
A Core Calculus for XQuery 3.0

Giuseppe Castagna1 Hyeonseung Im2 Kim Nguyễn2 Véronique Benzaken2

1CNRS, PPS, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
2LRI, Université Paris-Sud, Orsay, France

Abstract. XML processing languages can be classified accord-
ing to whether they extract XML data by paths or pattern match-
ing. In the former category one finds XQuery, in the latter XDuce
and CDuce. The strengths of one category correspond to the weak-
nesses of the other. In this work, we propose to bridge the gap be-
tween two of these languages: XQuery and CDuce. To this end, we
extend CDuce so as it can be seen as a succinct core λ-calculus that
captures XQuery 3.0 programs. The extensions we consider essen-
tially allow CDuce to implement XPath-like navigation expressions
by pattern matching and to precisely type them. The encoding of
XQuery 3.0 into the extension of CDuce provides a formal seman-
tics and a sound static type system for XQuery 3.0 programs.

1. Introduction
With the establishment of XML as a standard for data representa-
tion and exchange, a wealth of XML-oriented programming lan-
guages have emerged. They can be classified into two distinct
classes according to whether they extract XML data by applying
paths or patterns. The strengths of one class correspond to the weak-
nesses of the other. In this work, we propose to bridge the gap be-
tween these classes and to do so we consider two languages each
representing a distinct class: XQuery and CDuce.

XQuery [24] is a declarative language standardized by the W3C
that relies heavily on XPath [22, 23] as a data extraction primitive.
Interestingly, the next version of XQuery (version 3.0, currently be-
ing drafted [26]) adds several functional traits: type and value case
analysis and functions as first-class citizens. However, while the
W3C specifies a standard for document types (XML Schema [27]),
it says little about the typing of XQuery programs (the XQuery 3.0
draft goes as far as saying that static typing is “implementation de-
fined” and therefore optional). This is a step back from the XQuery
1.0 Formal Semantics [25] which gives sound (but sometime im-
precise) typing rules for XQuery.

In contrast, CDuce [3] is a programming language used in pro-
duction but issued from academic research. It is a statically-typed
functional language with, in particular, higher-order functions and
powerful pattern matching tailored for XML data. A key character-
istic of CDuce is its type algebra, which is based on semantic sub-
typing [9] and features recursive types, type constructors (product,
record, and arrow types), and general Boolean connectives (union,
intersection, and negation of types) as well as singleton types. This
type algebra is particularly suited to express the types of XML doc-
uments and relies on the same foundation as the one that underpins
XML Schema: regular tree languages. Finally, the CDuce type sys-
tem supports ad-hoc polymorphism (through overloading and sub-
typing) while parametric polymorphism is not provided yet.

Figure 1 highlights the key features as well as the shortcomings
of both languages by defining the same two functions “get_links”
and “pretty” in each language. The first function “get_links”
(i) takes an XHTML document “$page” and a function “$print” as
input, (ii) computes the sequence of all hypertext links (a-labelled
elements) of the document that do not occur below a bold element
(b-labelled elements), and (iii) applies the print argument to each
link in the sequence, returning the sequence of the results. The

XQuery code:

1 declare function get_links($page, $print)
2 {
3 for $i in $page/descendant::a[not(ancestor::b)]
4 return $print($i)
5 }
6

7 declare function pretty($link)
8 {
9 typeswitch($link)

10 case $l as element(a)
11 return switch ($l/@class)
12 case "style1"
13 return
14 {$l/text()}
15
16 default return $l
17 default return $link
18 }

CDuce code:

19 let get_links : <_>_ → (<a>_ → <a>_) → [<a>_ *] =
20 fun page -> fun print ->
21 match page with
22 <a>_ & x -> [(print x)]
23 | <_\b> l -> transform l with i -> get_links i print
24 | _ -> []
25

26 let pretty : (<a>_ → <a>_) & (Any\<a>_ → Any\<a>_) =
27 fun link ->
28 match link with
29 l -> [l]
30 | x -> x

Figure 1. Document transformation, in XQuery 3.0 and CDuce

second function “pretty” takes anything as argument and performs
a case analysis. If the argument is a link whose class attribute
has the value "style1", the output is a link with the same target
(href attribute) and whose text is embedded in a bold element.
Otherwise, the argument is unchanged.

We first look into the “get_links” function. In XQuery, collect-
ing all the “a” elements of interest is straightforward: this is done
through the XPath expression at Line 3:

$page/descendant::a[not(ancestor::b)]
In a nutshell, an XPath expression is a sequence of steps that (i) se-
lect sets of nodes along the specified axis (here descendant mean-
ing the descendants of the root node of $page), (ii) keep only those
nodes in the axis that have a particular label (here “a”), and (iii)
further filter the results according to a Boolean condition (here
not(ancestor::b) meaning that from a candidate “a” node, the
step ancestor::b must return an empty result). At Lines 3–4, the
“for...return” expression binds in turn each element of the re-
sult of the XPath expression to the variable $i, evaluates the return
expression, and concatenates the results. Note that there is no type
annotation and that this function would fail at runtime if $page is
not an XML element or if $print is not a function.

1 2013/7/16

In clear contrast, in the CDuce program1, the interface of
“get_links” is fully specified (Line 19). Moreover, it is currified
and takes two arguments. The first argument is “page” of type
<_>_, which denotes any XML element (_ denotes a wildcard pat-
tern and is a synonym of the type 1, the type of all values, while
<s>t is the type of an XML element with tag of type s and con-
tent of type t). The second argument is print of type <a>_→ <a>_,
which denotes functions that take an “a” element (whose content
is anything) and return an “a” element. The final output is a value
of type [<a>_ *], which denotes a possibly empty sequence of
“a” elements. The implementation of get_links in CDuce is quite
different from its XQuery counterpart: following the functional id-
iom, it is defined as a recursive function that traverses its input
recursively and performs a case analysis through pattern matching.
If the input is an “a” element (Line 22), it binds the input to the
capture variable “x”, evaluates “print x”, and puts the result in
a sequence (denoted by square brackets). If the input is an XML
element whose label is not “b” (“\” stands for difference, so _\b
denotes or matches any value different from b), it captures the con-
tent of the element (a sequence) in “l” and applies itself recursively
to each element of “l” using the transform ... with construct
whose behavior is the same as XQuery’s “for”. Lastly, if the result
is not an element (or it is a “b” element), it stops the recursion and
returns the empty sequence.

For the pretty function, the XQuery version (Lines 7–18) first
performs a “type switch”, which tests whether the input “$link” has
the label “a”. If so, it extracts the value of the class attribute using
an XPath expression (Line 11) and performs a case analysis on that
value. In the case where the attribute is "style1", it re-creates an
“a” element (with a nested “b” element) extracting the relevant part
of the input using XPath expressions. The CDuce version (Lines
26–30) behaves in the same way but collapses all the cases in a
single pattern matching. If the input is an “a” element with the de-
sired class attribute, it binds the contents of the href attribute
and the element to the variables h and l, respectively, and builds the
desired output; otherwise, the input is returned unchanged. Interest-
ingly, this function is overloaded. Its signature is composed of two
arrow types: if the input is an “a” element, so is the output; if the
input is something else than an “a” element, so is the output (& in
types and patterns stands for intersection). Note that it is safe to use
the pretty function as the second argument of the get_links function
since (<a>_→<a>_) & (Any\<a>_→Any\<a>_) is a subtype of
<a>_→<a>_ (an intersection is always smaller than or equal to the
types that compose it).

Here we see that the strength of one language is the weakness of
the other: CDuce provides static typing, a fine-grained type algebra,
and a pattern matching construct that cleanly unifies type and value
case analysis. XQuery provides through XPath a declarative way to
navigate a document, which is more concise and less brittle than
using hand-written recursive functions (in particular, at Line 22 in
the CDuce code, there is an implicit assumption that a link cannot
occur below another link; the recursion stops at “a” elements).
Contributions. Our contribution is to improve both XQuery and
CDuce by showing that (an extended) CDuce can be seen as a suc-
cinct core λ-calculus that exactly captures XQuery 3.0 programs.
To achieve this, we extend CDuce in several ways.

First, we allow one to navigate in CDuce values, both downward
and upward. A natural way to do so in a functional setting is to use
zippers à la Huet [18] to annotate values. Zippers denote the posi-
tion in the surrounding tree of the value they annotate, as well as its
current path from the root. We extend CDuce not only with zipper
values (i.e., values annotated by zippers) but also with zipper types.

1 We took some liberties with CDuce’s syntax in order to better match
XQuery’s one. The actual CDuce definitions are more compact and can be
found in Appendix A (included in the submission supplementary material).

By doing so, we show that we can navigate not only in any direction
in a document but also in a precisely typed way, allowing one to ex-
press constraints on the path in which a value is within a document.

Another contribution is the extension of CDuce pattern match-
ing with accumulating variables that allow us to encode recursive
XPath axes (such as descendant and ancestor). It is well known
that typing such recursive axes goes well beyond regular tree lan-
guages and that approximations in the type system are needed.
Rather than giving ad-hoc built-in functions for descendant and
ancestor, we define the notion of type operators and parameter-
ize the CDuce type system (and dynamic semantics) with these op-
erators. Soundness properties can then be shown in a modular way
without hard-coding any specific typing rules in the language. With
this addition, XPath navigation can be encoded simply in CDuce’s
pattern matching constructs and it is just a matter of syntactic sugar
definition to endow CDuce with nice declarative navigational ex-
pressions such as those successfully used in XQuery or XSLT.

On the XQuery side, we extend XQH, a core version of XQuery
3.0 proposed by Benedikt and Vu [2], with type case, value case
and type annotations on functions. We give an encoding of the ex-
tended XQH into CDuce. The encoding provides for free an effec-
tive and efficient typechecking algorithm for XQuery 3.0 programs
as well as a formal and compact specification of their semantics.
Even more interestingly, it provides a solid formal basis to start fur-
ther studies on the definition of XQuery 3.0 and of its properties.
A minima, it is straightforward to use this basis to add overloaded
functions to XQuery. More crucially, the recent advances on poly-
morphism for semantic subtyping [6, 28] can be transposed to this
basis to provide a polymorphic type system and type inference al-
gorithm both to XQuery 3.0 and to the extended CDuce language
defined here. Polymorphic types are the missing ingredient to make
higher-order functions yield their full potential and to remove any
residual justification of the absence of standardization of XQuery
3.0 type system. In the meanwhile, to palliate the absence of a full-
fledged polymorphic system, we show that the typing operators in-
troduced here can be used to provide a poor man’s version of para-
metric polymorphism, a most needed feature when dealing with
functional programs.
Plan. The remainder of the paper is structured as follows. Section 2
presents the core typed λ-calculus equipped with zipper annotated
values, accumulators, constructors, recursive functions, and pat-
tern matching. Section 3 then gives its semantics, type system, and
the expected soundness property. Section 4 turns this core calcu-
lus into a full-fledged language using several syntactic constructs
and encodings. Section 5 then uses this language as a compila-
tion target for XQuery. Section 6 gives some directions towards
which XQuery and CDuce’s type system can be extended, and lastly
Section 7 compares our work to other related approaches and con-
cludes. Proofs and some technical definitions are given in the sup-
plementary appendix attached to this submission.

2. Syntax
We extend the CDuce language [3] with zippers à la Huet [18].
To ensure the well-foundness of the definition, we stratify it, intro-
ducing first pre-values (which are normal CDuce values) and then
values, which are pre-values possibly indexed by a zipper; we pro-
ceed similarly for types and patterns.

Definition 2.1 (Pre-value, value, and zipper).

Pre-values w ::= c | (w,w) | µf (t→t;...;t→t)(x).e
Zippers δ ::= • | L (w)δ · δ | R (w)δ · δ
Values v ::= w | (v, v) | (w)δ

We denote by V the set of all values. We denote by Ω a special
value that represents a runtime error and does not inhabit any type.

2 2013/7/16

Pre-values (ranged over by w) are the usual CDuce values with-
out zipper annotations. Constants are ranged over by c and represent
integers (1, 2, . . .), characters (’a’, ’b’, . . .), atoms (‘nil, ‘true,
‘false, ‘foo, . . .), and so on. The value (w,w) represents pairs of
pre-values. Lastly, the calculus features recursive functions (hence
the µ binder instead of the traditional λ) with explicit overloaded
types (the set of types that index the recursion variable, forming the
interface of the function). Values (ranged over by v) are pre-values,
pairs of values, or pre-values annotated with a zipper (ranged over
by δ). Zippers are used to record the path covered when traversing a
data structure. Since the product is the only construct, we only need
three kinds of zippers: the empty one (denoted by •) which intu-
itively denotes the starting point of our navigation, and two zippers
L (w)δ · δ and R (w)δ · δ which denote respectively the path to the
left and right projection of a pre-value w, which is itself reachable
through δ. To ease the writing of several zipper related functions,
we choose to record in the zipper the whole “stack” of values we
have visited (each tagged with a left or right indication), instead of
just keeping the unused component as is usual.

Example 2.2. Let v be the value ((1, (2, 3)))•. Its first projec-
tion is the value (1)L ((1,(2,3)))•·• and its second projection is the
value ((2, 3))R ((1,(2,3)))•·•, the first projection of which being
(2)L ((2,3))R ((1,(2,3)))•·•·R ((1,(2,3)))•·•

As one can see in this example, keeping values in the zipper (in-
stead of pre-values) seems redundant since the same value occurs
several times (see how δ is duplicated in the definition of zippers).
The reason for this duplication is purely syntactic: it makes the writ-
ing of types and patterns that match such values much shorter (in-
tuitively, to go “up” in a zipper, it is only necessary to extract the
previous value while keeping it un-annotated, that is, having Lw ·δ
in the Definition 2.1 would require a more complex treatment to
reconstruct the parent).

Definition 2.3 (Expression). An expression is a finite term pro-
duced by the following grammar, with entry point e:

e ::= v (value)
| x (variable)
| ẋ (accumulator)
| (e, e) (pair)
| (e)• (initial context)
| match e with p→ e| p→ e (pattern matching)
| op(e, . . . , e) (operator)

We denote by E the set of all expressions.

Basic expressions may be values (as previously defined), vari-
ables (ranged over by x , y , . . .), accumulators (which are a particu-
lar kind of variables, ranged over by ẋ , ẏ , . . .), or pairs. The pattern
matching expression is the usual one (with a first match policy) and
will be thoroughly presented in the following section. Lastly, our
calculus is parameterized by a set O of built-in operators ranged
over by op. Before describing the use of operators and the set of
operators defined in our calculus (in particular, the operators for
projection and function application), we define our type algebra.

2.1 Types
We first recall the usual CDuce type algebra, as defined in [9],
where types are interpreted as sets of values and the subtyping
relation is semantically defined by using this interpretation (i.e.,
JtK = {v | ` v : t} and s ≤ t def⇐⇒ JsK ⊆ JtK).

Definition 2.4 (Pre-type). A pre-type u is a possibly infinite term
produced by the following grammar, with entry point u:

u ::= b | c | u× u | u→ u | u ∨ u | ¬u | 0
with two additional requirements:

1. (regularity) the number of distinct subterms of u is finite;
2. (contractivity) every infinite branch of u contains an infinite

number of occurrences of either product types or function types.

We use b to range over basic types (int, bool, . . .). A singleton
type c denotes the type that contains only the constant value c. The
empty type 0 contains no value. Product and function types are
standard: u1 × u2 contains all the pairs (w1, w2) for wi ∈ ui,
while u1 → u2 contains all the (pre-)value functions that when
applied to a value in u1 and terminate, return a value in u2. We
also include type connectives for union and negation (intersections
are encoded below) with their usual set-theoretic interpretation.
Infiniteness of pre-types accounts for recursive types and regularity
implies that pre-types are finitely representable, for instance, by
recursive equations or by the explicit µ-notation. Contractivity [1]
excludes both ill-formed (i.e., unguarded) recursions such as µX.X
as well as meaningless type definitions such as µX.X ∨X or
µX.¬X (unions and negations are finite). Finally, subtyping is
defined as set-theoretic containment (u1 is a subtype of u2, denoted
by u1≤u2, if all values in u1 are also in u2) and it is decidable
in EXPTIME (see [9]). Before defining full types (i.e., the type
of values potentially annotated with zippers), we introduce zipper
types.

Definition 2.5 (Zipper type). A zipper type τ is a possibly infinite
term produced by the following grammar, with entry point τ :

τ ::= • | > | L (u)τ · τ | R (u)τ · τ | τ ∨ τ | ¬τ

that is regular as in Definition 2.4 and contractive in the sense
that every infinite branch of τ must contain an infinite number of
occurrences of either left or right projection.

The singleton type • is the type of the empty zipper and >
denotes the type of all zippers, while L (u)τ · τ (resp., R (u)τ ·
τ) denotes the type of zippers that encode the left (resp., right)
projection of some value of pre-type u. We use τ1 ∧ τ2 to denote
¬(¬τ1 ∨ ¬τ2).

Remark 2.6. Zipper type negation is redundant since it can be
encoded by the remaining zipper types. This could be done by using
classic regular language techniques but would also cause a (further)
exponential explosion of the subtyping algorithms, which is why
we prefer to include negation directly in the syntax. In contrast,
negation in (pre-)types cannot be encoded because of the presence
of arrow (pre-)types.

We now define the type algebra of our core calculus which
contains pre-types possibly indexed by a zipper type.

Definition 2.7 (Type). A type is a possibly infinite term produced
by the following grammar, with entry point t:

t ::= u | t× t | t→ t | t ∨ t | ¬t | (u)τ
that is both regular and contractive as in Definition 2.4.

We write t ∧ s for ¬(¬t ∨ ¬s), t \ s for t ∧ ¬s, and 1 for ¬0;
in particular, 1 denotes the super-type of all types (it contains all
values). We also define the following notations (we use ≡ both for
syntactic equivalence and syntactic sugar):

– 1prod ≡ 1× 1 the super-type of all product types
– 1fun ≡ 0→ 1 the super-type of all arrow types
– 1basic ≡ 1\(1prod∨1fun∨(1)>) the super-type of all basic types
– 1NZ ≡ µX.(X ×X)∨(1basic ∨ 1fun) the type of all pre-values.

It is straightforward to extend the subtyping relation of pre-types
(i.e., of [9]) to types: the addition of the (u)τ corresponds to the
addition of a new type constructor (such as→ and ×) to the type
algebra. Therefore, it suffices to define the interpretation of the

3 2013/7/16

new constructor to complete the definition of the subtyping relation
(defined as containment of the interpretations). In particular, (u)τ
is interpreted as the set of all values (w)δ such that ` w : u and
` δ : τ (both judgments are defined in Figure 7 in the Appendix).
From this we deduce that (1)> (equivalently, (1NZ)>) is the type
of all (pre-)values decorated by a zipper. The formal definition is
more involved (see Appendix B) but the intuition is simple: a type
(u1)τ1 is a subtype of (u2)τ2 if u1 ≤ u2 and τ2 is a prefix (modulo
type equivalence and subtyping) of τ1. The prefix containment
translates the intuition that the more we know about the context
surrounding a value, the more numerous are the situations in which
it can be safely used. For instance, in XML terms, if we have
a function that expects an element whose parent’s first child is
an integer, then we can safely apply it to an element whose type
indicates that its parent’s first child has type (a subtype of) integer
and that its grandparent is, say, tagged by a.

Finally, as for pre-types, the subtyping relation for types is
decidable in EXPTIME. This can be easily shown by producing
a straightforward linear encoding of zipper types and zipper values
in pre-types and pre-values, respectively (the encoding is given in
Definition B.3 in the Appendix).

2.2 Operators and Accumulators
As previously explained, our calculus is parameterized by a set O
of operators which have the following formal definition:

Definition 2.8 (Operator). An operator is a 4-tuple (o, no,
o
;,

o→)
where o is the name (symbol) of the operator, no is its arity,
o
; ⊆ Vno×E∪{Ω} is its reduction relation, and o→ : T no → T
is its typing function.

In other words, an operator is an applicative symbol, equipped
with both a dynamic (;) and a static (→) semantics. The rea-
son for making o

; a relation is to allow operators to be non-
deterministic (for instance, to simulate non-deterministic choice).
Note that an operator may fail, thus returning the special value Ω
during evaluation.

Definition 2.9 (Accumulator). An accumulator ẋ is a variable
equipped with a binary operator Op(ẋ) ∈ O and initial value
Init(ẋ) ∈ V .

2.3 Patterns
Now that we have defined types and operators, we can define
patterns. Intuitively, patterns are types with capture variables that
are used either to extract subtrees from an input value or to test
its “shape”. As before, we first recall the definition of standard
CDuce patterns (pre-patterns), enriched with accumulators, before
extending them with zippers.

Definition 2.10 (Pre-pattern). A pre-pattern is a possibly infinite
term produced by the following grammar, with entry point q:

q ::= t (type constraint)
| x (capture variable)
| ẋ (accumulator)
| (q, q) (pair)
| q|q (or/alternative)
| q&&& q (and/conjunction)
| (x := c) (default)

that is regular as in Definition 2.4 and contractive in the sense that
every infinite branch of q must contain an infinite number of oc-
currences of pair patterns. Moreover, the subpatterns forming con-
junctions must have distinct capture variables, and those forming
alternatives the same capture variables.

E [] ::= [] | (E [], e) | (e,E []) | (E [])• | o(e, . . . ,E [], . . . , e)
| match E [] with p1→ e1| p2→ e2

where o ∈ O
(v1, . . . , vno)

o
; e

o(v1, . . . , vno) ; e
for o ∈ O

e; e′

E [e] ; E [e′]

{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p1)} ` v/p1 ; σ, γ

match v with p1→ e1| p2→ e2 ; e1[σ; γ]

{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p1)} ` v/p1 ; Ω
{ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p2)} ` v/p2 ; σ, γ

match v with p1→ e1| p2→ e2 ; e2[σ; γ]

e; Ω
(if no other rule applies and e is not a value)

Figure 2. Operational semantics (reduction contexts and rules)

Definition 2.11 (Zipper pattern). A zipper pattern is a possibly
infinite term produced by the following grammar

ϕ ::= τ | L p · ϕ | R p · ϕ | ϕ|ϕ

that is both regular and contractive as in Definition 2.5.

Definition 2.12 (Pattern). A pattern is a possibly infinite term
produced by the following grammar, with entry point p:

p ::= q | (p, p) | p|p | p&&& p
| (q)ϕ (zipper constraint)

with the same requirements as in Definition 2.10. Besides, the sub-
patterns forming zipper constraints must have distinct capture vari-
ables. We denote by Var(p) the set of capture variables occurring
in p and by Acc(p) the set of accumulators occurring in p.

3. Semantics
In this section, we present the operational semantics and the type
system of our calculus, and state the expected soundness properties.

3.1 Operational Semantics
We define a call-by-value, small-step operational semantics for our
core calculus, using the reduction contexts and reduction rules
given in Figure 2, where Ω is a special value representing a run-
time error. Of course, most of the actual semantics is hidden (the
careful reader will have noticed that applications and projections
are not explicitly included in the syntax of our expressions). Most
of the work happens either in the semantics of operators or in the
matching v/p of a value v against a pattern p. Such a matching,
if it succeeds, returns two substitutions, respectively, from capture
variables and accumulators to values. Before explaining in detail
the rules for pattern matching, we introduce a minimal set of op-
erators (for application, projections, zipper erasure, and sequence
building). In what follows we give only their reduction relation and
delay the presentation of their typing relation to Section 3.2.
Function application: the operator app(_, _) implements the usual
β-reduction:

v, v′
app
; e[v/f ; v′/x] if v = µf (...)(x).e

and v, v′
app
; Ω if v is not a function. As customary, e[v/x] denotes

the capture avoiding substitution of v for x in e, and we write e1 e2

for app(e1, e2).
Projections: the operator π1(_) (resp. π2(_)) implements the first
(resp. second) projection of pairs. When applied to a pair annotated

4 2013/7/16

by a zipper, they update the zipper accordingly:

(w1, w2)δ
π1
; (w1)L (w1,w2)δ·δ

(w1, w2)δ
π2
; (w2)R (w1,w2)δ·δ

(v1, v2)
πi
; vi for i ∈ {1, 2}

The application of the above operators returns Ω if the input is not
a pair or a zipped pair.
Zipper erasure: given a zipper annotated value, it is sometimes
necessary to remove the zipper (for instance, to embed this value
into a new data structure). This is achieved by the remove rm(_)
and deep remove drm(_) operators defined as follows:

(w)δ
rm
; w

v
rm
; v where v 6≡ (w)δ

w
drm
; w

(w)δ
drm
; w

(v1, v2)
drm
; (drm(v1), drm(v2))

The former operator only erases the top-level zipper (if any), while
the latter erases all zippers occurring in its input.
Sequence building: given a sequence (encoded à la Lisp) and an
element, we define the operators cons(_) and snoc(_) that insert an
input value at the beginning and at the end of the input sequence:

v, v′
cons
; (v, v′)

v, ‘nil
snoc
; (v, ‘nil)

v, (v′, v′′)
snoc
; (v′, snoc(v, v′′))

The applications of these operators yield Ω on other inputs.
To complete our presentation of the operational semantics, it

remains to describe the semantics of pattern matching. Intuitively,
when matching a value v against a pattern p, subparts of p are re-
cursively applied to corresponding subparts of v until a base case is
reached (all values are finite). As usual, when a pattern variable is
confronted with a subvalue, the binding is stored as a substitution.
We supplement this usual behavior of pattern matching with accu-
mulators, that is, special variables in which results are accumulated
during the recursive matching. The reason for keeping these two
kinds of variables distinct is explained in Section 3.2 and is related
to type inference for patterns.

The semantics of pattern matching is given by the judgment
σ ` v/p; σ′, γ, where v is a value, p a pattern, γ a mapping from
Var(p) to values, and σ and σ′ are mappings from accumulators
to values. The judgment is derived by the rules given in Figure 3.
In this figure, rules [PAT-ACC] and [ZPAT-*] are novel, extending
pattern matching with accumulators and zippers, while the others
are derived from [3, 8]. There are three base cases for matching:
testing the input value against a type (rule [PAT-TYPE]), updating the
environment σ for accumulators (rule [PAT-ACC]), or producing a
substitution γ for capture variables (rules [PAT-VAR] and [PAT-DEF]).
Matching a pattern (p1, p2) only succeeds if the input is a pair
and the matching of each subpattern against the corresponding
projection of the value succeeds (rule [PAT-PAIR]). Note that we
use operator πi(_) to update the zipper annotation of the value, if
any. An alternative pattern p1|p2 first tries to match the pattern p1

and if it fails, tries the pattern p2 (rules [PAT-OR1] and [PAT-OR2]).
The matching of a conjunction pattern p1 &&& p2 succeeds if and
only if the matching of both patterns succeeds (rule [PAT-AND]).
For a zipper constraint (q)ϕ, the matching succeeds if and only if
the input value is annotated by a zipper, e.g., (w)δ , and both the
matching of w with q and δ with ϕ succeed (rule [PAT-ZIP]).

The matching of a zipper pattern ϕ against a zipper δ is straight-
forward: it succeeds if both ϕ and δ are built using the same con-
structor (either L or R) and the componentwise matching succeeds

(rules [ZPAT-LEFT] and [ZPAT-RIGHT]). If the zipper pattern is a
zipper type, the matching tests the input zipper against the zip-
per type (rule [ZPAT-TYPE]), and alternative zipper patterns ϕ1|ϕ2

follow the same first match policy as alternative patterns. If none
of the rules is applicable, the matching fails (rules [PAT-ERROR]
and [ZPAT-ERROR]). Note that initially the environment σ contains
Init(ẋ) for each accumulator ẋ in Acc(p).

Intuitively, γ is built when returning from the recursive descent
in p, while σ is built using a fold-like computation. It is the typing
of such fold-like computations that justifies the addition of accumu-
lators (instead of relying on plain functions). But before presenting
the type system of the language, we illustrate the behavior of pattern
matching with some examples.

Example 3.1. Let v ≡ (1, (‘true, (3, ‘nil))), Init(ẋ) = ‘nil,
Op(ẋ) = cons, and σ ≡ {ẋ 7→ ‘nil}. Then, we have
σ ` v/(int, (x , _)) ; ∅, {x 7→ ‘true}
σ ` v/µX.((x &&& int|_, X)|(x:=‘nil)) ; ∅, {x 7→ (1,(3,‘nil))}
σ ` v/µX.((ẋ , X)|‘nil) ; {ẋ 7→ (3, (‘true, (1, ‘nil)))},∅

In the first case, the input v (the sequence [1 ‘true 3] en-
coded à la Lisp) is matched against a pattern that checks whether
the first element has type int (rule [PAT-TYPE]), binds the second
element to x (rule [PAT-VAR]), and ignores the rest of the list (rule
[PAT-TYPE], since the anonymous variable “_” is just an alias for 1).

The second case is more involved since the pattern is recursively
defined. Because of the first match policy of rule [PAT-OR1], the
product part of the pattern is matched recursively until the atom
‘nil is reached. When that is the case, the variable x is bound to a
default value ‘nil. When returning from this recursive matching,
since x occurs both on the left and on the right of the product (in
x &&& int and in X itself), a pair of the binding found in each part is
formed, thus yielding a mapping {x 7→ (3, ‘nil)} (third set in the
definition of ⊕ in Figure 3). Returning again from the recursive
call, only the “_” part of the pattern matches the input ‘true
(since it is not of type int, the intersection test fails). Therefore, the
binding for this step is only the binding for the right part (second
case of the definition of ⊕). Lastly, when reaching the top-level
pair, x &&& int matches 1 and a pair is formed from this binding
and the one found in the recursive call, yielding the final binding
{x 7→ (1, (3, ‘nil))}.

The third case is more intuitive. The pattern just recurses the
input value, calling the accumulation function for ẋ along the way
for each value against which it is confronted. Since the operator
associated with ẋ is cons (which builds a pair of its two arguments)
and the initial value is ‘nil, this has the effect of computing the
reversal of the list.

Note the key difference between the second and third case. In
both cases, the structure of the pattern (and the input) dictates the
traversal, but in the second case, it also dictates how the binding
is built (if v was a tree and not a list, the binding for x would
also be a tree in the second case). In the third case, the way the
binding is built is defined by the semantics of the operator and
independent of the input. This allows us to reverse sequences or
flatten tree structures, both of which are operations that escape the
expressiveness of regular tree languages/regular patterns, but which
are both necessary to encode XPath.

3.2 Type System
The main difficulty is to type pattern matching and, more specifi-
cally, to infer the types of the accumulators occurring in patterns.

Definition 3.2 (Accepted input of an operator). The accepted
input of an operator (o, n,

o
;,

o→) is the set I(o), defined as:

I(o) = {(v1, ..., vn)∈Vn | (((v1, ..., vn)
o
;e)∧(e;∗v))⇒ v 6=Ω}

5 2013/7/16

[PAT-TYPE]

σ ` v/t; σ,∅
(` v : t)

[PAT-VAR]

σ ` v/x ; σ, {x 7→ v}

[PAT-ACC]

σ ` v/ẋ ; σ[Op(ẋ)(v, σ(ẋ))/̇x],∅

[PAT-PAIR]
σ ` π1(v)/p1 ; σ′, γ1 σ′ ` π2(v)/p2 ; σ′′, γ2

σ ` v/(p1, p2) ; σ′′, γ1 ⊕ γ2

[PAT-OR1]
σ ` v/p1 ; σ′, γ

σ ` v/p1|p2 ; σ′, γ

[PAT-OR2]
σ ` v/p1 ; Ω σ ` v/p2 ; σ′, γ

σ ` v/p1|p2 ; σ′, γ

[PAT-AND]
σ ` v/p1 ; σ′, γ1 σ′ ` v/p2 ; σ′′, γ2

σ ` v/p1 &&& p2 ; σ′′, γ1 ⊕ γ2

[PAT-DEF]

σ ` v/(x := c) ; σ, {x 7→ c}

[PAT-ZIP]
σ ` w/q ; σ′, γ1 σ′ ` δ/ϕ; σ′′, γ2

σ ` (w)δ/(q)ϕ ; σ′′, γ1 ⊕ γ2

[ZPAT-TYPE]

σ ` δ/τ ; σ,∅
(` δ : τ)

[ZPAT-LEFT]
σ ` (w)δ/p; σ′, γ1 σ′ ` δ/ϕ; σ′′, γ2

σ ` L (w)δ · δ/L p · ϕ; σ′′, γ1 ⊕ γ2

[ZPAT-RIGHT]
σ ` (w)δ/p; σ′, γ1 σ′ ` δ/ϕ; σ′′, γ2

σ ` R (w)δ · δ/R p · ϕ; σ′′, γ1 ⊕ γ2

[ZPAT-OR1]
σ ` δ/ϕ1 ; σ′, γ

σ ` δ/ϕ1|ϕ2 ; σ′, γ

[ZPAT-OR2]
σ ` δ/ϕ1 ; Ω σ ` δ/ϕ2 ; σ′, γ

σ ` δ/ϕ1|ϕ2 ; σ′, γ

[PAT-ERROR]

σ ` v/p; Ω
(otherwise)

[ZPAT-ERROR]

σ ` δ/ϕ; Ω
(otherwise)

γ1 ⊕ γ2
def
= {x 7→ γ1(x) | x ∈ dom(γ1)\dom(γ2)} ∪ {x 7→ γ2(x) | x ∈ dom(γ2)\dom(γ1)} ∪ {x 7→ (γ1(x), γ2(x)) | x ∈ dom(γ1) ∩ dom(γ2)}

Figure 3. Pattern matching

Definition 3.3 (Exact input). An operator o has an exact input if
and only if I(o) is (the interpretation of) a type.

We can now state a first soundness theorem, which characterizes
the set of values that make a pattern succeed:

Theorem 3.4 (Accepted types). Let p be a pattern such that for
every ẋ in Acc(p), Op(ẋ) has an exact input. The set of all values
v such that {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)} ` v/p 6; Ω is a type. We
call this set the accepted type of p and denote it by *p+. It can be
computed by solving the following guarded system of equations (the
variables are the *p′+ and *ϕ+ for the subterms p′ and ϕ of p).

*t+ = t
*x+ = 1
*ẋ+ = I(Op(ẋ))
*(p1, p2)+ = *p1+× *p2+
*p1|p2+ = *p1+ ∨ *p2+
*p1 &&& p2+ = *p1+ ∧ *p2+
*(x := c)+ = 1
*(q)ϕ+ = (*q+)*ϕ+

*τ+ = τ
*L p · ϕ+ = L *p+ · *ϕ+
*R p · ϕ+ = R *p+ · *ϕ+
*ϕ1 ∨ ϕ2+ = *ϕ1+ ∨ *ϕ2+

We next define the type system for our core calculus, in the form
of a judgment Γ ` e : t which states that in a typing environment
Γ (i.e., a mapping from variables to types) an expression e has type
t. This judgment is derived by the set of rules given in Figure 7 in
Appendix. Here, we show only the most important rules, namely
those for accumulators and zippers:

[T-ACC]

Γ ` ẋ : Γ(ẋ)

[T-ZIP-VAL]
` w : t ` δ : τ t ≤ 1NZ

Γ ` (w)δ : (t)τ

[T-ZIP-EXPR]
` e : t t ≤ 1NZ

Γ ` (e)• : (t)•

which rely on an auxiliary judgment ` δ : τ stating that a zipper δ
has zipper type τ . The rule for operators is:

[T-OP]
∀i = 1..no, Γ ` ei : ti t1, . . . , tno

o→ t

Γ ` o(e1, . . . , eno) : t
for o ∈ O

which types operators using their associated typing function. Last
but not least, the rule for pattern matching expressions is:

[T-MATCH]
t ≤ *p1+ ∨ *p2+
t1 ≡ t ∧ *p1+
t2 ≡ t ∧ ¬*p1+ (i = 1, 2)
Σi ≡ {ẋ 7→ Init(ẋ)|ẋ ∈ Acc(pi)}

Γ ` e : t
Γ ∪ ti/pi ∪ ti�

Σi

pi ` ei : t′i

Γ ` match e with p1→ e1| p2→ e2 :
∨

{i | ti 6'0}

t′i

This rule requires that the type t of the matched expression be
smaller than *p1+ ∨ *p2+, that is, that the matching be exhaustive.
Then, it accounts for the first match policy by checking e1 in an
environment inferred from values produced by e and that match p1

(t1 ≡ t ∧ *p1+) and by checking e2 in an environment inferred
from values produced by e and that do not match p1 (t2 ≡ t ∧
¬*p1+). If one of these branches is unused (i.e., if ti ' 0 where
' denotes semantic equivalence, that is, ≤ ∩ ≥), then its type
does not contribute to the type of the whole expression. Each
right-hand side ei is typed in an environment enriched with the
types for capture variables (computed by ti/pi) and the types for
accumulators (computed by ti �

Σi

pi). While the former is rather

standard (its precise computation is described in [8] and already
implemented in the CDuce compiler: see Figure 9 in Appendix for
the details), the latter is specific to our calculus.

To compute the types of the accumulators of a pattern p when
matched against a type t, we first initialize an environment Σ by
associating each accumulator ẋ of p with the singleton type for its
initial value Init(ẋ) (Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)}). The
type environment is then computed by generating a set of mutually
recursive equations whose the important ones are (see Figure 8 in
Appendix for the complete definition):

t �
Σ

ẋ = Σ[s/̇x] where t,Σ(ẋ)
Op(ẋ)→ s

t �
Σ

p1|p2 = t �
Σ

p1 if t ≤ *p1+

t �
Σ

p1|p2 = t �
Σ

p2 if t ≤ ¬*p1+

t �
Σ

p1|p2 = (t ∧ *p1+) �
Σ

p1

⊔
(t ∧ ¬*p1+) �

Σ

p2 otherwise

When an accumulator ẋ is matched against a type t, the type of the
accumulator is updated in Σ, by applying the typing function of

6 2013/7/16

the operator associated with ẋ to the type t and the type computed
thus far for ẋ , namely Σ(ẋ). The other equations recursively apply
the matching on the subcomponents and merge the results using
the “t” operation. This operation implements the fact that if an
accumulator ẋ has type t1 in a subpart of a pattern p and type t2
in another subpart (i.e., both subparts match), then the type of ẋ
is the union t1 ∨ t2. Lastly, we introduce a technical notation for
the matching of product types. Indeed, the most general type for
any pair is a finite union of products (or, said differently, while it is
possible to push intersections below product constructors, it is not
possible to do it for unions without introducing an approximation
since in general: (a× b) ∨ (c× d) � (a ∨ c)× (b ∨ d)). This can
be generalized to zipped product types as stated by this lemma:

Lemma 3.5 (Product decomposition). Let t be a type such that
t ≤ (1× 1)> ∨ (1× 1). There exists a finite set of pairs of types

Π(t) =
⋃
i≤n

{((ui1)L (ui0)τi ·τ
i , (u

i
2)R (ui0)τi ·τ

i)}∪
⋃
j≤m

{(tj1, t
j
2)}

such that ∨
((u′)L _·τ ,(u′′)R _·τ)∈Π(t)

(u′ × u′′)τ ∨
∨

(t′,t′′)∈Π(t)

t′ × t′′ ' t

Furthermore, given a decomposition Π(t), we define the first and
second type projection as:

Πi(t) =
⋃

((u1)τ1 ,(u2)τ2)∈Π(t)

{(ui)τi} ∪
⋃

(t1,t2)∈Π(t)

{ti}

There exists many such product decompositions. For instance,
one decomposition is obtained by taking the syntactic expression
given for a product type t and pushing intersections below products
until only unions remain at top-level. More complex decomposi-
tions (which yield more precise typing or more efficient pattern
matching) are described in [5, 8, 21].

As the knowledgeable reader may have guessed, the equations
given in Figure 8 might be not well founded. Both patterns and
types are possibly infinite (regular) terms and therefore one has to
guarantee that the set of generated equations is finite. This depends
of course on the typing of the operators used for the accumulators.
Before stating the termination condition (as well as the soundness
properties of the type system), we give the typing functions for the
operators we defined earlier.
Function application: it is typed by computing the minimum type
satisfying the following subtyping relation:

s, t
app→ min{t′ | s ≤ t→ t′}

provided that s ≤ t→ 1 (see [9]).
Projections: the first and second projections are typed by using
their type-level counter part:

t
πi→
∨
s∈Πi(t)

s

provided that t ≤ (1× 1)> ∨ 1× 1.
Zipper erasure: the top-level erasure simply removes the top-level
zipper type annotation, while the deep erasure is typed by recur-
sively removing the zipper annotations from the input type:

(t)τ
rm→ t if t ∧ (1)> ' 0

t
rm→ (t ∧ ¬(1)>) ∨ s where t ∧ (1)>

rm→ s

t
drm→ t if t ≤ 1NZ

t
drm→ t ∧ (1basic ∨ 1fun)

∨
∨

(t1,t2)∈Π(t∧(1prod∨(1prod)>))

t′1 × t′2 where ti
drm→ t′i

∨ s where t ∧ (1NZ)>
rm→ s

There are two cases for the deep erasure. If an input type does not
contain any zipper type annotation (in-depth), it is left unchanged.
Otherwise, the type is split into three parts. The first part consists
of basic types and arrow types and is “copied” unchanged in the
output type. The second part corresponds to the zipped product type
and product type components of the union. In this case, the output
type is the union of the products formed from the erasure of each
component. The third part corresponds to zipped types in which the
zipper type annotations are removed using the top-level erasure rm.
Again, we need to ensure that the drm function terminates, that is,
given a type t, the number of ti in the second part is finite (we show
this property in Section 3.3).

Sequence building: it is typed in the following way:

t1, ‘nil
cons→ µX.((t1 ×X) ∨ ‘nil)

t1, µX.((t2 ×X) ∨ ‘nil)
cons→ µX.(((t1 ∨ t2)×X) ∨ ‘nil)

t1, ‘nil
snoc→ µX.((t1 ×X) ∨ ‘nil)

t1, µX.((t2 ×X) ∨ ‘nil)
snoc→ µX.(((t1 ∨ t2)×X) ∨ ‘nil)

Notice that the output types are approximations. Indeed, the oper-
ator “cons(_)” is less precise than returning a pair of two values,
for instance, since it approximates any sequence type by an infinite
one (meaning that any information on the length of the sequence is
lost) and approximates the type of all the elements by a single type
which is the union of all the elements (meaning that the informa-
tion on the order of element is lost). As we will see now, this loss
of precision is instrumental in typing accumulators and therefore
pattern matching.

Example 3.6. Consider the matching of a pattern p against a value
v of type t defined as follows:

p ≡ µX.((ẋ &&& (‘a|‘b))|‘nil|(X,X))
v ≡ (‘a, ((‘a, (‘nil, (‘b, ‘nil))), (‘b, ‘nil)))
t ≡ µY.((‘a× (Y × (‘b× ‘nil))) ∨ ‘nil)

where Op(ẋ) = snoc and Init(ẋ) = ‘nil. We have the following
matching and type environment:

– {ẋ 7→ ‘nil} ` v/p; {ẋ 7→ (‘a, (‘a, (‘b, (‘b, ‘nil))))},∅
– t�
{ẋ 7→‘nil}

p = {ẋ 7→ µZ.(((‘a ∨ ‘b)× Z) ∨ ‘nil)}

Intuitively, with the usual sequence notation (precisely defined in
Section 4), v is nothing but the nested sequence [[[‘a [[[‘a [[[]]] ‘b]]] ‘b]]]
and pattern matching just flattens the input sequence, binding ẋ to
[[[‘a ‘a ‘b ‘b]]]. The type environment for ẋ is computed by recur-
sively matching each product type in t with the pattern (X,X), the
singleton type ‘a or ‘b with ẋ &&& (‘a|‘b), and ‘nil with ‘nil.
Since the operator associated with ẋ is snoc and the initial type is
‘nil, when ẋ is matched against ‘a for the first time, its type is up-
dated to µZ.((‘a× Z) ∨ ‘nil). Then, when ẋ is matched against
‘b, its type is updated to the final output type which is the encoding
of [[[(‘a ∨ ‘b)∗]]]. Here, the approximation in the typing function for
snoc is important because the exact type of ẋ is [[[‘an ‘bn]]], that is,
a sequence of ‘a’s followed by the same number of ‘b’s, which is
beyond the expressivity of regular tree languages.

3.3 Properties of the Type System
We first show that the algorithms we defined (such as the equations
of Figure 8) or the typing of operator “drm(_)” terminates, even for
infinite (regular) input. To that end, we define the notion of plinth.

Definition 3.7 (Plinth). Let O be a set of operators. A plinth
iO ⊂ T over O is a set of types with the following properties:

Finiteness iO is finite;

7 2013/7/16

Boolean closure iO contains 1 and 0 and is closed under Boolean
connectives (∧,∨,¬);

Stability w.r.t. operators for all operators o ∈ O and types
t1, . . . , tno ∈ iO , if t1, . . . , tno

o→ t then t ∈ iO .

Intuitively, the plinth is the approximation of the set of types
that can be found by saturating an initial set with the operators of
O. This means that any algorithm visiting types produced by the
application of such operators will visit only a finite number of types
and therefore terminate.

Lemma 3.8. Let OCDuce be the set

OCDuce ≡ {π1, π2, rm, cons, snoc}.
For all type t, there exists a plinth over OCDuce that contains t.

Corollary 3.9. The typing of the operator drm terminates.

Corollary 3.10. For any type t and pattern p such that

∀ẋ ∈ Acc(p),Op(ẋ) ∈ OCDuce

the computation of t �
Σ

p terminates, where

Σ ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)}
Lemma 3.11. All operators OCDuce have exact input.

Note that the set of operators we consider do not include, e.g.,
the function application operator. Indeed, in general, this operator
is not stable w.r.t. a given set of types. Of course, it does not mean
that our calculus does not feature function application, but only —
and this is a rather reasonable restriction— that function application
cannot be used as an operator for accumulators.

Before stating the soundness property for the whole language,
we first need to define what it means for an operator to be sound
and second to show that the set of operators we consider is sound.

Definition 3.12 (Sound operator). An operator (o, n,
o
;,

o→) is
sound if and only if ∀v1, . . . , vno ∈ V such that ` v1 : t1, . . . ,
` vno : tno ,

if t1, . . . , tno
o→ s and v1, . . . , vno

o
; e then ` e : s

This allows us to finally state the soundness of the whole lan-
guage (through type preservation, as usual).

Theorem 3.13 (Type preservation). If all operators in the lan-
guage are sound, then typing is preserved by reduction:

if e; e′ and ` e : t, then ` e′ : t

In particular, e′ 6; Ω.

Note that since we made a runtime error (the special value Ω)
explicit in the dynamic semantics, we do not need to show progress;
showing type preservation is sufficient since Ω does not inhabit any
type. All it remains to prove is that the operators we used are sound
and whence deduce the soundness of the whole calculus.

Theorem 3.14. The operators app, π1, π2, drm, rm, cons, and
snoc are sound.

4. Surface Language
In this section, we define the “surface” language, which extends our
core calculus with several constructs:
• Sequence expressions, regular expression types and patterns
• Sequence concatenation and iteration
• XML types, XML document fragment expressions
• XPath-like patterns

While most of these traits are syntactic sugar or straightforward ex-
tensions, we took special care in their design so that: (i) they cover

various aspects of XML programming and (ii) they are expressive
enough to encode a large fragment of XQuery 3.0.
Sequences: we first add sequences to expressions

e ::= . . . | [[[e · · · e]]]

where a sequence expression denotes its encoding à la Lisp, that is,
[[[e1 · · · en]]] is syntactic sugar for (e1, (. . ., (en, ‘nil))).
Regular expression types and patterns: regular expressions over
types and patterns are defined as

(Regexp. over types) R ::= t | R|R | RR | R∗ | ε
(Regexp. over patterns) r ::= p | r|r | r r | r∗ | ε

with the usual syntactic sugar: R? ≡ R|ε and R+ ≡ RR∗. We
then extend the grammar of types and patterns as follows:

t ::= . . . | [[[R]]] p ::= . . . | [[[r]]]

Regular expression types are encoded using recursive types (sim-
ilarly for regular expression patterns). For instance, [[[int∗ bool?]]]
can be rewritten into the recursive type

µX.‘nil ∨ (bool× ‘nil) ∨ (int×X).

Sequence concatenation is added to the language in the form of a
binary infix operator _ @ _ defined by:

‘nil, v
@
; v

(v1, v2), v
@
; (v1, v2 @ v)

[[[R1]]], [[[R2]]]
@→ [[[R1R2]]]

Note that this operator is sound but cannot be used to accumulate in
patterns (since it does not satisfy the stability property of plinths).
However, it has an exact typing.
Sequence iteration is added to the language to iterate transfor-
mations over sequences without resorting to recursive functions
(which must be explicitly typed). This is done by a family of
“transform”-like operators trsp1,p2,e1,e2(_), indexed by the pat-
terns and expressions that form the branches of the transformation:

‘nil
trs
; ‘nil

(v1, v2)
trs
;

 match v1 with
p1→ e1

| p2→ e2

 @ trs(v2)

Intuitively, the construct “transform e with p1→ e1| p2→ e2”
iterates the “branches” over each element of the sequence e. Each
branch may return a sequence of results which is concatenated
to the final result (in particular, a branch may return an empty
sequence to delete some elements that match a particular pattern).
XML types, patterns, and document fragments: XML types (and
thus patterns) can be represented as a pair of the type of the label
and a sequence type representing the sequence of children, anno-
tated by the zipper that denotes the position of document fragment
of that type. We denote by <t1>t2τ the type (t1 × t2)τ , where
t1 ≤ 1basic, t2 ≤ [[[1∗]]], and τ is a zipper type. We simply write
<t1>t2 when τ = >, that is, when we do not have (or do not re-
quire) any information on the zipper type. The invariant that XML
values are always given with respect to a zipper must be maintained
at the level of expressions. This is ensured by extending the syntax
of expressions with the following construct

e ::= . . . | <e>e

where <e1>e2 is syntactic sugar for (e1, drm(e2))•. The reason for
this encoding is best understood with the following example:

Example 4.1. Consider the code:

8 2013/7/16

self{x | t} ≡ (ẋ &&& t)|

child{x | t} ≡ < >[[[(self{x | t})∗]]] |

desc-or-self{x | t} ≡ µX.(self{x | t}&&& < >[[[X∗]]]) |

desc{x | t} ≡ < >[[[(desc-or-self{x | t})∗]]] |

foll-sibling{x | t} ≡ ()L (,[[[(self{x | t}|_)∗]]])·>

parent{y | t} ≡ ()L ·µX.((R (ẏ &&& t|)·(L ·>|•))|R ·X) |

prec-sibling{y | t} ≡ ()L ·µX.(R (ẏ &&& t,)·X)|(R ·(L ·>|•)) |

anc{y | t} ≡ ()L ·µX.µY.((R (ẏ &&& t|)·L ·(X|•))|R ·Y) |

anc-or-self{y | t} ≡ (self{y | t}&&& anc{y | t}) |

where: Op(ẋ) = snoc and Init(ẋ) = ‘nil
and: Op(ẏ) = cons and Init(ẏ) = ‘nil

Figure 4. Encoding of axis patterns

1 match v with
2 <a>[[[_ x _*]]] -> [[[x]]]
3 | _ -> <c>[[[]]]

Due to our definition of pattern matching, x is bound to the second
XML child of the input and retains its zipper (in the right-hand side,
we could navigate from x up to v or even above if v is not the root).
However, when x is embedded into another document fragment, the
zipper must be erased so that accessing the element associated with
x in the new value can create an appropriate zipper (w.r.t. to its new
root [[[. . .]]]).

XPath-like patterns are one of the main motivations for this work.
The syntax of patterns is extended as follows:

(Patterns) p ::= . . . | axis{x | t}

(Axes) axis ::= self | child | desc | desc-or-self | foll-sibling
| parent | anc | anc-or-self | prec-sibling

The semantics of axis{x | t} is to capture in x all document frag-
ments of the matched document along the axis that have type t. We
show in Section 5.1 how the remaining two axes (following and
preceding) as well as “multi-step” XPath expressions can be com-
piled into this simpler form. We encode axis patterns directly using
recursive patterns and accumulators, as described in Figure 4. First,
remark that each pattern has a default branch “. . .| ” which imple-
ments the fact that even if a pattern fails, the value is still accepted,
but the default value ‘nil of the accumulator is returned. The so-
called “downward” axes —self, child, desc-or-self, and desc— are
straightforward. For self, the intersection checks that the matched
value has type t. The child axis is encoded by iterating the self axis
on every child element of the matched value. The recursive axis
desc-or-self is encoded by a recursive pattern which matches the
root of the current element (using a self pattern) and is recursively
applied to each element of the sequence. Note the double recursion:
vertically in the tree by using a recursive binder and horizontally at
a given level using a star. The non-reflexive variant desc evaluates
desc-or-self on every child element of the input.

The other axes heavily rely on the binary encoding of XML
values and are better explained on an example. Consider the XML
document and its binary tree representation given in Figure 5. The
following siblings of a node (e.g., <c>) are reachable by inspecting
the first element of the zipper, which is necessarily an L one.
This parent is the pair representing the sequence whose tail is the
sequence of following siblings (R3 and R2 in the figure). Applying
the self{x | t} axis on each element of the tail filters therefore
the following siblings that are seeked (<d> and <e> in the figure).
The parent axis is more involved. Consider for instance node <e>.
Its parent in the XML tree can be found in the zipper associated

with <e>. It is the last R component of the zipper before the
next L component (in the figure, the zipper of <e> starts with L2,
then contains its previous siblings reachable by R2 and R3, and
lastly its parent reachable by R4 (which points to node). The
encoding of the parent axis reproduces this walk using a recursive
zipper pattern, whose base case is the last R before the next L,
or the last R before the root (which has the empty zipper •). The
prec-sibling axis uses a similar method and collects every node
reachable by an R and stops before the parent node (again, for node
<e>, the preceding siblings are reached by R2 and R3). The anc axis
simply iterates the parent axis recursively until there is no L zipper
anymore (that is until the root of the document has been reached).
In the example, starting from node <f>, the zippers that denote the
ancestors are the ones starting with an R, just before L2, L3, and
L4 which is the root of the document. Lastly, anc-or-self is just the
combination of anc and self.

As a remark, one may notice that patterns of forward axes use
snoc (that is, build the sequence of the results in order), while
upward axes use cons (thus reversing the results). The reason for
this difference is to implement the semantics of XPath queries
which returns elements in document order.

5. XQuery 3.0
In this section, we show that our surface language can be used as a
compilation target for a sizable fragment of XQuery 3.0. The main
difficulty resides in translating XPath queries into axis patterns, the
translation of other XQuery constructs being straightforward.

5.1 XPath
In this work, we consider only the so-called navigational fragment
of XPath that we can handle at the level of types and patterns.
To support XPath queries involving data value comparisons and
aggregate functions such as nth-child predicates, it suffices to break
queries into structural parts (to be handled by patterns) and data
value parts (to be handled by regular CDuce functions).

Definition 5.1 (XPath query). An XPath query is a finite term
produced by the following grammar:

path ::= step | path/step
step ::= axis :: test[pred]
test ::= l | ∗
pred ::= path | not(pred) | pred and pred | pred or pred

where axis produces the axes defined in the previous section, l
ranges over XML element names (i.e., atoms), and ∗ is a wildcard
test that denotes any label.

The semantics of XPath (as defined in [22]) relies on sets of
nodes. Informally, given an initial set of nodes N1 and a sequence
of steps s1/ . . . /sn, the result of the evaluation of an XPath query
is the setNn+1 obtained by applying the composition sn◦. . . ◦s1 to
N1. An application of a step a :: l[p] to a set of nodes is computed
as follows. First, for each node n in N , we compute the set Na of
nodes reachable through the axis a from n. Next, we filter Na to
keep only the set Nl of nodes whose label is l. Then, we keep only
the set Np of nodes of Nl for which the predicate p evaluates to
true. Lastly, we remove any duplicate fromNp and return the nodes
in document order. The truth value of predicates with respect to a
node n is inductively defined as:

n
 path : (path({n}) 6= ∅)
n
 p : b

n
 not(p) : ¬b
n
 p1 : b1 n
 p2 : b2

n
 p1 or p1 : b1 ∨ b2
n
 p1 : b1 n
 p2 : b2

n
 p1 and p1 : b1 ∧ b2
Recalling the example given in the introduction (translated to

the more concise syntax given above), the path

9 2013/7/16

doc = <a>[
[<c>[]

<d>[]
<e>[<f>[]]

]
]

<>

a
L4

(,)

<>

b

(,)

<>

c

‘nil

(,)

<>

d

‘nil

(,)

<>

e

(,)

<>

f

‘nil
L1

‘nil
R1

L2

‘nil
R2R3R4

L3

‘nil
R5

Figure 5. A binary tree representation of an XML document doc = <a>[[<c>[] <d>[] <e>[<f>[]]]]

desc :: a[not(anc :: b)]
returns all descendants of the input that are labelled a and do not
have an ancestor labelled b.

The biggest challenge in implementing the XPath semantics into
patterns is to stick to the set-based semantics, without introducing
internal node identifiers (that could be used to remove duplicates
and sort the results in document order).2 This precludes giving a
compositional, step-by-step semantics of XPath using the surface
language. Indeed, consider the document:

d ≡ <a>[[[<a>[[[<a>[[[]]]]]]]]]
Applying desc-or-self :: a to d yields three intermediate results:

N = {<a>[[[<a>[[[<a>[[[]]]]]]]]], <a>[[[<a>[[[]]]]]], <a>[[[]]]}
but applying desc-or-self :: a again to N yields N itself, since the
semantics is set-based.

The solution we propose is based on two key observations:
i. Given a predicate [pred], we can write a CDuce type t such that

for all value v, v
 pred : true if and only if ` v : t (v has type
t in CDuce);

ii. Any path p ≡ s1/ . . . /sn can be put in the form of a predicate
[pred], such that the set of nodes selected by p is exactly the set
of nodes for which [pred] holds.

Using (ii.) we can put an XPath query in the form of a predicate
and using (i.) we translate the predicate into a type t, and therefore
express the whole XPath query as a pattern

desc-or-self{x | t}.
When this pattern is matched against a value v, it selects all the
subtrees of v for which [pred] holds, that is, all the subtrees returned
by p({v}).

Giving the full translation of XPath predicates into types is out
of scope and we omit it here since it is well-known result (see
[4, 14] and Appendix F for more details). Moreover, regular types
such as those we use are equivalent to tree automata, which are
known to be strictly more expressive than XPath (i.e., for every
XPath query, one can give a tree automaton that recognizes exactly
all the documents for which the XPath query is satisfiable). This
translation into tree automata may nevertheless be problematic. We
do not give a detailed account of such translations as they can be
found in the literature (see Section 7). We nevertheless illustrate the
encoding of XPath predicates into types with the example below:

Example 5.2. The XPath predicate
p ≡ parent :: a or desc-or-self :: b/child :: c

is equivalent to the CDuce type t where:

t ≡ t1 ∨ t2
t1 ≡ (1)L ·µX.(R (<a>1)·L ·> | R ·X)

t2 ≡ µX.([[[1∗ (<c>1) 1∗]]] ∨ <1basic>[[[1∗ X 1∗]]])

Here, we see that the XPath operator or is translated into its set-
theoretic counterpart (likewise for and and not). Upward path

2 We could introduce a “set” type constructor exploiting internal node iden-
tifiers and new patterns for sets (besides sequences). However, this is merely
the same as adding a separate layer for XPath on top of CDuce. Rather, we
chose to encode XPath into CDuce patterns and thus benefit from the al-
ready existing static type system and efficient execution model of CDuce.

expressions are translated into zipper types, while downward path
expressions are translated into recursive XML types. Furthermore,
the chaining of steps is achieved by nesting the type obtained for the
second step into the type obtained for the first step (see how <c>1
is embedded in t2).

The last part of our XPath to pattern translation is the rewriting
of XPath queries of the form s1/ . . . /sn into an XPath predicate.
This transformation is also known (see Section 7 for references)
and we formulate it as a lemma:

Lemma 5.3 (XPath to predicate translation [14]). Let
p ≡ a1 :: l1[p1]/ . . . /an :: ln[pn]

be an XPath query. It can be translated into the following predicate:
pn and self :: ln/a

−1
n :: ln−1[pn−1]/ . . . /a−1

1 :: ∗[isroot]
where a−1 is the inverse axis of a, defined as:

self−1 = self child−1 = parent parent−1 = child
desc−1 = anc anc−1 = desc foll-sibling−1 = prec-sibling
desc-or-self−1 = anc-or-self anc-or-self−1 = desc-or-self
prec-sibling−1 = foll-sibling

and isroot ≡ not(parent :: ∗).

The key point of the translation is the fact that, for instance,
the nodes selected by an XPath query child :: a/desc :: b are all
the nodes labelled b that have an ancestor a, the parent of which
is the root of the document. In other words, the nodes selected by
“child :: a/desc :: b” are all the nodes for which the predicate
“[self :: b/anc :: a/child :: ∗[isroot]]” holds.

To conclude the encoding of XPath, we remark that since our
pattern traverses an XML tree using a depth-first recursion when
going downward and accumulates in reverse when going upward,
the values returned by our translation of XPath queries are (i) in
document order and (ii) without duplicates. This allows us to add
to our surface language one last extension to the syntax of expres-
sions: “e/path” which is translated into:

match e with desc{x | tpath}→ x | → [[[]]]
where tpath is the type translation of the XPath query path. With this
extension, the CDuce version of the “get_links” function given in
the introduction becomes as compact as in XQuery:

1 let get_links : <_>_ → (<a>_ → <a>_) → [<a>_ *] =
2 fun page -> fun print ->
3 transform page/descendant::a[not(ancestor::b)] with
4 x -> [(print x)]

5.2 XQuery
This section shows how our surface language can be used to encode
a relevant fragment of XQuery 3.0. The fragment we consider is an
extension of XQH defined by Benedikt and Vu in [2].

Definition 5.4 (XQ+
H). An XQ+

H query is a finite term produced
by the following grammar:

10 2013/7/16

query ::= () (empty sequence)
| c (constant)
| <l>query</l> (XML fragment)
| query, query (sequence operator)
| x (variable)
| x/path (XPath)
| for x in query return query (sequence iteration)
| query(query, . . . , query) (application)
| fun x1 : t1 , . . . , xn : tn as t. query (abstraction)
| switch query

case c return query
default return query

(value switch)

| typeswitch query
case t as x return query
default return query

(type switch)

where t ranges over types and l ranges over element names.

To the best of our knowledge, [2] is the first work to propose a
“Core” fragment of XQuery 3.0 which abstracts away most of the
idiosyncrasies of the actual specification while retaining essential
features (path navigation for instance). Definition 5.4 differs from
XQH by the last three productions (with bold names) since XQ+

H
extends XQH with type and switch cases (described informally in
the introduction) and with type annotations on functions (which
are only optional in the standard). Our claim is the following. If
one considers the “typed” version of the standard, that is, XQuery
programs where function declarations have an explicit signature,
then the translation to our surface language provides (i) a formal
semantics and a typechecking algorithm for XQuery and (ii) the
soundness property that the original XQuery programs do not yield
a runtime error. In the present work, we assume that the type alge-
bra of XQuery is the one of CDuce, rather than XMLSchema. Both
share regular expression types for which subtyping is implemented
as the inclusion of languages but XMLSchema also features nomi-
nal subtyping. The extension of CDuce types with nominal subtyp-
ing is beyond the scope of this work and is left as future work.

Note that in XQuery, all values are sequences. Therefore, the
constant “42” is considered as the singleton sequence that contains
the element “42”. A consequence is that there are only “flat” se-
quences in XQuery; the only way to create nested data structures
is to use XML constructs. The only difficulty with respect to our
translation is that we need to embed/extract values explicitly in-
to/from sequences. It also needs to disambiguate types: an XQuery
function that takes an integer as argument can be applied to a se-
quence containing only one integer. The translation is defined in
Figure 6, by a function J_KXC that converts an XQuery query into a
CDuce expression.

The translation is straightforward and ensures that the result of a
translation JqKXC always has a sequence type. We assume that both
languages have the same set of variables and constants. An empty
sequence is translated into the atom ‘nil, constants are translated
into singleton sequences containing that constant and similarly for
XML fragments. The sequence operator is translated into a con-
catenation. Variables do not require any special treatment. XPath
queries and “for in” loops are encoded similarly using the trans-
form construct (in XQuery, an XPath query applied to a sequence
of elements is the concatenation of the individual applications). The
“switch” construct is directly translated into a “match with” con-
struct. The “typeswitch” construct works in a similar fashion but
special care must be taken with respect to the type t that is tested.
Indeed, if t is a sequence type, then its translation returns the se-
quence type, but if t is something else (say int), then it must be
embedded into a sequence type. Interestingly, this test can be en-
coded as the CDuce type seq(t) which keeps the part of t that is
a sequence unchanged while embedding the part of t that is not a
sequence (namely t \ [[[1∗]]]) into a sequence type. Abstractions are

J()KXC = ‘nil

JcKXC = [[[c]]]

J<l>q</l>KXC = [[[<l>JqKXC]]]

Jq1, q2KXC = Jq1KXC @ Jq2KXC
JxKXC = x

Jx/pathKXC =

transform x with
i → i/path

| _→ ‘nil

Jfor x in q1 return q2KXC =

transform Jq1KXC with
x → Jq2KXC

| _→ ‘nil

u

v
switch q1

case c return q2
default return q3

}

~

XC

=

match Jq1KXC with
[[[c]]]→ Jq2KXC

| _ → Jq3KXC
u

v
typeswitch q1

case t as x return q2
default return q3

}

~

XC

=

match Jq1KXC with
x &&& seq(t)→ Jq2KXC

| _→ Jq3KXC
Jfun x1 : t1 , . . . , xn : tn as t. qKXC =

µ_seq(t1)→...→seq(t)(x1).. . .
µ_seq(tn)→seq(t)(xn).JqKXC

q(q1, . . . , qn) = JqKXC Jq1KXC . . . JqnKXC
where seq(t) ≡ (t ∧ [[[1∗]]]) ∨ ([[[t \ [[[1∗]]]]]])

Figure 6. Translation of XQ+
H into CDuce.

translated into a currified CDuce function, and the same treatment
of “sequencing” the type is applied to the type of the arguments and
type of the result. Lastly, application is translated as-is.

Not only does this translation ensure soundness of the original
XQuery 3.0 programs, it also turns CDuce into a sandbox into
which one can experiment various typing features that can readily
be back-ported to XQuery afterwards.

6. Extensions
Bridging the gap between CDuce and XQuery is beneficial to both
languages. While CDuce gains the declarativity of XPath queries,
XQuery could be improved in the following way. First, supporting
overloaded function in XQuery would now be possible. Note that in
the absence of parametric polymorphism, ad-hoc polymorphism is
a way to avoid code duplication while remaining in a typed setting.
More interestingly, the fact that CDuce types can now express
constraints on path (in particular, upward ones) shows us that such
constraints could also be added to XQuery. While we do not expect
the average XQuery programmer to write complex recursive types
on zippers, a syntax of types using XPath could easily be added.
This would allow one to define a function:

declare function f($x as parent::a)
as self::d[child::b]

which accepts as argument any XML element whose parent is
labelled a and returns elements whose label is d and that have a
child labelled b.

Both our calculus and XQuery require functions to be annotated
with types. This is particularly troublesome when we use XPath
axis expressions such as parent inside the function body as follows:

let f : ??? = fun x -> parent(x)

The simplest way to type f is to use the imprecise type (<1>1)> →
[[[(<1>1)>?]]] (i.e., accept any XML element and return a list of at

11 2013/7/16

most one XML element) which is indeed the approach taken by
XQuery. However, such a type is barely interesting since the type
information about the result is useless. The syntax of XPath in types
introduced just above is not of any help for this problem.

For non-recursive first-order functions, adopting C++ template
style polymorphism allows more flexibility by typing not the func-
tion definition but each application individually. We already posses
all the machinery needed to implement this style of polymorphism
since we can use mappings of our patterns as C++ templates. In-
stead of specifying for functions a set of arrows from types to types,
we specify a set of templates, that is, arrows from patterns to pat-
terns. The idea is to use pattern capture variables as poor man’s
polymorphic type variables.

For instance, we can specify for the function f above the “tem-
plate” (()L ·µX.(R x·(L ·>|•) | R ·X)) → [[[x?]]]. With the syntac-
tic sugar of Figure 4, it corresponds to the following definition:

let f : parent{x | }→ [[[x?]]] = fun x -> parent(x)

The definitions of template functions are lightly typechecked: es-
sentially, if the template p1→p2 is specified, the system checks that
the template function has type *p1 +→*p2+ (for f this roughly cor-
responds to check that it has the imprecise type defined at the begin-
ning of the section). The applications of template functions instead
are precisely typed by retypechecking the function from scratch: if
a function with template p1→p2 is applied to an argument of type
t, then p1 is matched against t (via _/_ and _�_) and the corre-
sponding substitutions are applied to p2 yielding the result type;
finally, the whole function definition is typechecked against the de-
duced types. Therefore, when f is applied to an element whose par-
ent has type t, the system correctly deduces the type [[[t?]]] for the
application. Formally, we add to expressions top-level declarations
of template functions of the form λF (p→p;...;p→p)(x).e as well as
their applications Fe. We check well-formedness of declarations
(lightweight typechecking) and type each application by applying
“template instantiation”, which matches the input of the template
with the type of the argument and instantiates the output of the tem-
plate by the resulting substitutions. Formal definitions are given in
Appendix D and soundness is ensured by construction.

7. Related Work and Conclusion
Our work tackles several aspects of XML programming, the more
salient being: (i) encoding of XPath or XPath-like expressions
in regular types and patterns, (ii) recursive tree transformation
using accumulators and their typing, and (iii) type systems and
typechecking algorithms for XQuery.

Regarding XPath and pattern matching, the work closest to ours
is the implementation of paths as patterns in XTatic. XTatic [11]
is an object-oriented language featuring XDuce regular expres-
sion types and patterns [16, 17]. In [12], Gapeyev and Pierce al-
ter XDuce’s pattern matching semantics and encode a fragment of
XPath as patterns. The main differences with the present work is
that they use a hard-coded all-match semantics (a variable can be
bound to several subterms) to encode the accumulations of recur-
sive axes, which are restricted by their data-model to the “child”
and “descendant” axes. Another attempt to use path navigation in
a functional language can be found in [19] where XPath-like com-
binators are added to Haskell. Again, only child or descendant-like
navigation is supported and typing is done in the setting of Haskell
which cannot readily be applied to XML typing (results are re-
turned as homogeneous sequences).

Our addition of accumulators to pattern matching is reminiscent
of Macro Tree Transducers (MTTs, [7]), tree transducers (tree au-
tomata producing an output) that can also accumulate part of the
input and copy it in the output. It is well known that given an input
regular tree language, the type of the accumulators and results may

not be regular. Exact typing may be done in the form of backward
type inference, where the output type is given and a largest input
type is inferred ([10, 20]). It would be interesting to use the back-
ward approach to type our accumulators without the approximation
introduced for “cons” for instance.

For what concerns XQuery and XPath, several complementary
works are of interest. First, the work of Genevès et al. which en-
codes XPath and XQuery in the µ-calculus ([13, 14] where zip-
pers to manage XPath backward axes were first introduced) sup-
ports our claim. Adding path expressions at the level of types is not
more expensive: subtyping (or equivalently satisfiability of partic-
ular formulæ of the µ-calculus which are equivalent to regular tree
languages) remains EXPTIME, even with upward paths (or in our
case, zipper types). In contrast, typing path expressions and more
generally XQuery programs is still a challenging topic. While the
W3C’s formal semantics of XQuery ([25]) gives a polynomial time
typechecking algorithm for XQuery (in the absence of nested “let”
or “for” constructs), it remains too much imprecise (in particu-
lar, backward axes are left untyped). Recent work by Genevès et
al. [15] introduces XQTC, a typechecker for XQuery based again
on µ-calculus satisfiability but using the backward type inference
approach. While it certainly is a step in the right direction, it only
considers XQuery 1.0 queries and, in particular, does not feature
arrow types yet. Interestingly, while Genevès et al. use zippers to
represent XML trees in [14], in [15] they do not.

Future work includes extensions to other XQuery constructs as
well as XMLSchema, the extension of CDuce compiler to imple-
ment XPath expressions, the addition of aggregate functions by as-
sociating accumulators to specific operators, and the definition and
study of polymorphic systems for both XQuery and CDuce+XPath.

References
[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans.

Program. Lang. Syst., 15(4):575–631, 1993.

[2] M. Benedikt and H. Vu. Higher-order functions and structured
datatypes. In WebDB, 2012.

[3] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric
general-purpose language. In ICFP, 2003.

[4] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Node
selection query languages for trees. In AAAI, 2010.

[5] G. Castagna and K. Nguyễn. Typed iterators for XML. In ICFP, 2008.

[6] G. Castagna and Z. Xu. Set-theoretic foundation of parametric poly-
morphism and subtyping. In ICFP, 2011.

[7] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst.
Sci., 31(1):71–146, 1985.

[8] A. Frisch. Théorie, conception et réalisation d’un langage adapté à
XML. PhD thesis, Université Paris 7 Denis Diderot, 2004.

[9] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Deal-
ing set-theoretically with function, union, intersection, and negation
types. J. ACM, 55(4):1–64, 2008.

[10] A. Frisch and H. Hosoya. Towards practical typechecking for macro
tree transducers. In DBPL, 2007.

[11] V. Gapeyev, F. Garillot, and B. C. Pierce. Statically typed document
transformation: An Xtatic experience. In PLAN-X, 2006.

[12] V. Gapeyev and B. C. Pierce. Paths into patterns. Technical Report
MS-CIS-04-25, University of Pennsylvania, Oct. 2004.

[13] P. Genevès and N. Layaı̈da. Eliminating dead-code from XQuery
programs. In ICSE, 2010.

[14] P. Genevès, N. Layaı̈da, and A. Schmitt. Efficient static analysis of
XML paths and types. In PLDI, 2007.

[15] P. Genevès, N. Layaı̈da, and C. Vanoirbeek. XQTC: A static type-
checker for XQuery using backward type inference. Research Report
RR-8149, INRIA, Nov. 2012.

12 2013/7/16

[16] H. Hosoya and B. C. Pierce. Regular expression pattern matching for
XML. J. Funct. Program., 13(6):961–1004, 2003.

[17] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML process-
ing language. ACM Trans. Internet Technol., 3(2):117–148, 2003.

[18] G. Huet. The Zipper. J. Funct. Program., 7(5):549–554, 1997.
[19] R. Lämmel. Scrap your boilerplate with XPath-like combinators. In

POPL, 2007.
[20] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with

macro tree transducers. In PODS, 2005.
[21] K. Nguyễn. Combinator language for XML: design, typing, and

implementation. PhD thesis, Université Paris-Sud 11, 2008.
[22] W3C: XPath 1.0. http://www.w3.org/TR/xpath, 1999.
[23] W3C: XPath 2.0. http://www.w3.org/TR/xpath20, 2010.
[24] W3C: XML Query. http://www.w3.org/TR/xquery, 2010.
[25] XQuery 1.0 and XPath 2.0 Formal Semantics (Second Edition). http:

//www.w3.org/TR/xquery-semantics/, 2010.
[26] W3C: XQuery 3.0. http://www.w3.org/TR/xquery-3.0, 2013.
[27] W3C: XML Schema. http://www.w3.org/XML/Schema, 2009.
[28] Z. Xu. Parametric Polymorphism for XML Processing Languages.

PhD thesis, Université Paris 7 Denis Diderot, May 2013.

13 2013/7/16

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-3.0
http://www.w3.org/XML/Schema

Appendix

A. Actual CDuce Code
The actual definitions in CDuce for the functions given in Figure 1 are as follows:

let get_links (page: AnyXml)(print: <a>_ -> <a>_) : [<a>_ *] =
match page with

<a>_ & x -> [(print x)]
| < (_\‘b) > l -> (transform l with (i & <_>_) -> get_links i print)
| _ -> []

let pretty (<a>_ -> <a>_ ; Any\<a>_ -> Any\<a>_)
 l -> [l]

| x -> x

B. Subtyping
In order to formally extend the subtyping relation defined in [9] to the types of Section 2.1, it suffices to modify DEFINITION 4.3 of [9] as
done by Definition B.2 (the reader can refer to [9] for the complete definitions of the notations used there). However, before extending the
subtyping relation, we need some auxiliary definitions to give an interpretation of zipper types that is compatible with their infinite nature.

Let T Z denote the set of zipper types. First of all, notice that the contractivity condition on zipper types implies that the binary relation
. ⊆ T Z ×T Z defined by τ1 ∨ τ2 . τi and ¬τ . τ is Noetherian (that is, strongly normalizing). This gives an induction principle on T Z that
we use below.

Let D be a set, J_K : T → P(D) be a set-theoretic interpretation (as defined in Definition 4.1 in [9], where T denotes the set of all types
and P(D) is the powerset of D). Let Z denote {Ld | d ∈ D} ∪ {Rd | d ∈ D}. We use Z∗ to denote the free monoid on Z .

We define a binary predicate (s ∈JK τ) parametric in the set-theoretic interpretation JK where s ∈ Z∗ and τ ∈ T Z . The truth value of
(s ∈JK τ) is defined by induction on the pair (s, τ) ordered lexicographically, using the inductive structure for elements of Z∗ (these are
finite sequences s of decorated elements of D) and the induction principle we mentioned above for zipper types. Here is the definition:

s ∈JK > = true
ε ∈JK • = true

R d · s ∈JK R (u)τ · τ = (s ∈JK τ) and (d ∈ JuK)
L d · s ∈JK L (u)τ · τ = (s ∈JK τ) and (d ∈ JuK)

s ∈JK τ1 ∨ τ2 = (s ∈JK τ1) or (s ∈JK τ2)
s ∈JK ¬τ = not(s ∈JK τ)
s ∈JK τ = false otherwise

This predicate is then used to define the following interpretation of zipper types:

Definition B.1 (Zipper type interpretation). Let D be a set, J_K : T → P(D) be a set-theoretic interpretation, and Z denote
{Ld | d ∈ D} ∪ {Rd | d ∈ D}. The interpretation JτK of a zipper type τ with respect to J_K is defined as:

JτK = {s ∈ Z∗ | s ∈JK τ}

Subtyping for zipper types is defined as τ <: τ ′
def
= JτK ⊆ Jτ ′K.

Finally, the interpretation of zipper types is used to extend DEFINITION 4.3 of [9] to our new types, as follows.

Definition B.2 (Extensional interpretation). Let J_K : T → P(D) be a set-theoretic interpretation in some set D. Let Z def
= {Ld | d ∈

D} ∪ {Rd | d ∈ D}, and Z∗ denote the free monoid on Z .
We define the associated extensional interpretation as the unique set-theoretic interpretation

E(_) : T → P(ED)

(where ED = C +D2 + P(D ×DΩ) + (P(D)×Z∗)) such that:

E(b) = BJbK ⊆ C
E(t1 × t2) = Jt1K× Jt2K ⊆ D2

E(t1 → t2) = Jt1K→ Jt2K ⊆ P(D ×DΩ)
E((u)τ) = JuK× JτK ⊆ P(D)×Z∗

All the other definitions of [9] remain unchanged, in particular, those of a well-founded model and of its induced subtyping relation.
In order to decide the subtyping relation induced by a model, a possibility is to extend the definitions of Section 6 in [9] to account for the

new zipper type constructor. A simpler way is to use a well-founded model, encode both zipper types and zipper values in the values and types
of [9] (our pre-type and pre-values) via the encoding function Enc(_) below, and prove that Jτ1K ⊆ Jτ2K if and only if Enc(τ1) ≤ Enc(τ2).

15 2013/7/16

Definition B.3 (Encoding of zippers). Zippers and zipper types are encoded (inductively) into pairs and (coinductively) into product types,
respectively, as follows:

Enc(L (w)δ · δ) ≡ ((‘L, w),Enc(δ))
Enc(R (w)δ · δ) ≡ ((‘R, w),Enc(δ))

Enc(•) ≡ ‘nil

Enc(L (u)τ · τ) ≡ (‘L× u)× Enc(τ)
Enc(R (u)τ · τ) ≡ (‘R× u)× Enc(τ)

Enc(>) ≡ µX.((‘L ∨ ‘R)× 1)×X ∨ ‘nil
Enc(•) ≡ ‘nil

Enc(¬τ) ≡ Enc(>) \ Enc(τ)
Enc(τ1 ∨ τ2) ≡ Enc(τ1) ∨ Enc(τ2)

The termination of the subtyping algorithm in [9] implies the termination of the subtyping algorithm on (the encoding of) the extended
type algebra. Since the encoding is linear on the size of terms, both algorithms have the same complexity.

As an aside, note that the whole calculus presented in this paper can be faithfully encoded in CDuce without affecting the complexity of
the algorithms: it is straightforward to extend the encodings of Definition B.3 to E and T .

All it remains to prove is the soundness and completeness of the encoding, namely:

Theorem B.4. Let ≤ be a subtyping relation for the calculus in [9] induced by a well-founded model. Then, there exist a set D and a set
theoretic interpretation J_K : T → P(D) such that for all τ1, τ2 ∈ T Z , the following holds:

Jτ1K ⊆ Jτ2K ⇐⇒ Enc(τ1) ≤ Enc(τ2)

Proof. Let us use λFCB to denote the λ-calculus defined in [9]. Let ≤ be any subtyping relation for λFCB induced by a well-founded model.
Theorem 5.5 in [9] states that Enc(τ1)≤Enc(τ2) if and only if JEnc(τ1)KV ⊆ JEnc(τ2)KV , where J_KV is the value interpretation for the
types of λFCB defined as JtKV

def
= {v | ` v : t} (where v and t respectively range over the values and types of λFCB).

The simplest way to prove this theorem, then, is to produce a set D and interpretation J_K : T → P(D) such that there is a one-to-one
correspondence between JτK and JEnc(τ)KV .

To that end, take as D the set of all values of λFCB, that is, J1KV , and as interpretation any interpretation that on the pre-values of our
calculus (which are the values of λFCB) behaves as J_KV , that is, JwK = JwKV for every pre-value w. Next, we define an embedding function
f : Z∗ ↪→ JEnc(>)KV from the resulting Z∗ to set of values of type Enc(>), by induction on the length of the elements of Z∗ as follows:

f(ε) = ‘nil
f(Lw · s) = ((‘L, w), f(s))
f(Rw · s) = ((‘R, w), f(s))

We can prove that f is injective by induction on Z∗, and surjective by induction on JEnc(>)KV (recall that, contrary to types, values are
inductively defined).

Since s ∈ JτK ⇐⇒ s ∈JK τ , then to prove that f is a one-to-one mapping from JτK to JEnc(τ)KV , it suffices to prove that for all
s ∈ Z∗ and τ ∈ T Z , s ∈JK τ ⇐⇒ f(s) ∈ JEnc(τ)KV . This can be easily proved by induction on the pair (s, τ) ordered lexicographically,
by performing a case analysis on the definition of ∈JK .

16 2013/7/16

C. Typing

Zipper typing rules ` δ : τ

[ZT-ROOT]

` • : •

[ZT-SUB]
` δ : τ τ <: τ ′

` δ : τ ′

[ZT-LEFT]
` w : t ` δ : τ

` L (w)δ · δ : L (t)τ · τ

[ZT-RIGHT]
` w : t ` δ : τ

` R (w)δ · δ : R (t)τ · τ

Typing rules Γ ` e : τ

[T-CST]

Γ ` c : bc

[T-VAR]

Γ ` x : Γ(x)

[T-ACC]

Γ ` ẋ : Γ(ẋ)

[T-ZIP-VAL]
` w : t ` δ : τ t ≤ 1NZ

Γ ` (w)δ : (t)τ

[T-ZIP-EXPR]
` e : t t ≤ 1NZ

Γ ` (e)• : (t)•

[T-PAIR]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2

[T-SUB]
Γ ` e : s s ≤ t

Γ ` e : t

[T-OP]
∀i = 1..no, Γ ` ei : ti t1, . . . , tno

o→ t

Γ ` o(e1, . . . , eno) : t
for o ∈ O

[T-FUN]

t =
∧

i=1..n

(ti → si) ∧
∧
j

¬(t′j → s′j) t 6' 0 ∀i = 1..n, Γ ∪ {f 7→ t, x 7→ ti} ` e : si

Γ ` µf (t1→s1;...;tn→sn)(x).e : t

[T-MATCH]

t ≤ *p1+ ∨ *p2+ t1 ≡ t ∧ *p1+
t2 ≡ t ∧ ¬*p1+ Σi ≡ {ẋ 7→ Init(ẋ)|ẋ ∈ Acc(pi)}

Γ ` e : t
Γ ∪ ti/pi ∪ ti�

Σi

pi ` ei : t′i

Γ ` match e with p1→ e1| p2→ e2 :
∨

{i | ti 6'0}

t′i

Figure 7. Typing rules

17 2013/7/16

t �
Σ

t′ = Σ

t �
Σ

x = Σ

t �
Σ

ẋ = Σ[s/̇x] where t,Σ(ẋ)
Op(ẋ)→ s

t �
Σ

(p1, p2) =
⊔

(t1,t2)∈Π(t)

t2 �
(t1�

Σ
p1)

p2

t �
Σ

p1|p2 = t �
Σ

p1 if t ≤ *p1+

t �
Σ

p1|p2 = t �
Σ

p2 if t ≤ ¬*p1+

t �
Σ

p1|p2 = (t ∧ *p1+) �
Σ

p1

⊔
(t ∧ ¬*p1+) �

Σ

p2 otherwise

t �
Σ

p1 &&& p2 = t �
(t�

Σ
p1)

p2

t �
Σ

(x := c) = Σ

(u)τ �
Σ

(q)ϕ = τ �
(u�

Σ
q)

ϕ

τ �
Σ

> = Σ

L (u)τ · τ �
Σ

L p · ϕ = τ �
((u)τ�

Σ
p)

ϕ

R (u)τ · τ �
Σ

R p · ϕ = τ �
((u)τ�

Σ
p)

ϕ

τ �
Σ

ϕ1|ϕ2 = τ �
Σ

ϕ1 if τ ≤ *ϕ1+

τ �
Σ

ϕ1|ϕ2 = τ �
Σ

ϕ2 if τ ≤ ¬*ϕ1+

τ �
Σ

ϕ1|ϕ2 = (τ ∧ *ϕ1+) �
Σ

ϕ1

⊔
(τ ∧ ¬*ϕ1+) �

Σ

ϕ1 otherwise

(τ1 ∨ τ2) �
Σ

ϕ = τ1 �
Σ

ϕ
⊔
τ2 �

Σ

ϕ if ϕ 6' ϕ1|ϕ2 and ϕ 6' >

(Σ1

⊔
Σ2)(ẋ) =

 Σ1(ẋ) if ẋ ∈ dom(Σ1) \ dom(Σ2)
Σ2(ẋ) if ẋ ∈ dom(Σ2) \ dom(Σ1)
Σ1(ẋ) ∨ Σ2(ẋ) if ẋ ∈ dom(Σ1) ∩ dom(Σ2)

Figure 8. Computing the type environment for accumulators

(t/x)(x) = t
(t/(p1, p2))(x) = (Π1(t)/p1)(x) if x ∈ Var(p1)\Var(p2)
(t/(p1, p2))(x) = (Π2(t)/p2)(x) if x ∈ Var(p2)\Var(p1)
(t/(p1, p2))(x) = (Π1(t)/p1)(x)× (Π2(t)/p2)(x) if x ∈ Var(p1) ∩Var(p2)
(t/p1|p2)(x) = ((t ∧ *p1+)/p1)(x) ∨ ((t ∧ ¬*p1+)/p2)(x)
(t/p1 &&& p2)(x) = (t/pi)(x) if x ∈ Var(pi)
(t/(x := c))(x) = tc if t 6' 0
(t/(x := c))(x) = 0 if t ' 0
((u)τ/(q)ϕ)(x) = (u/q)(x) if x ∈ Var(p)
((u)τ/(q)ϕ)(x) = (τ/ϕ)(x) if x ∈ Var(ϕ)

(L (u)τ · τ/L p · ϕ)(x) = ((u)τ/p)(x) if x ∈ Var(p)\Var(ϕ)
(L (u)τ · τ/L p · ϕ)(x) = (τ/ϕ)(x) if x ∈ Var(ϕ)\Var(p)
(L (u)τ · τ/L p · ϕ)(x) = ((u)τ/p)(x)× (τ/ϕ)(x) if x ∈ Var(p) ∩Var(ϕ)
(R (u)τ · τ/R p · ϕ)(x) = ((u)τ/p)(x) if x ∈ Var(p)\Var(ϕ)
(R (u)τ · τ/R p · ϕ)(x) = (τ/ϕ)(x) if x ∈ Var(ϕ)\Var(p)
(R (u)τ · τ/R p · ϕ)(x) = ((u)τ/p)(x)× (τ/ϕ)(x) if x ∈ Var(p) ∩Var(ϕ)
(τ/ϕ1|ϕ2)(x) = ((τ ∧ *ϕ1+)/ϕ1)(x) ∨ ((τ ∧ ¬*ϕ1+)/ϕ2)(x)
((τ1 ∨ τ2)/ϕ)(x) = (τ1/ϕ)(x) ∨ (τ2/ϕ)(x) if ϕ 6' ϕ1|ϕ2

Figure 9. Computing the type environment for capture variables

18 2013/7/16

D. Template Polymorphism
First, we define template function declarations ∆ as a list of template functions of the form λF (p→p;...;p→p)(x).e:

∆ ::= ∅ |∆, λF (p→p;...;p→p)(x).e

Then, we define a lightweight system that checks well-formedness of template function declarations, composed of two rules:

` · wf

(i = 1..n)
Var(p′i) ∪Acc(p′i) ⊆ Var(pi) ∪Acc(pi)

`∆ wf (x : *pi+) `∅ e : *p′i+

`∆, λF (p1→p′1;...;pn→p′n)(x).e wf

The first rule states that the empty list is a well-formed declaration. The second rule checks the well-formedness of a template function by
performing the following checks: it checks (i) that the variables occurring in the domain of each template contain those occurring in the
corresponding codomain (alternatively, we could have required equality or have substituted variables occurring only in the codomain by 1)
and (ii) that the definition of the function is compatible with the accepted types of the templates.

Although a template function is checked again at each application, we may want to be slightly more stringent in checking the type of the
template function definition. For instance, we may want to check that a function with template x &&& int→ x always returns at least a value of
type int. This can be done, at the expenses of simplicity, by modifying the second rule as follows:

(i = 1..n)
Var(p′i) ∪Acc(p′i) ⊆ Var(pi) ∪Acc(pi)

`∆ wf (x : *pi+) `∅ e : p′i[*pi+/pi; *pi+ �
Σi

pi]

`∆, λF (p1→p′1;...;pn→p′n)(x).e wf

where Σi ≡ {ẋ 7→ Init(ẋ)|ẋ ∈ Acc(pi)}. The idea is that the variables in the output patterns are replaced by the best types that are possible
to deduce for them in the input patterns.

Next, we extend the syntax of expressions to include applications of template functions:

e ::= · · · | F e

and the operational semantics accordingly, first by extending the evaluation contexts

E [] ::= · · · | F E []

and then adding the corresponding reduction rule:

F v ; e[v/x] if λF (...)(x).e ∈ ∆

All remains to do is to typecheck the new expression. First of all, notice that typing judgments are now parametric by ∆, a template function
declarations: Γ `∆ e : t. We already used these judgments in the second rule for well-formed declarations where we specified the empty
declarations in order to forbid the definition of mutually recursive template functions. Before giving the typing rule for template function
applications, we need a last definition.

To ease the notations, we denote function interfaces by a set theoretic notation (e.g., {pi → p′i}i∈I) instead of the customary
(p1 → p′1; . . . ; pn → p′n).

Definition D.1 (Template instantiation). Let {pi → p′i}i∈I be a template function interface and t a type such that t ≤
∨
i∈I *pi+. The

template instantiation of {pi → p′i}i∈I by t that we denote by {pi → p′i}i∈I [t] is function interface defined as follows:

{t ∧ *pi+→ ti | i ∈ I, t ∧ *pi+ 6' 0}

where ti ≡ * p′i[(t ∧ *pi+)/pi; (t ∧ *pi+) �
Σi

pi] +

Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)}

This definition is the core of the typechecking. It deduces the type that must be used to instantiate a template function with interface
{pi → p′i}i∈I when it is applied to an expression of type t. To do that, it proceeds in the following four steps:

1. It check that the type t of the argument is compatible with the input types of the template function interface, that is, t ≤
∨
i∈I *pi+.

2. It selects in the interface {pi → p′i}i∈I only those templates whose input is compatible with the type of the arguments, that is, only those
pi → p′i such that t ∧ *pi+ 6' 0.

3. For each of the remaining templates, it takes the part of the input that can concern the template, that is, t∧ *pi+, and matches it against pi
(i.e., (t ∧ *pi+)/pi and (t ∧ *pi+) �

Σi

pi) so as to deduce to which type each variable in pi must be bound.

4. It applies the substitutions found at the previous step to the output types of the corresponding template (this corresponds to the term)
p′i[(t ∧ *pi+)/pi; (t ∧ *pi+) �

Σi

pi] to obtain the interface {pi → p′i}i∈I [t] to instantiate the template function.

Once this is done, it is just matter of creating a fresh copy of the template function by using a fresh variable f (recall that template functions
are not recursive) and specifying {pi → p′i}i∈I [t] as interface: all it remains to do is to check whether the instance obtained is well typed and

19 2013/7/16

then apply the standard rule to type applications of the template function. All this is summarized by the following typing rule:

f fresh λF {pi→p
′
i}i∈I (x).e′ ∈ ∆ t ≤

∨
i *pi+

Γ `∆ e : t Γ `∆ µf{pi→p
′
i}i∈I [t](x).e′ : t′

Γ `∆ F e : min{s | t′ ≤ t→ s}
Soundness is then a direct consequence of the soundness of our system.

E. Soundness Proofs
Lemma E.1. Let OCDuce be the set

OCDuce ≡ {π1, π2, rm, cons, snoc}.
For all type t, there exists a plinth over OCDuce that contains t.

Proof. We assume here (see [8] for the proof) that given a finite set S of types, there exists a finite set S′ ⊇ S that is closed under ∨ and ¬
(and therefore also closed under ∧ which can be expressed in terms of union and negation).

We consider the initial set S0 = {t, 0,1}. Its saturation S′0 is also finite. We now compute

S1 = S′0 ∪
⋃

t∈{t∈S′0 | t≤1prod∨(1prod)>}

π1(t)

By construction, S1 is finite, and so is its saturation S′1. We similarly construct S′2 (saturation of the closure by π2) and S′3 (saturation of the
closure by rm). Next, consider the set T ⊆ S′3 of types of the form [[[(t1 ∨ . . . ∨ tn)∗]]] that are valid for the second argument of cons and
snoc. We compute

S4 = S′3 ∪
⋃

[[[(t1∨...∨tn)∗]]]∈T,U⊆S′3

[[[(
∨
s∈U

s ∨ t1 ∨ . . . ∨ tn)∗]]]

This saturates S′3 with respect to cons and snoc (which have the same typing function). Lastly, we compute the saturated set S′4, which
is the plinth we seek. The crucial point here is that since [[[(t1 ∨ . . . ∨ tn)∗]]] ∈ S′3 which is in particular already saturated by π1 and π2,
t1 ∨ . . . ∨ tn and ‘nil are already in S′3, and so is

∨
s∈U s (since U ⊆ S′3). Since S′3 is saturated w.r.t ∨ ,

∨
s∈U s∨ t1 ∨ . . . ∨ tn ∈ S

′
3 and

therefore S′4 remains saturated by πi; and there is no need to iterate the process again.

Corollary E.2. The typing of the operator drm terminates.

Proof. Lemma E.1 ensures that during the computation of drm, the operators π1, π2, and rm used in the definition of drm produce only a
finite set of types. In other words, given a type t, drm needs to inspect only a finite set of types and this ensures the termination of drm.

Corollary E.3. For any type t and pattern p such that

∀ẋ ∈ Acc(p),Op(ẋ) ∈ OCDuce

the computation of t �
Σ

p terminates, where

Σ ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)}

Proof. We consider the type t′ = t× t0 × . . .× tn where ti = Init(ẋi). Thanks to Lemma E.1, there is a plinth containing t′ and therefore
the rules in Figure 8 only generate a finite set of equations, the solution of which is a set of (mutually recursive) types.

Lemma E.4. All operators OCDuce have exact input.

Proof. We consider each operator separately. The projection operator πi is defined for every pair and zipped pair, so its accepted input is the
type 1× 1 ∨ (1× 1)>. The top-level erasure rm is defined for every value and thus its accepted input is the type 1. The operator cons does
not fail for any pair of values, so its accepted input is the type 1×1. Finally, snoc never fails for the first argument and fails only if its second
argument is not a sequence. Therefore, the accepted input of snoc is the type 1× [[[1∗]]].

Lemma E.5 (Strengthening). Let Γ1 and Γ2 be two typing environments such that for any x ∈ dom(Γ1), we have Γ2(x) ≤ Γ1(x). If
Γ1 ` e : t, then Γ2 ` e : t.

Proof. By induction on the derivation of Γ1 ` e : t. We simply introduce an instance of the subsumption rule below each instance of the
[T-VAR] rule.

Lemma E.6 (Admissibility of the intersection rule). If Γ ` e : t1 and Γ ` e : t2, then Γ ` e : t1 ∧ t2.

Proof. By induction on the structure of the two typing derivations.

Lemma E.7. Let Γ be a typing environment and e an expression that is well typed under Γ. Then the set

S = {t ∈ T | Γ ` e : t ∨ Γ ` e : ¬t}
contains 0 and closed under ∨ and ¬ (and thus ∧).

20 2013/7/16

Proof. By definition, S is clearly closed under ¬. We have Γ ` e : 1 ' ¬0 and thus 0 ∈ S. To show that S is closed under ∨, consider two
types t1 and t2 in S. If Γ 6` e : t1 ∨ t2, then due to subsumption, we get Γ 6` e : t1 and Γ 6` e : t2. Because t1 and t2 are in S, we must have
Γ ` e : ¬t1 and Γ ` e : ¬t2. By Lemma E.6, we have Γ ` e : ¬t1 ∧ ¬t2 and ¬t1 ∧ ¬t2 ' ¬(t1 ∨ t2). Therefore, either Γ ` e : t1 ∨ t2 or
Γ ` e : ¬(t1 ∨ t2) holds, which completes the proof.

Lemma E.8 (Substitution). Let e, e1, . . . , en be expressions, x1, . . . , xn distinct variables, t, t1, . . . , tn types, and Γ a typing environment.
Then: {

Γ, (x1 : t1), . . . , (xn : tn) ` e : t
∀i = 1..n, Γ ` ei : ti

=⇒ Γ ` e[e1/x1; . . . ; en/xn] : t

For simplicity, in this lemma, we do not distinguish variables from accumulators, writing both using the metavariable x.

Proof. By induction on the derivation of Γ, (x1 : t1), . . . , (xn : tn) ` e : t. We simply replace every instance of the rule [T-VAR] or [T-ACC]
for variable xi with a copy of the derivation of Γ ` ei : ti.

Definition E.9. We write JtKV for {v | ` v : t}.
Lemma E.10. If t ≤ s, then JtKV ⊆ JsKV . In particular, if t ' s, then JtKV = JsKV .

Proof. Consequence of the subsumption rule.

Lemma E.11. J0KV = ∅.

Proof. We prove that ` v : t implies t 6' 0 by induction on the typing derivation.

Lemma E.12. Jt1 ∧ t2KV = Jt1KV ∩ Jt2KV .

Proof. By Lemma E.10, Jt1 ∧ t2KV ⊆ JtiKV for i = 1, 2 and thus Jt1 ∧ t2KV ⊆ Jt1KV ∩ Jt2KV . Lemma E.6 gives the opposite inclusion.

Lemma E.13 (Inversion).
Jt1 × t2KV = {(v1, v2) | ` v1 : t1, ` v2 : t2}
JbKV = {c | bc ≤ b}
Jt→ sKV = {µf (t1→s1;...;tn→sn(x).e ∈ V |

∧
i=1..n

ti → si ≤ t→ s}

J(t)τ KV = {(w)δ | ` w : t, ` δ : τ}

Proof. For all four equalities, proving the⊇ inclusion is straightforward. We prove the⊆ inclusion by analyzing the typing derivation ` v : t,
where t is instantiated to t1 × t2, b, t→ s, or (t)τ in each equality case.

Lemma E.14. J¬tKV = V \ JtKV .

Proof. Note that t ∧ ¬t ' 0 and thus JtKV ∩ J¬tKV = Jt ∧ ¬tKV = J0KV = ∅. Hence, it remains to prove that JtKV ∪ J¬tKV = V , that is:
∀v,∀t, ` v : t ∨ ` v : ¬t. We prove this statement by induction over the pair (v, t).

Lemma E.15. Jt1 ∨ t2KV = Jt1KV ∪ Jt2KV .

Proof. By Lemmas E.10, E.12, and E.14.

Definition E.16 (Sound operator). An operator (o, n,
o
;,

o→) is sound if and only if for all v1, . . . , vno ∈ V such that ` v1 : t1, . . . ,
` vno : tno , the following holds:

if t1, . . . , tno
o→ s and v1, . . . , vno

o
; e, then ` e : s

Lemma E.17. Let p and ϕ respectively be a well-formed pattern and a zipper pattern. Let v and δ respectively be a closed value and a
closed zipper. Then:

(1) ∀σ0, Acc(p) ⊂ dom(σ0) ∧ σ0 ` v/p 6; Ω =⇒ ` v : *p+
(2) ∀σ0, Acc(ϕ) ⊂ dom(σ0) ∧ σ0 ` δ/ϕ 6; Ω =⇒ ` δ : *ϕ+

Proof. By simultaneous induction on derivations. Note that values are inductively defined and patterns are regular and contractive.

Lemma E.18. Let p be a well-formed pattern, t a type such that t ≤ *p+, x a variable such that x ∈ Var(p), and v a value. Then:

∃v′, (` v′ : t) ∧ ({ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)} ` v′/p; σ, γ) ∧ (γ(x) = v) =⇒ ` v : (t/p)(x)

Proof. By induction on a derivation of {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p)} ` v′/p; σ, γ.

Lemma E.19. Let p be a well-formed pattern, t a type such that t ≤ *p+, ẋ an accumulator such that ẋ ∈ Acc(p), and v a value. Moreover,
suppose σ0 ≡ Σ0 ≡ {ẏ 7→ Init(ẏ) | ẏ ∈ Acc(p)}. Then:

∃v′, (` v′ : t) ∧ (σ0 ` v′/p; σ, γ) ∧ (σ(ẋ) = v) =⇒ ` v : (t �
Σ0

p)(ẋ)

21 2013/7/16

Proof. By induction on a derivation of σ0 ` v′/p; σ, γ.

Theorem E.20 (Type preservation). If all operators in the language are sound, then typing is preserved by reduction:

if e; e′ and ` e : t, then ` e′ : t

In particular, e′ 6= Ω.

Proof. By induction on the derivation of ` e : t. We proceed by a case analysis on the last rule used in the derivation of ` e : t.

• [T-CST]: the expression e is a constant (value). It cannot be reduced, which contradicts the assumption, and thus the result follows.
• [T-VAR]: the expression e is a variable. It cannot be well typed under the empty context, which contradicts the assumption and thus the

result follows.
• [T-ACC]: similar to the [T-VAR] case.
• [T-ZIP-VAL]: similar to the [T-CST] case.
• [T-ZIP-EXPR]: let ` (e0)• : (s)• where e ≡ (e0)•, t ≡ (s)•, ` e0 : s, and s ≤ 1NZ. Then, there exists an expression e′0 such that
e0 ; e′0. We get ` e′0 : s by the induction hypothesis and then ` (e′0)• : (s)• by the rule [T-ZIP-EXPR].
• [T-PAIR]: let ` (e1, e2) : t1 × t2 where e ≡ (e1, e2), t ≡ t1 × t2, ` e1 : t1, and ` e2 : t2. Then, there exists either an expression e′1

such that e1 ; e′1 or e′2 such that e2 ; e′2. If e1 ; e′1, we get ` e′1 : t1 by the induction hypothesis and then ` (e′1, e2) : t1 × t2 by
the rule [T-PAIR]. The second case is similar to the first.
• [T-SUB]: there exists a type s such that ` e : s and s ≤ t. Since e ; e′ by assumption, we have ` e′ : s by the induction hypothesis.

Then, we get ` e′ : t by subsumption.
• [T-OP]: let e ≡ o(e1, . . . , eno) where ∀i = 1..no, ` ei : ti and t1, . . . , tno

o→ t. There are two cases to consider:
(1) Suppose o(e1, . . . , ei, . . . , eno) ; o(e1, . . . , e

′
i, . . . , eno) where ei ; e′i. We get ` e′i : ti by the induction hypothesis and then

` o(e1, . . . , e
′
i, . . . , eno) : t by the rule [T-OP].

(2) Suppose all ei’s are values and (e1, . . . , eno)
o
; e′. Since the operator (o, n,

o
;,

o→) is sound, we get ` e′ : t by Definition E.16.
• [T-FUN]: similar to the [T-CST] case.
• [T-MATCH]: let e ≡ match e0 with p1→ e1| p2→ e2. We have two cases to consider. First, suppose e0 ; e′0. Then, we complete the

proof by using the induction hypothesis and the rule [T-MATCH]. Now, suppose e0 is a value. Then, either the matching e0/p1 succeeds or
it fails and the matching e0/p2 succeeds. Here, we show only the proof of the first case; the second case is similar. From Γ ` e : t, we
have the following assumptions:

(1) ` e0 : s (2) s ≤ *p1+ ∨ *p2+ (3) s1 ≡ s ∧ *p1+ (4) s2 ≡ s ∧ ¬*p1+
(5) Σi ≡ {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(pi)} (6) si/pi ∪ si�

Σi

pi ` ei : ti (7) t ≡
∨
{i|si 6'0} ti

Let {ẋ 7→ Init(ẋ) | ẋ ∈ Acc(p1)} ` e0/p1 ; σ, γ.
We get ` e0 : *p1+ by Lemma E.17.
Then, we get ` e0 : (s ∧ *p1+) ≡ s1 by Lemma E.6.
By rewriting (6), we have {(x : (s1/p1)(x)) | x ∈ Var(p1)} ∪ {(ẋ : (s1�

Σ1

p1)(ẋ)) | ẋ ∈ Acc(p1)} ` e1 : t1.

Moreover, we have ∀x ∈ Var(p1), ` γ(x) : (s1/p1)(x) by Lemma E.18 and ∀ẋ ∈ Acc(p1), ` σ(ẋ) : (s1�
Σ1

p1)(ẋ) by Lemma E.19.

Lemma E.8 then gives us ` e1[σ; γ] : t1.
Finally, by the rule [T-SUB], we get ` e1[σ; γ] : t.

Corollary E.21. The function application operator app is sound.

Proof. Follows from Lemma E.8.

Theorem E.22. The operators app, π1, π2, drm, rm, cons, and snoc are sound.

Proof. Corollary E.21 proves the soundness of the function application operator app. We prove the soundness of the operators π1, π2, rm,
cons, and snoc by exploiting the fact that the types in the domains of their corresponding typing functions (especially for cons and snoc) are
more precise than their exact input (defined in Lemma E.4). We prove the soundness of drm in a similar way, using the soundness of rm.

Corollary E.23. Let O be a set of operators {app, π1, π2, drm, rm, cons, snoc}. Our core calculus equipped with O is sound in the sense
that for any expression e, if ` e : t, then e 6;∗ Ω.

Proof. The result follows from Theorems E.20 and E.22.

22 2013/7/16

F. Encoding of XPath Predicates into Regular Types
Definition F.1 (Encoding of XPath predicates into regular types). Given a predicate φ (produced by the rule pred of Defintion 5.1), we
define the mutually recursive functions Tpred, Tpath, Tstep, Taxis and Ttest:

Tpred(p) = Tpath(p)
Tpred(φ1 or φ2) = Tpred(φ1) ∨ Tpred(φ2)
Tpred(φ1 and φ2) = Tpred(φ1) ∧ Tpred(φ2)
Tpred(not(φ)) = ¬Tpred(φ)

Tpath(s) = Tstep(s, 1)
Tpath(s/p) = Tstep(s, Tpath(p))

Tstep(a :: t[φ], τ) = Taxis(a, τ ∧ Ttest(t)) ∧ Tpred(φ)

Ttest(l) = <l>
Ttest(*) = < >

Taxis(self, τ) = τ
Taxis(child, τ) = < >[[[∗ τ ∗]]]
Taxis(desc-or-self, τ) = µX.τ ∨ < >[[[∗ X ∗]]]
Taxis(desc, τ) = Taxis(child, Taxis(desc-or-self, τ))
Taxis(foll-sibling, τ) = ()L (,[[[∗ τ ∗]]])·>
Taxis(parent, τ) = ()L ·µX.((R (τ,)·(L ·>|•))|R ·X)

Taxis(prec-sibling, τ) = ()L ·µX.((R (τ,)·R ·>)|R ·X)

Taxis(anc, τ) = ()L ·µX.((R (τ,)·(L ·>|•))|R ·X|L ·X)

23 2013/7/16

	Introduction
	Syntax
	Types
	Operators and Accumulators
	Patterns

	Semantics
	Operational Semantics
	Type System
	Properties of the Type System

	Surface Language
	XQuery 3.0
	XPath
	XQuery

	Extensions
	Related Work and Conclusion
	Actual CDuce Code
	Subtyping
	Typing
	Template Polymorphism
	Soundness Proofs
	Encoding of XPath Predicates into Regular Types

