= return = m (2)
m >>= (Ax.fx >>=g) = (m>=1f) >>=g (3)

Let us rewrite them in terms of our old bind function (with the different
argument order we used before)

@ In (1) abstract the x then you have the left identity:

(bind f).return = foreturn = f

@ In (2) consider m = gx and abstract the x then you have the right identity

(bind return).g = returnog=g
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Monad laws

We already saw some of these properties:

return x >>=f = fx (1)
m >>= return = m (2)
m >>= (Ax.fx >>=g) = (m>=1f) >>=g (3)

Let us rewrite them in terms of our old bind function (with the different
argument order we used before)

@ In (1) abstract the x then you have the left identity:

(bind f).return = foreturn = f

@ In (2) consider m = gx and abstract the x then you have the right identity

(bind return).g = returnog=g

© Law (3) express associativity (exercise: prove it)

ho(fog) = (hof)og
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Writer, List and State Monads

The monads we showed are special cases of Writer, List, and State monads.
Let us see their (simplified) versions

-- The Writer Monad
data Writer a = Writer (a, [Char])

instance Monad Writer where
return x = Writer (x,[])
Writer (x,1) >>= f = let Writer (x’,1’) = f x in Writer (x’, 1++1?)

-- The List monad ([] data type is predefined)
instance Monad [] where
[x]

return x
m >>= f concat (map f m)

-- The State Monad
data State s a = State (s -> (a,s))

instance Monad (State s) where
return a = State (As -> (a,s)) --\s -> (a,s)
(State g) >>= f = State (As -> let (v,s’) = g s in
let State h = f v in h s?)
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Back to program transformations

Haven’t you already seen the state monad? I
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Back to program transformations

Haven’t you already seen the state monad? I

Let us strip out the type constructor part:
As -> (a,s)

As -> let (v,s’) = as in (f v) s?

return a
a >>= f
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Back to program transformations

Haven’t you already seen the state monad? l

Let us strip out the type constructor part:

return a = As -> (a,s)
a >>=f =As -> let (v,s’) =as in (f v) s’

It recalls somehow the transformation for the state passing style:

[N] = As.(N,s)
[x] = As.(x,s)
[Ax.a] = As.(Ax.[a],s)
[let x=a in b] = Asmatch [a]s with (x,s') — [b]s’
[ab] = Asmatch [a]s with (x8") —

match [b]s’ with (Xp,s") — xaXps”
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Back to program transformations
Haven’t you already seen the state monad? l

Let us strip out the type constructor part:

return a = As -> (a,s)
a >>=f =As -> let (v,s’) =as in (f v) s’

It recalls somehow the transformation for the state passing style:

[N] = As.(N,s)
[x] = As.(x,s)
[Ax.a] = As.(Ax.[a],s)
[let x=a in b] = Asmatch [a]s with (x,s') — [b]s’
[ab] = Asmatch [a]s with (x8") —

match [b]s’ with (Xp,s") — xaXps”

Exactly the same transformation but with different constructions J
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@ Program transformations and monads
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Commonalities of program transformations

Let us temporary abandon Haskell and return to pseudo-OCaml syntax
Consider the conversions to exception-returning style, state-passing style, and
continuation-passing style. For constants, variables and A-abstractions (ie.,
values), we have:

Pure Exceptions State Continuations
[N] | = Val(N) = As.(N,s) = MAk.kKN
[x] | = Val(x) = As.(x,s) = Mk.kx
[Ax.a] | = Val(ix.[a]) | = As.(Ax.[a],s) | = Ak.k(Ax.[a])

In all three cases we return the values N, x, or Ax.[a] wrapped in some
appropriate context.
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Commonalities of program transformations

For 1let bindings we have

[let x=a in b] = match [a] with Exn(z) — Exn(z) | Val(x) — [b]
[let x=a in b] = Asmatch [a]s with (x,s') — [b]s
[let x=a in b] = Ak.[a](Ax.[b]k)

In all three cases we extract the value resulting from the computation [a], we
bind it to the variable x and proceed with the computation [b].
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Commonalities of program transformations

For applications we have

[ab] = match [a] with
| Exn(xa) — Exn(xa)
| Val(x;) — match [b] with
| Exn(yp) — Exn(yp)
| Val(yb) — xayb

[ab] = Asmatch [a]s with (xs,8") —
match [b]s’ with (yp,8") — Xayps”
[ab] = Ak.[a](Axa.[b](AYb-Xa b Kk))

We bind the value of [a] to the variable x,, then bind the value of [b] to the
variable yp, then perform the application x,yp, and rewrap the result as needed.
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Commonalities of program transformations

For types notice that if a: T then [a] : [t] mon
where

- [[T1 — Tg]] =Ty — [[Tg]] mon

- [B]] = B for bases types B.

For exceptions:

type o mon = Val of o | Exn of exn

For states:
type 00 mon = state — O X state

For continuations:
type O mon = (0 — answer) — answer
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Monadic translation

The previous three translations are instances of the following translation

[N] = return N
[x] = return x
[Ax.a] = return (Ax.[a])
[let x=a in b] = [a] >>= (Ax.[b])

[ab] = [a] >>= (Axa.[b] >>= (Ayb-Xays))

just the monad changes, that is, the definitions of bind and return).
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Exception monad

So the previous translation coincides with our exception returning
transformation for the following definitions of bind and return:

type o0 mon = Val of o | Exn of exn
return a = Val(a)

m >>= f = match m with Exn(x) -> Exn(x) | Val(x) -> f x
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Exception monad

So the previous translation coincides with our exception returning
transformation for the following definitions of bind and return:
type o0 mon = Val of o | Exn of exn

return a = Val(a)

m >>= f = match m with Exn(x) -> Exn(x) | Val(x) -> f x

bind encapsulates the propagation of exceptions in compound expressions
such as the application ab or let bindings. As usual we have:

return : 00 — O mon

(>>=) : amon — (00 — B mon) — [ mon
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Exception monad

So the previous translation coincides with our exception returning
transformation for the following definitions of bind and return:

type o0 mon = Val of o | Exn of exn
return a = Val(a)
m >>= f = match m with Exn(x) -> Exn(x) | Val(x) -> f x

bind encapsulates the propagation of exceptions in compound expressions
such as the application ab or let bindings. As usual we have:

return : 00 — O mon

(>>=) : amon — (00 — B mon) — [ mon

Additional operations in this monad:

raise x = Exn(x)
trywith m £ = match m with Exn(x) -> f x | Val(x) -> Val(x)
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The State monad

To have the state-passing transformation we use instead the following
definitions for return and bind:

type & mon = state — O X state
return a = As. (a, s)
m >>= f = As. match m s with (x, s’) -> f x s’

bind encapsulates the threading of the state in compound expressions.
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The State monad

To have the state-passing transformation we use instead the following
definitions for return and bind:

type & mon = state — O X state

return a = As. (a, s)

m >>= f = As. match m s with (x, s’) -> f x s’

bind encapsulates the threading of the state in compound expressions.

Additional operations in this monad:
ref x

As. store_alloc x s
deref r = As. (store_read r s, s)

assign r x = As. store_write r x s
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The Continuation monad

Finally the following monad instance yields the continuation-passing
transformation:

type O mon = (0. — answer) — answer
return a = Ak. k a

m>>=f =2Xk. m (Av. £ v k)

Additional operations in this monad:

callcc £ = Ak. f k k

throw x y = Ak. x y
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More on monadic translation

We can extend the monadic translation to more constructions of the language.

[ufdx.a] = return(uf.dx.[a])
[aopb] = [a] >>= (Axa.[b] >>= (Ayp.return(xzopys)))
[C(at,....an)] = [ai] >>= (Axy....[as] >>= (Axp.return(C(xy,...,Xn))
[match a with ..p..] = [a] >>= (Axgmatch x, with ..[p]...)

where [C(x1,...,xn) — a] = C(x1,...,x5) — [a]

All these are parametric in the definition of bind and return.
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Correctness of the monadic translation

The fundamental property of the monadic translation is that it does not alter the
semantics of the computation it encodes. It just adds to the computation some
effects.

Ifa= v, then [a] = return v/
N ifv=N
Ax.[a] ifv=2»Ax.a

where v = {
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Examples of monadic translation

[1t+fx] =
(return 1) >>= (Ax_1.
((return f) >>= (Ax_2.
(return x) >>= (Ax_3. x_2 x_3))) >>=( Ax_4.
return (x_1 + x_4)))

After administrative reductions using the first monadic law:
(return x >>= f is equivalentto f x)

[1+£f£x] =
(f x) >>= (Ax_4. return (1 + x_4))
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Examples of monadic translation

[1t+fx] =
(return 1) >>= (Ax_1.
((return f) >>= (Ax_2.
(return x) >>= (Ax_3. x_2 x_3))) >>=( Ax_4.
return (x_1 + x_4)))

After administrative reductions using the first monadic law:
(return x >>= f is equivalentto f x)

[1+£f£x] =
(f x) >>= (Ax_4. return (1 + x_4))

A second example

[ ufact. An. if n = O then 1 else n * fact(n-1) | =
return (ufact. An.
ifn=20
then return 1
else (fact(n-1)) >>= (Av. return (n * v))

)
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What we have done:
@ Take a program that performs some computation

@ Apply the monadic transformation to it. This yields a new program that
uses return and >>=in it.

© Choose a monad (that is, choose a definition for return and >>=) and
the new programs embeds the computation in the corresponding monad
(side-effects, exceptions, etc.)

© You can now add in the program the operations specific to the chosen
monad: although it includes effects the program is still pure.
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@ Monads as a general programming technique
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Monads as a general programming technique

Monads provide a systematic way to structure programs into two
well-separated parts:

@ the proper algorithms, and

@ the “plumbing” needed by computation of these algorithms to produce
effects (state passing, exception handling, non-deterministic choice, etc).
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Monads as a general programming technique

Monads provide a systematic way to structure programs into two
well-separated parts:

@ the proper algorithms, and

@ the “plumbing” needed by computation of these algorithms to produce
effects (state passing, exception handling, non-deterministic choice, etc).

In addition, monads can also be used to modularize code and offer new
possibilities for reuse:

@ Code in monadic form can be parametrized over a monad and reused with
several monads.

@ Monads themselves can be built in an incremental manner.
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Monads as a general programming technique

Monads provide a systematic way to structure programs into two
well-separated parts:

@ the proper algorithms, and

@ the “plumbing” needed by computation of these algorithms to produce
effects (state passing, exception handling, non-deterministic choice, etc).

In addition, monads can also be used to modularize code and offer new
possibilities for reuse:

@ Code in monadic form can be parametrized over a monad and reused with
several monads.

@ Monads themselves can be built in an incremental manner.

Back to Haskell

Let us put all this at work by writing in Haskell the canonical, efficient
interpreter that ended our refresher course on operational semantics.
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The canonical, efficient interpreter in OCaml (reminder)

# type term = Const of int | Var of int | Abs of term

| App of term * term | Plus of term * term

and value = Vint of int | Vclos of term * environment
and environment = value list

(* use Vec instead *)
# exception Error

# let rec eval e a = (* : environment -> term -> value %)
match a with
| Const n -> Vint n
| Var n -> List.nth e n
| Abs a -> Vclos(Abs a, e)
| App(a, b) -> ( match eval e a with
| Vclos(Abs c, e’) ->
let v = eval e b in
eval (v :: e’) c
| _ -> raise Error)
| Plus(a,b) -> match (eval e a, eval e b) with
| (Vint n, Vint m) -> Vint (n+m)
| _ -> raise Error

# eval [] (Plus(Const(5), (App(Abs(Var 0),Const(2)))));; (* 5+((Ax.x)2)—7 *)
- : value = Vint 7

Note:a P1lus operator added and used Abs instead of Lam
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The canonical, efficient interpreter in Haskell

data Exp = Const Integer -- expressions

| Var Integer

| Plus Exp Exp

| Abs Exp

| App Exp Exp
data Value = Vint Integer -- values

| Vclos Env Exp
type Env = [Value] -- list of values
eval0 :: Env -> Exp -> Value
evalO env (Const i ) = Vint i
evalO env (Var n) =env !!'n -- n-th element
evalO env (Plus el e2 ) = let Vint il = evalO env el

Vint i2 = evalO env e2 -- let syntax

in Vint (i1 + i2 )
Vclos env e
let Vclos envO body = evalO env el
val = eval0 env e2
in eval0 (val : envO) body

evalO env (Abs e)
evalO env (App el e2 )
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The canonical, efficient interpreter in Haskell

data Exp = Const Integer -- expressions
| Var Integer
| Plus Exp Exp
| Abs Exp
| App Exp Exp
data Value = Vint Integer -- values
| Vclos Env Exp
type Env = [Value] -- list of values
eval0 :: Env -> Exp -> Value
evalO env (Const i ) = Vint i

env !! n -- n-th element
let Vint il evalO env el
Vint i2 = evalO env e2 -- let syntax
in Vint (i1 + i2 )
Vclos env e
let Vclos envO body = evalO env el
val = evalO env e2
in eval0 (val : envO) body

eval0 env (Var n)
eval0 env (Plus el e2 )

evalO env (Abs e)
evalO env (App el e2 )

No exceptions: pattern matching may fail.

*Main> evalO [] (App (Const 3) (Const 4))
*xx Irrefutable pattern failed for pattern Main.Vclos env body
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Haskell “do” Notation

Haskell has a very handy notation for monads
In a do block you can macro expand every intermediate line of the form

pattern <- expression into expression >>= \ pattern ->
and every intermediate line of the form
expression into

expression >>= \ _ ->
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Haskell “do” Notation

Haskell has a very handy notation for monads
In a do block you can macro expand every intermediate line of the form

pattern <- expression into expression >>= \ pattern ->
and every intermediate line of the form
expression into expression >>= \ _ ->

This allows us to simplify the monadic translation for expressions which in
Haskell syntax is defined as

[N] = return N
[x] = return x
[Ax.a] = return (\x->[a])
[let x=a in b] = [a] >>= (\x->[b])
[ab] = [a] >>= (a>lb] >>= (\yo->xae))

By using the do notation the last two cases become far simpler to understand
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Monadic transformation in Haskell

[N] = return N
[x] = return x
[Ax.a] = return (\x->[a])
[let x=a in b] = do x <- [4q]
[]
[ab] = do x5 <- [4]
Yo <~ [b]
XaYb

The translation shows that do is the monadic version of let.
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Monadic transformation in Haskell

[N] = return N
[x] = return x
[Ax.a] = return (\x->[a])
[let x=a in b] = do x <- [4q]
[]
[ab] = do x5 <- [4]
Yo <~ [b]
XaYb

The translation shows that do is the monadic version of let.

Monad at work
Let us apply the transformation to our canonical efficient interpreter
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The canonical, efficient interpreter in monadic form

return a

evall
evall env (Const i )
evall env (Var n)

evall env (Plus el e2 )

evall env (Abs e)
evall env (App el e2 )

newtype Identity a = MkId a

instance Monad Identity where
= MkId a
(MkId x) >>=f = f x

-- i.e. return = id
f

--i.e. x >>=f = X

:: Env -> Exp -> Identity Value

return (Vint i)
return (env !! n)
do Vint il <- evall env el
Vint i2 <- evall env e2
return (Vint (il + i2 ))
return (Vclos env e)
do Vclos env0 body <- evall env el
val <- evall env e2
evall (val : envO ) body

G. Castagna (CNRS)
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The canonical, efficient interpreter in monadic form

newtype Identity a =

return a =
(MKId x) >>= f =

evall

evall env (Const i )

evall env (Var n)
evall env (Plus el e2 )
evall env (Abs e)
evall env (App el e2 )

MkId a
instance Monad Identity where
= MkId a

f x

:: Env -> Exp -> Identity Value

return =
x >>=f =

-- i.e. id
--1i.e. f x

return (Vint i)
return (env !! n)
do Vint il <- evall env el
Vint i2 <- evall env e2
return (Vint (il + i2 ))
return (Vclos env e)
do Vclos env0 body <- evall env el
val <- evall env e2
evall (val : envO ) body

We just replaced “do” for “let”, replaced “<-" for “=", and put “return” in front

of every value returned.
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The canonical, efficient interpreter in monadic form

newtype Identity a = MkId a

instance Monad Identity where
return a = MkId a -- i.e. return = id
(MkId x) >>= f = f x ——di.e. x>>=f =f x
evall :: Env -> Exp -> Identity Value
evall env (Const i ) return (Vint i)
evall env (Var n) return (env !! n)
evall env (Plus el e2 ) do Vint il <- evall env el
Vint i2 <- evall env e2
return (Vint (il + i2 ))
return (Vclos env e)
do Vclos env0 body <- evall env el
val <- evall env e2
evall (val : envO ) body

evall env (Abs e)
evall env (App el e2 )

We just replaced “do” for “let”, replaced “<-" for “=", and put “return” in front
of every value returned. Let us try to execute (Ax.(x +1))4

*Main> let MkId x = (evall [] (App(Abs(Plus(Var 0) (Const 1)))(Const 4)))
in x

Vint 5
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Although we wrote eval1 for the Identity monad, the type of evall could be
generalized to

’ evall :: Monad m => Env -> Exp -> m Value,

because we do not use any monadic operations other than return and >>=
(hidden in the do notation): no raise, assign, trywith, ... .
Recall that the type

Monad m => Env -> Exp -> m Value,
reads “for every type (constructor) m that is an instance of the type class
Monad, the function has type Env -> Exp -> m Value”.
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Although we wrote eval1 for the Identity monad, the type of evall could be
generalized to

’ evall :: Monad m => Env -> Exp -> m Value,

because we do not use any monadic operations other than return and >>=
(hidden in the do notation): no raise, assign, trywith, ... .
Recall that the type

Monad m => Env -> Exp -> m Value,
reads “for every type (constructor) m that is an instance of the type class
Monad, the function has type Env -> Exp -> m Value”.
In our first definition of evall we explicitly instantiated m into the Identity
monad, but we can let the system instantiate it. For instance, if we give eval
the generalized type above, then we do not need to extract the value
encapsulated in the effect:

*Main> (evall [] (App(Abs(Plus(Var 0) (Const 1)))(Const 4)))
Vint 5

The ghci prompt has run the expression in (ie, instantiated m by) the 10
monad, because internally the interpreter uses the print function, which lives in
just this monad.
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Instantiating eval with the Exception monad

We decide to instantiate m in eval with the following monad:

data Exception e a = Val a | Exn e

instance Monad (Exception e) where

return x = Val x
m >>= f = case m of
Exn x -> Exn x
Val x -> f x
raise :: e -> Exception e a

raise x = Exn x

trywith :: Exception e a -> (e -> Exception e a) -> Exception e a
trywith m £ = case m of

Exn x -> f x

Val x -> Val x

Note: Haskell provides an Error monad for exceptions. Not dealt with here.
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Instantiating eval with the Exception monad

We can do dull instantiation:

evall :: Env -> Exp -> Exception e Value
evall env (Const i ) = return (Vint i)
evall env (Var n) return (env !! n)
evall env (Plus el e2 ) do Vint il <- evall env el
Vint i2 <- evall env e2
return (Vint (i1 + i2))
return (Vclos env e)
do Vclos env0 body <- evall env el
val <- evall env e2
evall (val : env0O) body

evall env (Abs e)
evall env (App el e2 )
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Instantiating eval with the Exception monad

We can do dull instantiation:

evall :: Env -> Exp -> Exception e Value
evall env (Const i ) = return (Vint i)
evall env (Var n) return (env !! n)
evall env (Plus el e2 ) do Vint il <- evall env el
Vint i2 <- evall env e2
return (Vint (i1 + i2))
return (Vclos env e)
do Vclos env0 body <- evall env el
val <- evall env e2
evall (val : env0O) body

evall env (Abs e)
evall env (App el e2 )

Not interesting since all we obtained is to encapsulate the result into a Val
constructor.
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Instantiating eval with the Exception monad

We can do dull instantiation:

evall :: Env -> Exp -> Exception e Value
evall env (Const i ) = return (Vint i)
evall env (Var n) return (env !! n)
evall env (Plus el e2 ) do Vint il <- evall env el
Vint i2 <- evall env e2
return (Vint (i1 + i2))
return (Vclos env e)
do Vclos env0 body <- evall env el
val <- evall env e2
evall (val : env0O) body

evall env (Abs e)
evall env (App el e2 )

Not interesting since all we obtained is to encapsulate the result into a Val
constructor.

Use the exception monad to do as the OCaml implementation and raise an
error when the applications are not well-typed
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Instantiating eval with the Exception monad

New interpreter with exceptions:

eval2 :: Env -> Exp -> Exception String Value -- exceptions as strings
eval2 env (Const i ) return (Vint i)
eval2 env (Var n) return (env !! n)
eval2 env (Plus el e2 ) do x1 <- eval2 env el
x2 <- eval2 env e2
case (x1 , x2) of
(Vint i1, Vint i2)
-> return (Vint (il + i2))
_ -> raise "type error in addition"
return (Vclos env e)
do fun <- eval2 env el
val <- eval2 env e2
case fun of
Vclos envO body
-> eval2 (val : envO) body
_ -> raise "type error in application"

o n

eval2 env (Abs e)
eval2 env (App el e2 )
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Instantiating eval with the Exception monad

New interpreter with exceptions:

eval2 :: Env -> Exp -> Exception String Value -- exceptions as strings
eval2 env (Const i ) return (Vint i)
eval2 env (Var n) return (env !! n)
eval2 env (Plus el e2 ) do x1 <- eval2 env el
x2 <- eval2 env e2
case (x1 , x2) of
(Vint i1, Vint i2)
-> return (Vint (il + i2))
_ -> raise "type error in addition"
return (Vclos env e)
do fun <- eval2 env el
val <- eval2 env e2
case fun of
Vclos envO body
-> eval2 (val : envO) body
_ -> raise "type error in application"

o n

eval2 env (Abs e)
eval2 env (App el e2 )

And we see that the exception is correctly raised

*Main> let Val x = ( eval2 [] (App (Abs (Var 0)) (Const 3)) ) in x
Vint 3

*Main> 1let Exn x = ( eval2 [] (App (Const 2) (Const 3)) ) in x
"type error in application"
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Instantiating eval with the Exception monad

Advantages:
@ The function eval?2 is pure!

@ Module few syntactic differences the code is really the same as code that
would be written in an impure language (cf. the corresponding OCaml
code)

@ All “plumbing” necessary to preserve purity is defined separately (eg, in
the Exception monad and its extra functions)

@ In most cases the programmer does not even need to define “plumbing”
since monads provided by standard Haskell libraries are largely sufficient.
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Instantiating eval with the Exception monad

Advantages:
@ The function eval?2 is pure!

@ Module few syntactic differences the code is really the same as code that
would be written in an impure language (cf. the corresponding OCaml
code)

@ All “plumbing” necessary to preserve purity is defined separately (eg, in
the Exception monad and its extra functions)

@ In most cases the programmer does not even need to define “plumbing”
since monads provided by standard Haskell libraries are largely sufficient.

A second try

Let us instantiate the type Monad m => Env -> Exp -> m Value with a
different monad m. For our next example we choose the State monad.
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Instantiating eval with the State monad

Goal: Add profiling capabilities by recording the number of evaluation steps.

-- The State Monad
data State s a = MkSt (s -> (a,s))

instance Monad (State s) where

return a = MkSt (\s -> (a,s))
(MkSt g) >>= f = MkSt (\s -> let (v,s’) =g s
MkSt h = f v
in h s?)

get :: State s s
get = MkSt (\s -> (s,s))

put :: s -> State s ()
put s = MkSt (\_ -> (0O),s))

To count evaluation steps we use an Integer number as state (ie, we use the
State Integer monad). The operation tick, retrieves the hidden state from
the computation, increases it and stores it back

tick :: State Integer ()
tick = do st <- get
put (st + 1)
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Instantiating eval with the State monad

eval3 :: Env -> Exp -> State

eval3 env (Const i ) = do
eval3 env (Var n) = do
eval3 env (Plus el e2 ) = do

eval3 env (Abs e) = do

eval3 env (App el e2 ) do

Integer Value

tick

return (Vint i)

tick

return (env !! n)

tick

x1 <- eval3 env el

x2 <- eval3 env e2

case (x1 , x2) of
(Vint i1, Vint i2)

-> return (Vint (i1 + i2 ))

tick

return (Vclos env e)

tick

fun <- eval3 env el

val <- eval3 env e2

case fun of

Vclos env0 body

-> eval3 (val

: env0 ) body

The evaluation of (Ax.x)3 takes 4 steps of reduction. This is shown by giving 0

as initial value of the state:

*Main> let MkSt s = eval3 [] (App (Abs (Var 0)) (Comst 3)) in s O

(Vint 3,4)
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Combining monads the hard way

What if we want both exceptions and state in our interpreter?

@ Merging the code of eval2 and eval3 is straightforward: just add the
code of eval?2 that raises the type-error exceptions at the end of the Plus
and App cases in the definition of eval3.

@ The problem is how to define the monad that supports both effects.
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Combining monads the hard way

What if we want both exceptions and state in our interpreter?

@ Merging the code of eval2 and eval3 is straightforward: just add the
code of eval?2 that raises the type-error exceptions at the end of the Plus
and App cases in the definition of eval3.

@ The problem is how to define the monad that supports both effects.

We can write from scratch the monad m that supports both effects.
eval4d :: Monad m => Env -> Exp -> m Value

Where the monad m above is one of the following two cases:
@ Use StateOfException s e form: (with s=Integer and e=[Char])

data StateOfException s e a = State (s -> Exception e (s,a))
the computation can either return a new pair state, value or generate an
error (ie, when an exception is raised the state is discarded)
© Use ExceptionOfState s e form: (with s=Integer and e=[Char])
data ExceptionOfState s e a = State (s -> ((Exception e a), s ))
the computation always returns a pair value and new state, and the value
in this pair can be either an error or a normal value.
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Combining monads the hard way

Notice that for the case State (s -> ((Exception e a), s )) thereare
two further possibilities, according to the state we return when an exception is
caught. Each possibility corresponds to a different definition of trywith
@ backirack the modifications made by the computation m that raised the
exception:

trywith m £ = \s -> case m 8 of
(Val x , s?) -> (Val x , s?)
(Exnx , 8) >fxs

@ keep the modifications made by the computation m that raised the
exception:
trywith m £ = \s -> case m 8 of

(Val x , s’) -> (Val x , s?)
(Exn x , 8?) > f x 8?
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Combining monads the hard way

Notice that for the case State (s -> ((Exception e a), s )) thereare
two further possibilities, according to the state we return when an exception is
caught. Each possibility corresponds to a different definition of trywith
@ backirack the modifications made by the computation m that raised the
exception:

trywith m £ = \s -> case m 8 of
(Val x , s?) -> (Val x , s?)
(Exnx , 8) >fxs

@ keep the modifications made by the computation m that raised the
exception:
trywith m £ = \s -> case m 8 of

(Val x , s’) -> (Val x , s?)
(Exn x , 8?) > f x 8?

Avoid the boilerplate

Each of the standard monads is specialised to do exactly one thing. In real
code, we often need several effects at once. Composing monads by hand or
rewriting them from scratch soon reaches its limits
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Combining monads by compositionality

By applying the monadic transformation to eval we passed from a function of
type

’ Env -> Exp -> Value, ‘

to a function of type

’ Monad m => Env -> Exp -> m Value, ‘

In this way we made the code for eval parametric in the monad m.

Later we chose to instantiate m to some particular monad in order to use the
specific characteristicts

IDEA: transform the code of an instance definition of the monad class so that
this definition becomes parametric in some other monad m.
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Combining monads by compositionality

By applying the monadic transformation to eval we passed from a function of
type

Env -> Exp -> Value, ‘

to a function of type
’ Monad m => Env -> Exp -> m Value, ‘

In this way we made the code for eval parametric in the monad m.

Later we chose to instantiate m to some particular monad in order to use the
specific characteristicts

IDEA: transform the code of an instance definition of the monad class so that
this definition becomes parametric in some other monad m.

Monad transformer
A monad instance that is parametric in another monad is a monad transformer.

To work on the monad parameter, apply the monadic transformation to the
definitions of instances J
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Monad Transformers

Monad Transformers can help:

@ A monad transformer transforms a monad by adding support for an
additional effect.

@ A library of monad transformers can be developed, each adding a specific
effect (state, error, . . . ), allowing the programmer to mix and match.

@ A form of aspect-oriented programming.
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Monad Transformers

Monad Transformation in Haskell

@ A monad transformer maps monads to monads. Represented by a type
constructor T of the following kind:

T :: (x => %) -> (x -> %)

@ Additionally, a monad transformer adds computational effects. A mapping
1ift from computations in the underlying monad to computations in the
transformed monad is needed:

lift :: Ma-> TM a
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Monad Transformers

Monad Transformation in Haskell

@ A monad transformer maps monads to monads. Represented by a type
constructor T of the following kind:
T 0 (k => %) > (x -> %)
@ Additionally, a monad transformer adds computational effects. A mapping
1ift from computations in the underlying monad to computations in the
transformed monad is needed:

lift :: Ma ->(TM a

Little reminder
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Are you lost? ... Let us recap

Goal: write the following code where all the plumbing to handle effects is
hidden in the definition of m

eval :: (Monad m) => Env -> Exp -> m Value
eval env (Const i ) = do tick

return (Vint i)
eval env (Var n) = do tick

return (env !! n)

do tick
x1 <- eval env el
x2 <- eval env e2
case (x1 , x2) of
(Vint i1, Vint i2)
-> return (Vint (il + i2 ))
-> raise "type error in addition"

eval env (Plus el e2)

eval env (Abs e) = do tick
return (Vclos env e)
eval env (App el e2) = do tick
fun <- eval env el
val <- eval env e2
case fun of
Vclos env0 body
-> eval (val : envO ) body
_ -> raise "type error in application"

G. Castagna (CNRS) Cours de Programmation Avancée 379/599



Are you lost? ... Let us recap

The dirty work is in the definition of the monad m that will be used. Two ways
are possible:

@ Define m from scratch: Define a new monad m so as it combines the
effects of the Exception and of the State monads for which raise and
tick are defined.

Advantages: a fine control on the definition
Drawbacks: no code reuse, hard to mantain and modify

@ Define m by composition: Define m by composing more elementary
blocks that provide functionalities of states and exceptions respectively.
Advantages: modular development; in many case it is possible to reuse
components from the shelves.

Drawbacks: Some trade-off since the building blocks may not provide
exactly the sought combination of functionalities.
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Are you lost? ... Let us recap

The dirty work is in the definition of the monad m that will be used. Two ways
are possible:

@ Define m from scratch: Define a new monad m so as it combines the
effects of the Exception and of the State monads for which raise and
tick are defined.

Advantages: a fine control on the definition
Drawbacks: no code reuse, hard to mantain and modify

@ Define m by composition: Define m by composing more elementary
blocks that provide functionalities of states and exceptions respectively.
Advantages: modular development; in many case it is possible to reuse
components from the shelves.

Drawbacks: Some trade-off since the building blocks may not provide
exactly the sought combination of functionalities.

Monad transformers
We show the second technique by building the sought m from two monad

transformers for exceptions and states respectively.
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Step 1: defining the functionalities

We define two subclasses of the Monad class
EXCEPTION MONAD

An Exception Monad is a monad with an operation raise that takes a
string and yields a monadic computation

class Monad m => ExMonad m where
raise :: String -> m a

STATE MONAD

A State Monad is a monad with an operation tick that yields a
computation on values of the unit type.

class Monad m => StMonad m where
tick :: m ()
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Step 1: defining the functionalities

We define two subclasses of the Monad class

EXCEPTION MONAD
An Exception Monad is a monad with an operation raise that takes a
string and yields a monadic computation

class Monad m => ExMonad m where
raise :: String -> m a

STATE MONAD

A State Monad is a monad with an operation tick that yields a
computation on values of the unit type.

class Monad m => StMonad m where
tick :: m ()

It is now possible to specify a type for eval so that its definition type-checks
eval :: (ExMonad m, StMonad m) => Env -> Exp -> m Value

eval env (Const i) = do tick

_ -> raise "type error in addition"
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Step 2: defining the building blocks

We now need to define a monad m that is an instance of both StMonad and
ExMonad.
We do it by composing two monad transformers

Definition (Monad transformer)

A monad transformer is a higher-order operator t that maps each monad m to a
monad (t m), equipped with an operation 1ift that promotes a computation
x :: m a from the original monad m that is fed to t, to a computation

(1ift x) :: (t m) a
on the monad (t m).

Definition of the class of monad transformers

class MonadTrans t where
1lift :: Monad m => m a -> (t m) a
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Example

If we want to apply to the monad Exception String a transformer T that
provides some operation xyz, then we need to lift raise from Exception
Stringto T(Exception String).

Without the lifting the only operation defined for T (Exception String) would

be xyz. With 1ift since

raise :: String -> Exception String,

then:

lift.raise :: String -> T(Exception String)
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Example

If we want to apply to the monad Exception String a transformer T that
provides some operation xyz, then we need to lift raise from Exception
Stringto T(Exception String).

Without the lifting the only operation defined for T (Exception String) would
be xyz. With 1ift since

raise :: String -> Exception String,

then:

lift.raise :: String -> T(Exception String)

Nota bene

There is no magic formula to produce the transformer versions of a given
monad
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Step 2a: A monad transformer for exceptions

Consider again our first monad Exception e:
data Exception e a = Val a | Exn e

instance Monad (Exception e) where
return x = Val x
m >>= f case m of Exn x -> Exn x ; Val x -> f x

raise :: e -> Exception e a
raise x = Exn x
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Step 2a: A monad transformer for exceptions

Consider again our first monad Exception e:
data Exception e a = Val a | Exn e

instance Monad (Exception e) where

return x = Val x
m >>= f = case m of Exn x -> Exn x ; Val x -> f x
raise :: e -> Exception e a

raise x = Exn x

We now want to modify the code above in order to obtain a transformer

ExceptionT in which the computations are themselves on monads, that is:
’data ExceptionT m a = MkExc (m (Exception String a))

The (binary) type constructor ExceptionT “puts exceptions inside” another
monad m (convention: a monad transformers is usually named as the
corresponding monad with a T’ at the end.)

For the sake of simplicity we consider that exceptions are of type String and not the
more general transformer (ExceptionT e):

data ExceptionT e m a = MkExc (m (Exception e a))
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Step 2a: A monad transformer for exceptions

Consider again our first monad Exception e:
data Exception e a = Val a | Exn e

instance Monad (Exception e) where
return x = Val x
m >>= f

case m of Exn x -> Exn x ; Val x -> f x

raise :: e -> Exception e a
raise x = Exn x

We now want to modify the code above in order to obtain a transformer

ExceptionT in which the computations are themselves on monads, that is:
’data ExceptionT m a = MkExc (m (Exception String a))

The (binary) type constructor ExceptionT “puts exceptions inside” another
monad m (convention: a monad transformers is usually named as the
corresponding monad with a T’ at the end.)

We want ExceptionT to be a monad transformer, ie. (ExceptionT m) to be a
monad: we must define bind and return for the monad (ExceptionT m):
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data ExceptionT m a = MkExc (m (Exception String a))

-- The ’recover’ function just strips off the outer MkExc constructor,

-- for convenience
recover :: ExceptionT m a -> m (Exception String a)
recover (MKExc x) = x

-- return is easy. It just wraps the value first in the monad m
-- by return (of the underlying monad) and then in MkExc
returnET :: (Monad m) => a -> ExceptionT m a

returnET x = MkExc (return (Val x))

-- A first version for bind uses do and return to work on the

-- underlying monad m ... whatever it is.

bindET :: (Monad m) => (ExceptionT m a) -> ( a -> ExceptionT m b)
-> ExceptionT m b

bindET (MkExc x) f = -- x of type m (Exception String a)
MkExc ( -- we wrap the result in MkExc
do y <- x -- y is of type Exception String a
case y of

Val z -> recover (f z)
Exn z -> return (Exn z) )

Notice the use of the monadic syntax (do, return,...) to work on the monad

parameter m.
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Step 2a: A monad transformer for exceptions

More compactly:

return x = M
x >>=f M

instance Monad m => Monad (ExceptionT m) where

kExc (return (Val x))

kExc (recover x >>= r)

where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

G. Castagna (CNRS)
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)
where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

Moreover, (ExceptionT m) is an exception monad, not just a plain one...

instance Monad m => ExMonad (ExceptionT m) where
raise e = MkExc (return (Exn e))
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)
where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

Moreover, (ExceptionT m) is an exception monad, not just a plain one...

instance Monad m => ExMonad (ExceptionT m) where
raise e = MkExc (return (Exn e))

ExceptionT is a monad tranformer because we can lift any action in m to an
action in (ExceptionT m) by wrapping its result in a’ Val’ constructor...

instance MonadTrans ExceptionT where
lift g = MkExc $ do { x <- g; return (Val x) }
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)
where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

Moreover, (ExceptionT m) is an exception monad, not just a plain one...

instance Monad m => ExMonad (ExceptionT m) where
raise e = MkExc (return (Exn e))

ExceptionT is a monad tranformer because we can lift any action in m to an
action in (ExceptionT m) by wrapping its result in a’ Val’ constructor...

instance MonadTrans ExceptionT where
lift g = MkExc $ do { x <- g; return (Val x) }

We can now use the 1ift operation to make (ExceptionT m) into a state
monad whenever m is one, by lifting m's tick operation to (ExceptionT m).

instance StMonad m => StMonad (ExceptionT m) where
tick = 1lift tick
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Step 2b: A monad transformer for states

newtype StateT m a = MkStt ( Int -> m (a,Int))

-- strip off the MkStt constructor
apply :: StateT m a -> Int -> m (a, Int)
apply (MkStt f) = f

-- if m is a monad, then StateT m is a monad
instance Monad m => Monad (StateT m) where
return x = MkStt $ \s -> return (x,s)
p >>=q = MkStt $§ \s -> do (x,s’) <- apply p s
apply (q x) s’

-- StateT is a monad transformer
instance MonadTrans StateT where
lift g = MkStt $ \s -> do x <- g; return (x,s)

-- if m is a monad, then StateT m is not only a monad
-- but also a STATE MONAD
instance (Monad m) => StMonad (StateT m) where

tick = MkStt $ \s -> return ((), s+1)

-- use lift to promote StateT m to an exception monad
instance ExMonad m => ExMonad (StateT m) where
raise e = 1lift (raise e)
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Lost again? Let us recap this Step 2

In Step 2 we defined some monad trasformers of the form XyzT.

@ To be a “transformer” XyzT must map monads into monads. So ifm is a
monad (ie., it provides bind and return), then so must (XyzT m) be.
So we define bind and return for (XyzT m) and use monadic notation
to work on the generic m.

@ But (XyzT m) must not only provide bind and return, but also some
operations typical of some class Xyz, subclass of the Monad class.

So we define also these operations by declaring that (XyzT m) is an
instance of Xyz.

@ This is not enough for XyzT to be a transformer. It must also provide a
1lift operation. By defining it we declare that XyzT is an instance of the
class MonadTrans

© Finally we can use the 1ift function to make (XyzT m) “inherit” the
characteristics of m: so if m is an instance of some monadic subclass Abc,
then we can make also (XyzT m) be a Abc monad simply by lifting (by
composition with 1ift) all the operations specific of Abc.
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Step 3: Putting it all together...

Just a matter of assembling the pieces.
Interestingly, though, there are TWO ways to combine our transformers to build
a monad with exceptions and state:

T
@ |evalStEx :: Env -> Exp -> StateT (ExceptionT Identity) Value
evalStEx = eval

T
@ |evalExSt :: Env -> Exp -> ExceptionT (StateT Identity) Value
evalExSt = eval

Note that ExceptionT Identity and StateT Identity are respectively the
Exception and State monads defined before, modulo two modifications:

@ Values are further wrapped in an inner MkId constructor

@ To enhance readibility | used distinct names for the types and their

constructors, for instance:
newtype StateT m a = MkStt (Int -> m (a,Int))

rather then
newtype StateT m a = StateT (Int -> m (a,Int))

as it is customary in the Haskell library
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Order matters

At first glance, it appears that evalExSt and evalStEx do the same thing...

five (App(Abs(Plus(Var 0) (Const 1))) (Const 4)) -—-(Ax. (x+1))4
wrong = (App(Abs(Plus(Var 0)(Const 1))) (Abs(Var 0))) --(Ax.(x+1)) (hy.y)

o

*Main> evalStEx [] five
Vint 5, count: 6

*Main> evalExSt [] five
Vint 5, count: 6
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Order matters

At first glance, it appears that evalExSt and evalStEx do the same thing...

five = (App(Abs(Plus(Var 0) (Const 1))) (Const 4)) --(x. (x+1))4
wrong = (App(Abs(Plus(Var 0)(Const 1))) (Abs(Var 0))) --(Ax.(x+1)) (hy.y)

*Main> evalStEx [] five
Vint 5, count: 6

*Main> evalExSt [] five
Vint 5, count: 6

BUT ...

*Main> evalStEx [] wrong
exception: type error in addition

*Main> evalExSt [] wrong
exception: type error in addition, count: 6

- StateT (ExceptionT Identity) either returns a state or an exception
- ExceptionT (StateT Identity) always returns a state

'omitted the code to print the results of monadic computations. Tt can be found in the accompagnying code:
http://www.irif.fr/~“gc/slides/evaluator.hs
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The Continuation monad

Computation type: Computations which can be interrupted and resumed.

Binding strategy: Binding a function to a monadic value creates a new
continuation which uses the function as the continuation of the monadic
computation.

Useful for: Complex control structures, error handling and creating co-routines.
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The Continuation monad

Computation type: Computations which can be interrupted and resumed.

Binding strategy: Binding a function to a monadic value creates a new
continuation which uses the function as the continuation of the monadic
computation.

Useful for: Complex control structures, error handling and creating co-routines.

From haskell.org:

Abuse of the Continuation monad can
produce code that is impossible to
understand and maintain.

Many algorithms which require continuations in other languages do not require
them in Haskell, due to Haskell’s lazy semantics.
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The Continuation monad

newtype Cont r a = Cont ((a -> r) -> r)

app :: Cont r a -> ((a -> r) -> r) -- remove the wrapping Cont
app (Cont f) = £

instance Monad (Cont r) where
return a = Cont $ \k -> k a --
(Cont ¢c) >>=f = Cont $ \k -> ¢ (\a -> app (f a) k) --

Ak.ka
Ak.c(Aa.f ak)

o

Cont r ais a CPS computation that produces an intermediate result of type a
within a CPS computation whose final result type is r.

The return function simply creates a continuation which passes the value on.
The >>= operator adds the bound function into the continuation chain.

class (Monad m) => MonadCont m where
callCC :: ((a->mb) ->ma) ->ma

instance MonadCont (Cont r) where
callCC £ = Cont (\k -> app (f (\a -> Cont (\_ -> k a))) k)

Essentially (i.e., without constructors) the definition above states:
callCC f = Ak.fkk
ie., T is like a value but with an extra parameter k bound to its current continuatior
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No need to define throw since we can directly use the continuation by applying
it to a value, as shown in the next example

bar :: Char -> String -> Cont r String
bar ¢ s = do
msg <- callCC $ \k -> do
let s’ =c : s
if (s’ == "hello") then k "They say hello." else return ()
let s’’ = show s’
return ("They appear to be saying " ++ s’?)
return msg

When you call k with a value, the entire callCC call returns that value. In other
words, k is a ‘goto’ statement: k in our example pops the execution out to
where you first called callCC, the msg <- callCC $ ... line: no more of
the argument to callCC (the inner do-block) is executed.
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No need to define throw since we can directly use the continuation by applying
it to a value, as shown in the next example

bar :: Char -> String -> Cont r String
bar ¢ s = do
msg <- callCC $ \k -> do
let s’ =c : s
if (s’ == "hello") then k "They say hello." else return ()
let s’’ = show s’
return ("They appear to be saying " ++ s’?)
return msg

When you call k with a value, the entire callCC call returns that value. In other
words, k is a ‘goto’ statement: k in our example pops the execution out to
where you first called callCC, the msg <- callCC $ ... line: no more of
the argument to callCC (the inner do-block) is executed. This is shown by two
different executions, to which we pass the function print as continuation:

main = do
app (bar ’h’ "ello") print
app (bar ’h’ "1llo.") print

Which once compiled and executed produces the following output

"They say hello."
"They appear to be saying \"hllo.\""
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A simpler example is the following one which contains a useless line:

bar :: Cont r Int
bar = callCC $ \k -> do

let n =5
kn
return 25

bar will always return 5, and never 25, because we pop out of bar before
getting to the return 25 line.
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Purity has advantages but effects are unavoidable.

@ To have them both, effects must be explicitly programmed.

@ In order to separate the definition of the algorithm from the definition of the
plumbing that manages the effects it is possible to use a monad. The
monad centralizes all the programming that concerns effects.

@ Several effects may be necessary in the same program. One can define
the corresponding monad by composing monad transformers. These are
functions from monads to monads, each handling a specific effect.
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Purity has advantages but effects are unavoidable.

@ To have them both, effects must be explicitly programmed.

@ In order to separate the definition of the algorithm from the definition of the
plumbing that manages the effects it is possible to use a monad. The
monad centralizes all the programming that concerns effects.

@ Several effects may be necessary in the same program. One can define
the corresponding monad by composing monad transformers. These are
functions from monads to monads, each handling a specific effect.

However

@ Putting code in monadic form is easy and can be done automatically, but
there is no magic formula to define monads or even derive from given
monads the corresponding trasformers

@ Understanding monadic code is relatively straightforward but writing and
debugging monads or monads transformers from scracth may be dreadful.
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Purity has advantages but effects are unavoidable.

@ To have them both, effects must be explicitly programmed.

@ In order to separate the definition of the algorithm from the definition of the
plumbing that manages the effects it is possible to use a monad. The
monad centralizes all the programming that concerns effects.

@ Several effects may be necessary in the same program. One can define
the corresponding monad by composing monad transformers. These are
functions from monads to monads, each handling a specific effect.

However

@ Putting code in monadic form is easy and can be done automatically, but
there is no magic formula to define monads or even derive from given
monads the corresponding trasformers

@ Understanding monadic code is relatively straightforward but writing and
debugging monads or monads transformers from scracth may be dreadful.

Suggestion
Use existing monads and monads trasformers as much as possible.
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@ Monads and ML Functors
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Monads and ML Functors

@ Monads define the bind and return functions that are the core of the
plumbing of effects

@ Specific operations for effects such as raise and tick are provided by
subclasses of Monads (eg, StMonad, ExMonad).

@ Modular development is obtained by monad transformers which are
functions from monads to (subclasses of) monads.

We can reproduce monads by modules and transformers by functors.
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Signature for monads

The Caml module signature for a monad is:

module type MONAD = sig

type O mon

val return: o -> O mon

val bind: o mon -> (a0 -> B mon) -> P mon
end

G. Castagna (CNRS) Cours de Programmation Avancée 398/599



The ldentity monad

The Identity monad is a trivial instance of this signature:

module Identity = struct
type & mon =
let return x

let bind m f

e

X
fm

end
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Monad Transformers

Monad transformer for exceptions

modul
typ
typ
let
let

M.

let
let
let

M.

end

e ExceptionT(M: MONAD) = struct

e o0 outcome = Val of o | Exn of exn

e o0 mon = (0 outcome) M.mon

return x = M.return (Val x)

bind m f =

bind m (function Exn e -> M.return (Exn e) | Val v -> f v)
lift x = M.bind x (fun v -> M.return (Val v))

raise e = M.return (Exn e)

trywith m £ =

bind m (function Exn e -> f e | Val v -> M.return (Val v))
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Monad Transformers

Monad transformer for exceptions

modul
typ
typ
let
let

M.

let
let
let

M.

end

e ExceptionT(M: MONAD) = struct

e o0 outcome = Val of o | Exn of exn

e o0 mon = (0 outcome) M.mon

return x = M.return (Val x)

bind m f =

bind m (function Exn e -> M.return (Exn e) | Val v -> f v)
lift x = M.bind x (fun v -> M.return (Val v))

raise e = M.return (Exn e)

trywith m £ =

bind m (function Exn e -> f e | Val v -> M.return (Val v))

Notice the lesser flexibility due to the lack of the (static) overloading (provided
by Haskell’s type-classes) which obliges us to specify whose bind and return
we use.
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Monad Transformers

Monad transformer for exceptions

module ExceptionT(M: MONAD) = struct
type O outcome = Val of o | Exn of exn
type o mon = (0 outcome) M.mon
let return x = M.return (Val x)
let bind m f =
M.bind m (function Exn e -> M.return (Exn e) | Val v -> f v)
let 1lift x = M.bind x (fun v -> M.return (Val v))
let raise e = M.return (Exn e)
let trywith m f =
M.bind m (function Exn e -> f e | Val v -> M.return (Val v))
end

Notice the lesser flexibility due to the lack of the (static) overloading (provided
by Haskell’s type-classes) which obliges us to specify whose bind and return
we use.

Also the fact that the ExceptionT functor returns a module that is (1) a monad
(2) an instance of the exception monad, and (3) a transformer, is lost in the
definition of the functions exported by the module [(1) holds because of bind
and return, (2) because of raise and trywith, and (3) because of 1ift]
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Monad Transformers

Monad transformer for state

module StateT(M: MONAD) = struct

type O mon = state -> (0 * state) M.mon

let return x = fun s -> M.return (x, s)

let bind m f =

fun s -> M.bind (m s) (fun (x, s’) -> f x s?)

let lift m = fun s -> M.bind m (fun x -> M.return (x, s))

let ref x = fun s -> M.return (store_alloc x s)

let deref r = fun s -> M.return (store_read r s, s)

let assign r x = fun s -> M.return (store_write r x s)
end
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Using monad transformers

module State = StateT(Identity)

module StateAndException = struct
include ExceptionT(State)
let ref x = 1lift (State.ref x)
let deref r = 1lift (State.deref r)
let assign r x = 1lift (State.assign r x)
end

This gives a type o0 mon = state — o outcome x state, i.e. state is preserved
when raising exceptions. The other combination, StateT(ExceptionT(ldentity))
gives o0 mon = state — (o x state) outcome, i.e. state is discarded when an
exception is raised.
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Define the functor for continuation monad transformer.

module ContTransf(M: MONAD)
(o0 -> answer M.mon)

type & mon
let return
let bind m
let lift m

let callcc

Il b

£

let throw c x

end
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Define the functor for continuation monad transformer.

module ContTransf(M: MONAD)

type & mon
let return
let bind m
let lift m

let callcc

(o0 -> answer M.mon) -> answer M.mon
fun k -> k x
fun k -> m (fun v -> f v k)

-> M.bind m k

Il b

let throw c x

end
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