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DEFINITION

In general, typechecking refers to the problem where, given a program P , an input type σ, and an output type τ ,
one must decide whether P is type-safe, that is, whether it produces only outputs of type τ when run on inputs
of type σ. In the XML context, typechecking problems mainly arise in two forms:

••XML-to-XML transformations, where P transforms XML documents conforming to a given type into XML
documents conforming to another given type; and

•XML publishing, where P transforms relational databases into XML views of these databases and it is
necessary to check that all generated views conform to a specified type.

A type for XML documents is typically a regular tree language, usually expressed as a schema written in a schema
language such as DTD, XML Schema, or a Relax NG (see XML Types). In the XML publishing case, the input
type σ is a relational database schema, possibly with integrity constraints.
Typechecking problems may or may not be decidable, depending on (1) the class of programs considered, (2) the
class of input types (relational schemas, DTDs, XML Schemas, Relax NG schema, or perhaps other subclasses
of the regular tree languages), and (3) the class of output types. In cases where it is decidable, typechecking can
be done exactly. In cases where it is undecidable, one must revert to approximate or incomplete typecheckers
that may return false negatives—i.e., may reject a program even if it is type-safe. Even when exact typechecking
is possible, approximate typechecking may be preferable as this is often computationally cheaper than exact
typechecking.
In the programming languages literature, typechecking often not only entails verifying that all outputs are of type



τ , but also requires detecting when the program may abort with a run-time error on inputs of type σ [35]. The
above definition encompasses such cases: view run-time errors as a special result value error and then typecheck
a program against an output type that does not contain the value error.

HISTORICAL BACKGROUND

Although typechecking is a fundamental and well-studied problem in the theory of programming languages [35], the
types necessary for XML typechecking (based on regular tree languages) differ significantly from the conventional
data types usually considered (i.e., lists, records, classes, and so on). Indeed, although it is possible to encode
XML types into conventional datatypes, this encoding lacks flexibility in the sense that programs tend to need
artificial changes when types evolve [22]. For this reason, Hosoya et al. [22] proposed regular tree languages as
the “right” notion of types for XML and presented an approximate typechecker in this context. The typechecker
was implemented in the XML-to-XML transformation language XDuce [21] whose approach was later extended
to general purpose programming by CDuce (functional programming) and Xtatic (object-oriented programming).
XDuce’s approach also lies at the basis of XQuery’s typechecking algorithm [6].
The contemporary study of exact typechecking for XML-to-XML transformations started with an investigation of
relatively simple transformation languages [29, 32, 33]. Ironically enough, the fundamentals of exact typechecking
for more advanced transformation languages were already investigated a long time before XML appeared [7, 8].
These fundamentals were revived in the XML era by Milo, Suciu, and Vianu in their seminal work on k-pebble
tree transducers [30], which was later extended to other transformation languages [39, 26, 40]. The computational
complexity of exact typechecking was investigated in [28, 27, 14]. Exact typechecking algorithms for XML
publishing scenarios were given by Alon et al. [1].

SCIENTIFIC FUNDAMENTALS

Exact Typechecking
XML-to-XML Transformations. Recall that in this setting, P is a program that should transform XML
documents of a type σ into documents of a type τ . When the languages in which the transformation and
the types are expressed are sufficiently restricted in power, exact typechecking is possible. There are two major
approaches to the construction of an exact typechecking algorithm: forward inference and backward inference.
Forward inference solves the typechecking problem directly by first computing the image O of the input type σ

under the transformation P , i.e., O := {P (t) | t ∈ σ}, and then checking O ⊆ τ [30, 32, 33, 28, 36]. This approach
does not work if O goes beyond context-free tree languages as checking O ⊆ τ then becomes undecidable. Sadly,
this is already the case when P is written in very simple transformation languages, such as the top-down tree

transducers (this fact is known as folklore; see, e.g., [14].) Also, computing O itself becomes undecidable for more
advanced transformation languages.
Backward inference, on the other hand, first computes the pre-image I of the output type τ under P , i.e.,
I := {t | P (t) ∈ τ}, and then checks σ ⊆ I. Backward inference often works even when the transformation
language is too expressive for forward inference. The technique has successfully been applied to a range of formal
models of real-world transformation languages like XSLT, from the top-down and bottom-up tree transducers [7],
to macro tree transducers [8, 27, 14], macro forest transducers [34], k-pebble tree transducers [30], tree transducers
based on alternating tree automata [39], tree transducers dealing with atomic data values [36], and high-level tree
transducers [40].
As mentioned in the definition, static detection of run-time errors can be phrased as a particular form of
typechecking by introducing a special output value error. Exact typechecking in this form has been investigated
for XQuery programs written in the non-recursive for-let-where return fragment of XQuery without automatic
coercions but with the various XPath axes; node constructors; value and node comparisons; and node label and
content inspections, in the setting where the input type σ is given by a recursion-free regular tree language. The
crux of decidability here is a small-model property: if P (t) = error for some t of type σ then there exists another
input t′ of type σ whose size depends only on P and σ such that P (t′) = error. It then suffices to enumerate all
inputs t′ ∈ σ up to the maximum size and check P (t′) = error. There are only a finite number of such t′ (up to
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isomorphism, and P cannot distinguish between isomorphic inputs), from which decidability follows [41]. This
small model property continues to hold when we extend the above XQuery fragment with arbitrary primitives
satisfying some general niceness properties; see Vansummeren [41].

XML Publishing. In this setting, the input to the program P is a relational database D. Suppose that P

computes its output XML tree by posing simple select-project-join queries to D, nesting the results to these
queries, and constructing new XML elements. Exact typechecking for programs of this form, when the input type
σ is a relational database schema with key and foreign key constraints, and the output type τ is a “star-free”
DTD, is decidable [1]. (See [1] for a precise definition and examples of the concept “star-free”.) As was the case
for detecting runtime errors in XQuery programs, the crux of decidability here is again a small model property.
Typechecking remains decidable for output DTDs τ that are not star-free, but then the queries in P must not
use projection. Typechecking unfortunately becomes undecidable when the output types τ are given by XML
Schemas or Relax NG Schemas [1]. Typechecking also becomes undecidable when P uses queries more expressive
than select-project-join queries.

Approximate Typechecking
The expressive power that realistic applications require of practical transformation languages is often too high
to allow for exact typechecking. In such cases, one must revert to approximate or incomplete typecheckers that
guarantee that all succesfully checked programs are type-safe, but that may also reject some type-safe programs.
Existing techniques can be grouped into two categories: type systems and flow analyses.

Type systems Many conventional programming languages (such as C and Java) specify what programs to accept
by a type system [35]. Typically, such a system consists of a set of typing rules that determine the type of each
subexpression of a program. Often, in order to help the typechecker, the programmer is required to supply type

annotations on variable declarations and in other specified places.
The pioneer work applying this approach to the XML setting was the XDuce (“transduce”) language [21], whose
type system is based on regular tree languages. One significant point in this work is its definition of a natural
notion of subtyping as the inclusion relation between regular tree languages and its demonstration of the usefulness
of allowing a value of one type to be viewed as another type with a syntaticaly completely different structure
[22]. In addition, although the decision problem for subtyping is known to be EXPTIME-complete, the “top-down
algorithm” used in the XDuce implementation is empirically shown to be efficient in most cases that actually arise
in typechecking [22, 37, 13]. Such a type system also needs machinery to reduce the amount of type annotations
that otherwise tends to be a burden to the user, in particular when the language supports a non-trivial mechanism
to manipulate XML documents such as regular expression patterns [20] or filter expressions [17]. A series of works
address this problem by proposing automatic type inference schemes that have certain precision properties in a
sense similar to the exact typechecking in the previous section [20, 17, 43]. These ideas have further been extended
for XML attributes [19] and parameteric polymorphism [18, 42].
CDuce (pronounced “seduce”) extends XDuce in various ways [2]. From a language point of view CDuce
embraces XDuce’s approach of a functional language based on regular expression patterns [20] and extends it
with finer-grained pattern matching, complete two-way compatibility with programs and libraries in the OCaml
programming language, Unicode, queries, XML Schema validation, and, above all, higher-order and overloaded
functions. XML types are enriched with general purpose data types, intersection and negation types, and
functional types. Finally, the CDuce type inference algorithm for patterns is implemented by a new kind of
tree automaton and proved to be optimal [10]. Among these extensions he addition of higher-order functions is
significant. Theoretically, this extension is not trivial first because functions do not fit well in the framework of
finite tree automata, but more deeply because this entails a definitional cycle: the definition of typechecking uses
subtyping, whose definition then uses the semantics of types (NB: subtyping is defined as inclusion between the
sets denoted by given two types), whose definition in turn uses well-typedness of values; the last part depends on
typechecking in the presence of higher-order functions since typechecking of a function abstraction λx.e requires
analysis of its internal expression e. Some solutions are known for breaking this circularity [12, 42]. Also, an
approach to combine one of these treatments with high-order functions has been proposed [42].
Several research groups explore ways of mixing a XDuce-like type system with an existing popular language.
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Xtatic [15] carries out this program for the C# language, developing techniques to blend regular expression types
with an object-oriented type system. XJ [16] makes a closely related effort for Java. OCamlDuce [11] mixes with
OCaml, proposing a method to intermingle a standard ML type inference algorithm with XDuce-like typechecking.
XHaskell [25] is also another instance for Haskell; their approach is, however, to embed XML types into Haskell
typing structures (such as tuples and disjoint sums) in the style of data-binding, yet support XDuce-like subtyping
in its full flexibility by deploying a coercion technique [38].
The formal semantics of XQuery defined by the W3C contains a type system based on a set of inductive typing
rules [6]. Their first draft was heavily based on XDuce’s type system [9]. Later, they switched to a different one
that reflects the object-oriented hierarchical typing structure adopted by XML Schema.
As byproducts of the above pieces of work, several optimization and compilation techniques that exploit typing
information have been proposed [10, 24].

Flow-analysis Flow analysis is a static analysis technique that has long been studied in the programming
language community. A series of investigations has been conducted for adapting flow analysis to approximate
XML typechecking, concurrently to XDuce-related work, [3, 23, 31]. In this approach, the user needs to write
no type annotations for intermediate values like in XDuce, but instead the static anlyzer completely infers them,
thus providing a more user-friendly system. One potential drawback is that the specification is rather informal
and therefore, when the analyzer raises an error, the reason can sometimes be unclear; empirically, however, such
false negatives are rare.
Flow analysis is applied first to Bigwig language system, an extension of Java with an XML-manipulating facility
called “templates” [3]. Though this first attempt handles only XHTML types, they naturally generalize it to
arbitrary XML types, calling the resulting system XAct [23]. Their techniques are further extended and applied
to static analysis of XSLT [31].

KEY APPLICATIONS

XML typechecking is a key component of XQuery, the standard XML query language. As outlined above, XML
typechecking in XQuery is based on a set of inductive typing rules that reflects the object-oriented hierarchical
typing structure adopted by XML Schema. Different approaches to XML typechecking may be found in research
prototypes like CDuce, OcamlDuce, XDuce, XAct, XHaskell, and Xtatic for which references may be found below.

URL TO CODE

CDuce: http://www.cduce.org

OCamlDuce: http://www.cduce.org/ocaml.html

XAct: http://www.brics.dk/Xact/

Xduce: http://xduce.sourceforge.net

XHaskell: http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage

Xtatic: http://www.cis.upenn.edu/∼bcpierce/xtatic

CROSS REFERENCE

XML Types, Relational Database Schema, Integrity Constraints

RECOMMENDED READING

A gentle introduction to exact typechecking for both XML-to-XML transformations and XML publishing can be
found in [36]. A non-technical presentation of Regular Expression Types and Patterns and their use in query
languages can be found in the joint DBPL and XSym 2005 invited talk [4]. For a more complete presentation of
Regular Expression Types and Patterns and the associated type-checking and subtyping algorithms we
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recommend the reader to refer to the seminal JFP article by Hosoya, Pierce, and Vouillon [22]. The joint
ICALP and PPDP 2005 keynote talk [5] constitutes a relatively simple survey of the problem of type-checking
higher-order functions and an overview on how to derive subtyping algorithms semantically: full technical
details can be found in an extended version published in the JACM [13].
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