
Boxed Ambients ?
Michele Bugliesi1, Giuseppe Castagna2, and Silvia Crafa1;21 Dipartimento di Informatica 2 Département d’Informatique

Univ. “Ca’ Foscari”, Venezia, Italy École Normale Supérieure, Paris, France

Abstract. Boxed Ambientsare a variant of Mobile Ambients, that result from(i) dropping theopen capability and(ii) providing new primitives for ambient
communication while retaining the constructsin andout for mobility. The new
model of communication is faithful to the principles of distribution and location-
awareness of Mobile Ambients, and complements the constructs for Mobile Am-
bient mobility with finer-grained, and more effective, mechanisms for ambient
interaction.

In TACS 2001, Lecture Notes in Computer Science, c
 Springer, 2001. To appear.

1 Introduction

There is a general agreement that calculi and programming languages for wide-area computing
and mobile-code environments should be designed accordingto appropriate principles, among
which distribution and location awareness are the most fundamental.

Cardelli and Gordon’s Mobile Ambients [CG98] are one of the first, and currently one of the
most successful implementations of these principles into aformal calculus. Their design is cen-
tered around four basic notions: location, mobility, authorization to move (based on acquisition
of names and capabilities), and communication by shared location.

Boxed Ambients1 are a variant of Mobile Ambients, from which they inherit theprimitivesin and out for mobility, with the exact same semantics. Though, Boxed Ambients rely on a
completely different model of communication, which results from dropping theopen capability.
The new communication primitives fit nicely the design principles of Mobile Ambients, and
complement the existing constructs for ambient mobility with finer-grained, and more effective,
mechanisms for ambient interaction. As a result Boxed Ambients retain the expressive power and
the computational flavor of Ambient Calculus, as well as the elegance of its formal presentation.
In addition, they enhance the flexibility of typed communications over Mobile Ambients, and
provide new insight into the relationship between synchronous and asynchronous input-output.

1.1 Mobile Ambients

Ambients are named process of the forma[[P]] wherea is a name andP a process. Processes
can be composed in parallel, as inP j Q, exercise a capability, as inM:P , declare local names
as in (�x)P , or simply do nothing as in0. Ambients may be nested to form a tree structure
that can be dynamically reconfigured by exercising the capabilities in; out andopen. In addition,
ambients and processes may communicate. Communication is anonymous, and happens inside
ambients. The configuration(x)P j hMi represents the parallel composition of two processes,
the output processhMi “dropping” the messageM , and the input process(x)P reading the
messageM and continuing asPfx := Mg. Theopen capability has a fundamental interplay
with communication: in fact, communication results from a combination of mobility andopening
control. To exemplify, consider two ambients running in parallel as in the following configurationa[[(x)P j Q]] j b[[hMi j R]] . The exchange of the valueM from b to the processP enclosed ina? Work partially supported by MURST Project 9901403824003, by CNRS ProgramTelecommunications:

“Collaborative, distributed, and secure programming for Internet”, and by Galileo Action n. 02841UD
1 The name is inspired by Sewell and Vitek’sBoxed�-Calculus[SV00].

happens as a result of, say, firstb moving insidea, and thena openingb. Thus, ifQ is the processopen b, andR is in a, communication is the result of the following sequence of reductions:a[[(x)P j open b]] j b[[hMi j in a]] ➞ a[[(x)P j open b j b[[hMi]]]] by exercisingin a
➞ a[[(x)P j hMi]] by open b, unleashingM
➞ a[[Pfx := Mg]] by local communication

A case against ambient opening.While fundamental to the Ambient Calculus for the rea-
sons just illustrated, an unrestricted use of theopen capability appears to bring about serious
security concerns in wide-area distributed applications.

Consider a scenario where a processP running on hosth downloads an application programQ from some other host over the network. This situation can be modeled by the configurationa[[in h:Q]] j h[[P]] , whereQ is included in the transport ambienta which is routed toh in
response to the download request fromP . As a result ofa exercising the capabilityin h, the
system evolves into the new configurationh[[a[[Q]] j P]] , where the download is completed. The
application programQ may be running and computing withina, but as long as it is encapsulated
intoa, there is no way thatP andQ can effectively interact. To allow for interactions,P will need
to dissolve the transport ambienta. Now, dissolvinga produces the new configurationh[[P j Q]]
where nowP andQ are granted free access to each other’s resources: the problem, of course, is
that there is no way to tell whatQ may do with them. An alternative, but essentially equivalent,
solution to the above scenario, is to treata as asandboxand take the Java approach to security:P clones itself and enters the sandbox to interact withQ. Again, however, the kind of interaction
betweenP andQ is not fully satisfactory: either they interact freely within a, or are isolated from
each other.

Static or dynamic analysis of incoming code are often advocated as solutions to the above
problem: incoming code must be statically checked and certified prior to being granted access
to resources and sensitive data. Various papers explored this possibility, proposing control-flow
analyses [NNHJ99,NN00,DLB00] and type systems [CGG99,DCS00,BC01] for Mobile Ambi-
ents. The problem with these solutions is that they may not bealways possible, or feasible, in
practice. The source code of incoming software may be not available for analysis, or be other-
wise inaccessible or too complex to ensure rigorous assessment of its behavior. This is not meant
to dismiss the role of static analysis. To the contrary, it should be taken as a motivation to seek
new design principles enabling a more effective use of static analysis. One such principle for
Mobile Ambients, which we advocate and investigate in this paper, is that ambient interaction
should be controlled by finer-grained policies to prevent from unrestricted resource access while
still providing effective communication primitives.

1.2 Boxed Ambients: overview and main results

Boxed Ambients result from Cardelli and Gordon’s Mobile Ambients essentially by dropping
the open capability while retaining thein andout capabilities for mobility. Disallowingopen
represents a rather drastic departure from the Ambient Calculus, and requires new primitives for
process communication.

As in the Ambient Calculus, processes in the new calculus communicate via anonymous
channels, inside ambients. This is a formal parsimony that simplifies the definition of the new
calculus while not involving any loss of expressive power: in fact, named communication chan-
nels can be coded in faithful ways using the existing primitives. In addition, to compensate for
the absence ofopen, Boxed Ambients are equipped with primitives for communication across
ambient boundaries, between parent and children. Syntactically, this is obtained by means of tags
specifying thelocation where the communication has to take place: for instance,(x)nP indicates
an input from child ambientn, while hMi" is an output to the parent ambient.

The choice of these primitives, and the resulting model of communication is inspired to
Castagna and Vitek’sSeal Calculus[VC99], from which Boxed Ambients also inherit the two
principles ofmediationandlocality. Mediation implies that remote communication, i.e. between
sibling ambients, is not possible: it either requires mobility, or intervention by the ambients’ par-
ent. Locality means that communication resources arelocal to ambients, and message exchanges
result from explicit read and write requests on those resources. To exemplify, consider the fol-
lowing nested configuration:n[[(x)pP j p[[hMi j (x)Q j q[[hNi"]]]]]]
Ambientn makes a downward request to readp’s local valueM , while ambientq makes an up-
ward write request to communicate its valueN to its parent. The downward input request(x)pP
may only synchronize with the outputhMi local top. Instead,(x)Q may non-deterministically
synchronize with either output: of course, type safety requires thatM andN be of the same type.
Interestingly, however, exchanges of different types may take place within the same ambient
without type confusion: n[[(x)pP j (x)qQ j p[[hMi]] j q[[hNi]]]]
The two valuesM andN are local top andq, respectively, and may very well have different
types: there is no risk of type confusion, as(x)pP requests a read fromp, while (x)qQ requests
a read fromq.

This flexibility of communication results from the combination of two design choices: di-
rected input/output operations, and resource locality. Infact, these choices have other interesting
consequences.

– They provide the calculus with fine-grained primitives for ambient interaction, and with clear
notions of resource ownership and access request. Based on that, Boxed Ambients enable a
rather direct formalization of classical security policies for resource protection and access
control: this is not easy (if at all possible) with Mobile Ambients (see [BCC01]).

– They ease the design of type systems providing precise accounts of ambient behavior. As we
show inx 4, a rather simple structure of types suffices for that purpose. Ambient and process
types are defined simply as two-place constructors describing the types of exchanges that
may take place locally, and with the enclosing context. Interestingly, this simple type struc-
ture is all that is needed to give a full account of ambient interaction. This is a consequence
of (i) there being no way for ambients to communicate directly across more than one bound-
ary, and(ii) communication being the only means for ambient to interact.Based on that, the
typing of Boxed Ambients provides for more flexibility of communication and mobility than
existing type systems for Mobile Ambients (seex 5).

– Finally, resource locality and directed input/output provide new insight into the relation be-
tween the synchronous and asynchronous models of communication. Specifically, the clas-
sic�-calculus relations between synchronous and asynchronousoutput, as stated by Boudol
in [Bou92], no longer hold as a result of combining remote communications, resource local-
ity and mobility. More precisely asynchronous output mayno longerbe viewed as a special
case of synchronous output with null continuation, neithercan it be encoded by structural
equivalence, by stipulating thathMiP � hMi j P . As we show (seex 7) these two solu-
tions, which are equivalent in the�-calculus, have rather different consequences in Boxed
Ambients.

1.3 Plan of the paperx 2 introduces Boxed Ambients. We first define the calculus in terms of synchronous output,
and the subsequent four sections discuss various aspects ofthis formulation. Inx 3 we give the

encoding of different forms of channeled communications, based either on�-calculus’ channels
or on the Seal Calculus’locatedchannels. Inx 4, we introduce a type system, and inx 5 we
compare the expressive power of typed Boxed Ambients and Mobile Ambients. Inx 6 we give a
different and more refined type system that further enhancestyped communication and mobility.
In x 7 we study an asynchronous variant of the calculus, and discuss the relationship between the
two forms of communication and their impact on mobility. We conclude inx 8, with final remarks
and comparisons with related work.

2 Boxed Ambients

Syntax.The syntax of the untyped calculus is defined by the followingproductions:

ExpressionsM ::= a; b; : : : names
 x; y; : : : variables
 inM enterM
 outM exitM
 (M1; : : : ;Mk) tuple,k > 0
 M:M path

Locations� ::= M names and variables
 " enclosing ambient
 ? local

ProcessesP ::= 0 stop
 M:P action
 (�x)P restriction
 P j P composition
 M [[P]] ambient
 !P replication
 (x)�P patterned input
 hMi�P synchronous output

Patternsx ::= x variable
 x1; : : : ;xk tuple,k > 0

Patterns and expressions are as in the polyadic Ambient Calculus, save that the capabilityopen
and the “empty path”" are left out. As in the Ambient Calculus, the syntax allows the formation
of meaningless process forms such asinoutm or (open a)[[P]] : these terms may arise as a result
of reduction, in the untyped calculus, but are ruled out by the type system. We use a number
of notation conventions. We reservea; b; c; : : : ; n;m; p; q for ambient names, andx; y; z for
variables. As usual we omit trailing dead processes, writingM forM:0, andhMi for hMi0. The
empty tuple plays the role of synchronization messages. Finally, the superscript? denoting local
communication, is omitted.

The operational semantics is defined in terms of reduction and structural congruence.

Structural Congruence.As in the Ambient Calculus, structural congruence is definedas the
least congruence relation that is a commutative monoid for0 and j and closed under the follow-
ing rules (fn(P), the set of free names ofP , has standard definition)

(Res Dead) (�x)0 � 0
(Path Assoc)(M:M 0):P �M:(M 0:P)
(Repl) !P �!P j P (Res Res) (�x)(�y)P � (�y)(�x)P x 6= y

(Res Par) (�x)(P j Q) � P j (�x)Q x 62 fn(P)
(Res Amb)(�x)y[[P]] � y[[(�x)P]] x 6= y

As usual, structural congruence is used to rearrange the process so that they can reduce:P 0 �P; P ➞ Q; Q � Q0) P 0 ➞ Q0. Reduction is defined by the rules for mobility and communi-
cation given below plus the standard context reduction rules [CG98].

Mobility. Ambient mobility is governed by the following rules, inherited from Mobile Ambients:(enter) a[[in b:P j Q]] j b[[R]] ➞ b[[a[[P j Q]] j R]](exit) a[[b[[out a:P j Q]] j R]] ➞ b[[P j Q]] j a[[R]]
Communication.Communication can be local, as in Mobile Ambients, or acrossambient
boundaries, between parent and child.(local) (x)P j hMiQ ➞ Pfx := Mg j Q(input n) (x)nP j n[[hMiQ j R]] ➞ Pfx := Mg j n[[Q j R]](input ") hMiP j n[[(x)"Q j R]] ➞ P j n[[Qfx := Mg j R]](output n) hMinP j n[[(x)Q j R]] ➞ P j n[[Qfx := Mg j R]](output") (x)P j n[[hMi"Q j R]] ➞ Pfx := Mg j n[[Q j R]]
Four different reduction rules for parent-child communication may be thought of as redundant,
especially because there are only two reducts. Instead, introducing differentdirections for in-
put/output is a key design choice that provides the calculuswith precise notions of resource lo-
cality and resource access request. Directed (towards parent or child) output captures the notion
of write accessto a resource, by identifying the ambient towards which the request is directed.
Dually, directed input captures the notion ofread access2.

As such, the formulation given above enables the study of properties related to standard
resource access control policies, even in the absence of channels (seex 5; for more details refer
to [BCC01]). Channels, on the other hand, can be encoded elegantly, as we show in the next
section.

As we noted, in the present formulation output is synchronous. For the time being, asyn-
chronous output can either be considered as the special caseof synchronous communication
with null continuation, or else be accounted for by introducing the following rule of structural
equivalence inspired by [Bou92]:hMi�P � hMi� j P . As we shall discuss later on, these in-
terpretations are equivalent, and both type sound, with “simple” types, that is, up tox 5. Instead,
with “moded types” we introduce inx 6 they are different, and neither one satisfactory, as the
former is too restrictive while the latter is unsound.

3 Communication Channels

We first show how to define�-calculus channels. Then, we refine the encoding to account for
parent-child channeled communications. Throughout this section, we use two extra congruence
laws:(�x)x [[0]] � 0 and!P �!P j !P to garbage collect inert ambients and useless replications,
respectively. Neither of the two relations is derivable as acongruence law: on the other hand, they
both would be derivable as observational equivalences for any reasonable notion of observable
for the calculus.

3.1 �-calculus channels

We start with asynchronous output, and then use it to encode synchronous output.

2 Other alternatives would be possible: we discuss them inx 8.

Asynchronous output.Two processes communicating over channelc have the formchyiP
(output) andc(x)Q (input). For uniformity, we consider the case where output processes have
continuations, and one haschxiP � chxi j P . With Boxed Ambients, a first way to implement
the channelc is to use the ambientc[[!(x)hxi]] representing a buffer with an unbounded number
of positions: the buffer simply waits for local input and, once received, releases local output. The
output and input prefixes may then be represented, respectively, as the write requesthyic and
the read request(x)c on the buffer. We use a slightly different encoding based on an unbounded
number of these buffers.

The following sequence of reductions shows that the encoding captures the intended behav-
ior: !c[[!(x)hxi]] j hyic j (x)cP � ! c[[!(x)hxi]] j c[[!(x)hxi j (x)hxi]] j hyic j (x)cP

➞ ! c[[!(x)hxi]] j c[[!(x)hxi j hyi]] j (x)cP
➞ ! c[[!(x)hxi]] j Pfx := yg

Based on these intuitions, we may define the encoding compositionally, as follows:hh (�x)P ii = (�x) hhP ii hh !P ii =! hhP ii hh chxiP ii =!c[[!(x)hxi]] j hxic j hhP iihhP j Q ii = hhP ii j hhQ ii hh0 ii = 0 hh c(x)P ii =!c[[!(x)hxi]] j (x)c hhP ii
An input and an output on the same channel, sayc, generate multiple copies of the buffer!c[[!(x)hxi]] : this is not a problem, however, since the multiple copies can be garbage collected
by the congruence law!P j !P �!P . Of course, there are other ways for structuring the encoding.
For instance, one could create the buffer when the channel name is introduced by a restriction:
this would avoid the proliferation of channels. A further alternative would be to collect free and
bound names in the inductive cases of the translation, as inhh (�x)P ii� = (�x) hhP ii�[fxg,hh c(x)P ii� = (x)c hhP ii�[fxg, and introduce them in the base cases3: hh0 ii fc1;:::;cng =!c1 [[!(x)hxi]] j : : : j !cn [[!(x)hxi]] . With this encoding, we could prove that ifP reduces toQ in the �-calculus, then the same is true of the encoding ofP andQ, and conversely, if an
encoding ofP reduces to a process then this is equivalent to the encoding of a reductum ofP .

However, none of the alternatives would scale to the case of communication with local chan-
nels ofx 3.2: this justifies our choice of the encoding given above.

Synchronous output.Let nowcx:P and�cx:Q denote�-calculussynchronousinput and output
on channelc. Synchronous input-output can be encoded in the asynchronous polyadic�-calculus
as follows:�cx:P = (�r)chx; rir()P , cy:Q = c(y; r)rhiP wherer 62 fn(P). That is, the output
process sends the intended message as well as a private channel r for the reader to acknowledge
receipt of the message.

The encoding of the synchronous�-calculus with Boxed Ambients is obtained by simply
composing the two encodings and simplifying the result4. One only needs a different definition
for the prefix forms:hh �cx:P ii = (�r)(r [[()hi]] j hx; ric()r hhP ii) r 62 fn(P)hh cy:Q ii = !c[[!(u; v)hu; vi]] j (y; s)chis hhQ ii s 62 fn(Q)
The rest is unchanged.

3 Of course, for parallel composition, one has to arbitrarilychoose one subprocess; for example the left one:hhP jQ ii� = hhP ii� j hhQ ii ;
4 To make it more readable we erase duplicates and replace sequential composition for some parallel ones.

3.2 Parent-child channeled communicatioǹa la Seal Calculus

Having looked at�-calculus channels, we now discuss an extension of the encoding that conforms
with the notion of locality and directed input-output of thecore calculus. The extension yields
a notion of located channels and a set of communication protocols that are similar, in spirit,
to those given as primitive in the Seal Calculus [VC99]. In the Seal Calculus, one can express
output prefixes of the formcnhMi requesting a write access on the channelc residing in ambient
(or seal)n. Dually, the input prefixc"(x) denotes a read request on the channelc residing in
the parent ambient. Upward output and downward input on local channels may be expressed in
similar ways. All these communication protocols can be expressed in the core calculus: below,
we only consider only the asynchronous case (i.e. continuationless outputs) and we give detailed
descriptions of downward output and upward input.

The intended reduction of a downward output is:cnhMi j n[[c(x)P j Q]] ➞ n[[Pfx := Mg j Q]] .

The channelc is local ton, and the outer process requests a write access onc. There are several
ways that the reduction can be captured with the existing constructs. Here, we describe an encod-
ing that renders the locality ofc. The channelc is represented as before as a buffer, and the input
prefix c(x) as read access request toc:c(x)P 4= !c[[!(x)hxi]] j (x)cP
Now, however, the write access toc cannot be represented directly as we did above for the�-
calculus channel, becausec is located inton. To capture the desired behavior we can rely on
mobility: cnhMi 4= (�p)p[[in n:in c:hMi"]]
The outputM is encapsulated into a transport ambientp, which entersn and thenc to deliver
the message (the name of the transport ambientp must be fresh). Thus, the Seal Calculus processcnhMi j n[[c(x)P j Q]] is encoded as follows:(�p)p[[in n:in c:hMi"]] j n[[!c[[!(x)hxi]] j (x)cP j Q]]
By a sequence of reductions, the process above evolves inton[[!c[[!(x)hxi]] j c[[!(x)hxi j (�p)p[[0]]]] j Pfx := Mg j Q]] ,

which is equivalent ton[[!c[[!(x)hxi]] j Pfx := Mg j Q]] by structural congruence.

Remote inputs are slightly more complex, since the transport ambient must fetch the output and
bring it back. The intended reduction ischMi j n[[c"(x)P j Q]] ➞ n[[Pfx := Mg j Q]] . Up-
ward input from within a sealn is simulated in Boxed Ambients asc"(x)P 4= (�p)p[[out n:in c:(x)"out c:in n:hxi]] j (x)pP
Note that the definition depends on the namen of the enclosing ambient. For a formal definition,
it is enough to keep track of this information, and extend theencoding of the asynchronous�
calculus with the following clauses:hh cmhxi ii n = (�p)p[[inm:in c:hxi"]]hh c"hxi ii n = (�p)p[[out n:in c:hxi"]]hh cm(x)P ii n = (�p)p[[inm:in c:(x)"out c:outm:hxi]] j (x)p hhP ii nhh c"(x)P ii n = (�p)p[[out n:in c:(x)"out c:in n:hxi]] j (x)p hhP ii nhh a[[P]] ii n = a[[hhP ii a]]

4 Typing Boxed Ambients

As we stated at the outset, one of the goals in the design of Boxed Ambients was to enhance
static reasoning on ambient and process behavior, by enabling focused and precise analyses while
preserving the expressive power of the calculus. The definition of the type system, given in this
section, proves that the design satisfies these requirements

A rather simple structure of types suffices to provide precise accounts of process behavior.
Ambient and process types are defined simply as two-place constructors describing the types
of the exchanges that may take place locally and with the enclosing context. Interestingly, this
simple type structure is all that is needed to give a full account of ambient interaction. This is a
consequence of(i) there being no way for ambients to communicate directly across more than
one boundary, and(ii) communication being the only means for ambient to interact.

4.1 Types

The structure of types is defined by the following productions.

Expression TypesW ::= Amb[E; F] ambient

 Cap[E] capability

 W1 � � � � �Wn tuple

Exchange TypesE;F ::= shh no exchange
 W exchange

Process TypesT ::= Pro[E;F] composite exchange

The type structure is superficially similar to that of companion type systems for the Ambient
Calculus [CG99,CGG99]. The interpretation, however, is different.Amb[E;F] ambients that enclose processes of typePro[E;F],Cap[E] capabilities exercised within ambients withE upward exchanges,Pro[E;F] processes whose local and upward exchanges have typesE andF , respectively.

Notice that capability types are defined as one-place constructors, and disregard the local ex-
changes of the ambients where they are exercised. This is because(i) exercising a capability
within an ambient, saya, may only causea to move, and(ii) the safety of ambient mobility may
be established regardless of the ambient’s local exchanges.

As for process types, a few examples help explain the intuition about composite exchange.
We use a Church style typed syntax, in which all inputs and restrictions specify the type of the
bound variable: more precisely we use(�x :W)P and(x :W)P instead of(�x)P and(x)P ,
respectively.(x :W)hxi : Pro[W; shh]. W is exchanged (read and written) locally, and there is no upward

exchange.(x :W)"hxin : Pro[shh;W]. W is exchanged (i.e. read from) upwards, and then written to
ambientn. There is no local exchange, hence the typeshh as the first component of the
process type. For the typing to be derivable, one needsn : Amb[W;E] for some exchange
typeE.(x :W)"(y :W 0)(hxin j hyi) : Pro[W 0;W]. W is exchanged (read from) upwards, and then
forwarded to ambientn, while W 0 is exchanged (read and written) locally. Again, for the
typing to be derivable, one needsn : Amb[W;E] for some exchange typeE.(x :W)hxi" : Pro[W;W].W is read locally, and written upwards.

These simple examples give a flavor of the flexibility provided by the constructs for communi-
cation: like mobile ambients, boxed ambients are “places ofconversation”, but unlike ambients

they allow more than just one “topic” of conversation. This is made possible by the local nature of
(anonymous) channels, and the consequent “directed” formsof input/output. Specifically, every
ambient may exchange values of different types with any of its children, as long as the exchange
is directed from the ambient to the children. Instead, upward communication is more constrained:
all the children must agree on the (unique) type of exchange they may direct to their parent.

4.2 Typing Rules

The judgments of the type system have two forms:� ` M : W , read “expressionM has typeW ”, and� ` P : T , read “processP has typeT ”. Accordingly we have two sets of typing rules,
one for names and capabilities, one for processes. In addition, we introduce a subsumption rule
for process types, based on the following definition of subtyping.

Definition 1 (Subtyping). We denote by6 the smallest reflexive and transitive relation over ex-
change types such thatshh 6 E for every exchange typeE. Exchange subtyping is lifted to
process types as follows:Pro[shh; F] 6 Pro[E;F].
Process subtyping is used in conjunction with subsumption,exchange subtyping is not. The intu-
ition for exchange subtyping is that a (locally or upward)shh exchange is always type compatible
with a situation in which some exchange is expected: this is useful in the typing of capabilities.
As for process subtyping, it would be tempting to extend the subtyping relation so as to allow
subtyping over upward exchanges, as well. However, as we explain later in this section, uses of
this relation in conjunction with a subsumption rule for process types would not be sound. As a
final remark, note that our notion of subtyping is quite shallow: it is “almost equality” as there is
nodeepsubtyping. This holds true for the moded types of Section 6, as well.

Typing of Expressions

(PROJECTION)� (n)=W� ` n : W (TUPLE)� `Mi:Wi 8i 2 1::k� ` (M1; :::;Mk) : W1� :::�Wk (PATH)� `M1:Cap[F] � `M2:Cap[F]� `M1:M2 : Cap[F]
(IN)� `M : Amb[F; E] F 0 6 F� ` inM : Cap[F 0] (OUT)� `M : Amb[E;F] F 0 6 F� ` outM : Cap[F 0]

The (PROJECTION), (TUPLE), and (PATH) rule are standard. The rules (IN) and (OUT) define
the constraints for safe ambient mobility, and explain why capability types are built around a
single component. The intuition is as follows: take a capability, say in nwith n : Amb[F; E], and
suppose that this capability is exercised within ambient, say,m. If m has upward exchanges of
typeF 0, thenin n : Cap[F 0]. Now, for the move ofm into n to be safe, one must ensure that the
typeF of the local exchanges ofn be equal to the typeF 0 of the upward exchanges ofm. In fact,
the typing can be slightly more flexible, for ifm has no upward exchange, thenF 0 = shh 6 F ,
andm may safely move inton. Dual reasoning applies to the (OUT) rule: the upward exchanges
of the exiting ambient must have type6-compatible with the type of the upward exchanges of
the ambient being exited.

Typing of Processes

(DEAD)� ` 0 : T (NEW)�; x : W ` P : T� ` (�x :W)P : T (PARALLEL)� ` P : Pro[E;F] � ` Q : Pro[E; F]� ` P j Q : Pro[E;F]
(PREFIX)� `M : Cap[F] � ` P : Pro[E;F]� `M:P : Pro[E; F] (AMB)� `M : Amb[E;F] � ` P : Pro[E; F]� ` M [[P]] : Pro[F;G]

(SUBSUM PROC)� ` P : T T 6 T 0� ` P : T 0 (REPLICATION)� ` P : Pro[E;F]� ` !P : Pro[E;F]
(DEAD), (NEW), (PARALLEL), (REPLICATION) and the subsumption rule are standard5. In the
(PREFIX) rule, the typing of the capabilityM ensures, via the (IN), (OUT), and (PATH) rules
introduced earlier, that each of the ambients being traversed as a result of exercisingM have
local exchanges of type compatible with the upward exchanges of the current ambient.

The rule (AMB) establishes the constraints that must be satisfied byP to be enclosed inM :
specifically, the exchanges declared forM must have the same typesE andF as the exchanges
of P . In fact,P could be locally silent, and the typing ofM [[P]] be derivable from� ` P :Pro[shh; F] by subsumption. In addition, if� ` M : Amb[E; shh], and� ` P : Pro[E; shh],
then by (AMB) and subsumption one derives� ` M [[P]] : Amb[F;G] for anyF andG, as the
rule imposes no constraint on the upward exchanges of the processM [[P]] .

(INPUT ?)�; x :W ` P : Pro[W;E]� ` (x :W)P : Pro[W;E] (OUTPUT ?)� `M : W � ` P : Pro[W;E]� ` hMiP : Pro[W;E]
(INPUTM)� `M : Amb[W;E] �; x :W ` P : T� ` (x :W)MP : T (OUTPUTM)� `M : Amb[W;E] � ` N : W � ` P : T� ` hNiMP : T
(INPUT ")�; x :W ` P : Pro[E;W]� ` (x :W)"P : Pro[E;W] (OUTPUT ")� `M : W � ` P : Pro[E;W]� ` hMi"P : Pro[E;W]

The rules for input/output are not surprising. In all cases,the type of the exchange must comply
with the local exchange type of the target ambient, as expected. Also note that input/output ex-
changes with children, in the rules (INPUTM) and (OUTPUTM), do not impose any constraint
on local and upward exchanges.

As we noted earlier, type soundness requires that subtypingbetween upward silent and up-
ward non-silent processes be disallowed. To see why, consider for example allowing the relationPro[E; shh] 6 Pro[E;F], implying that upward-silent processes may be subsumed to non-silent

5 The reason why in (PARALLEL) and (REPLICATION) we usedPro[E;F] rather thanT will become clear
in Section 6

processes with any upward exchange typeF . While this form of subsumption seems reasonable,
it is unsound in the presence of parallel composition. Consider the ambienta[[in b:0 j hMi"P]]
with, sayM : W for some typeW , and note thatin b:0 can be typed asPro[shh; shh] regardless
of the type ofb. If the suggested subtyping were available, then the parallel composition could
be typed asPro[shh;W]. However, ifb : Amb[W 0; F] for someW 0 6= W , the ambienta could
move intob and have unsound upward exchanges after the move. By forbidding subtyping on the
upper component of process types, instead, the types that can be deduced for the processin b:0
above may only be of the formPro[E ;W 0] or Pro[E; shh] for some exchangeE.

The type system rules ensures that communication inside andacross ambients never leads to type
mismatches. The latter result is a consequence of the subject reduction property stated next.

Theorem 1 (Subject Reduction).If � ` P : T and andP➞Q, then� ` Q : T .

Proof. By induction on the derivation ofP➞Q, and appeal to standard lemma of substitution
and subject congruence.

5 Mobile Ambients versus Boxed Ambients

We now look at the impact of typing on mobility and communication, and contrast it with mobility
and communication of Mobile Ambients.

We already noted that type safety for ambient mobility can beestablished irrespective of
local exchanges. On the other hand, upward communication does impose somewhat restrictive
constraints over ambient mobility. Specifically, ambientswith upward exchanges of typeW may
only traverse ambients whose local exchanges also have typeW . However, when we compare
the flexibility of mobility and communication in Boxed Ambients versus the corresponding con-
structs found in Mobile Ambients, we find that typed Mobile Ambients have, in fact, even more
severe constraints.

To see that, it is instructive to note that the type system of the previous section can be spe-
cialized to only allow upward-silent ambient types in the form Amb[E; shh]. This effectively
corresponds to inhibiting all forms of upward exchanges: this follows from the format of the
(AMB) rule. On the other hand, it provides full flexibility for mobility, while still allowing pow-
erful forms of communication. We may note the following of the specialized type system.

– Mobility for Boxed Ambients is as flexible as mobility for typed Mobile Ambients.This fol-
lows by the (IN) and (OUT) rules discussed inx 4.2. Capabilities exercised within upward
silent ambients have typeCap[shh], andshh 6 F for everyF : consequently, upward silent
ambients have full freedom of moving across ambient boundaries. Furthermore, since Boxed
Ambients may not be opened, they may move regardless of the local exchanges of the ambi-
ents they traverse. As a consequence, with the specialized type system, an ambient can move
independently of its type, and of the type of its (intermediate and final) destinations.

– Communication is more flexible than in the Ambient Calculus,even in the absence of up-
ward exchanges. “Upward silent” does not imply “non communicating”: an upward-silent
ambient may very well move to a target ambienta, and communication betweena and the
incoming ambient may rely ona accessing the incoming ambient by downward requests.
Indeed, an ambient may access all of its children’s anonymous channels as well as those of
any incoming ambient: all these exchanges may be of different types. Besides, the ambient
may hold local exchanges of yet a different type. The encoding of channels givenx 3.1 can
also be used for encoding local exchanges of different types: the ambientc[[!(x :W)hxi]]
can be viewed as a local channelc of typeW , whose input output operators are(x :W)c andhMic: the type system allows (encoded) channels of different types to be used in the same
ambient.

In the ambient calculus, instead, parent-child communication requires the parent to first open
the child (or else a “messenger” ambient [CG98] exiting the child). As a consequence, either
the parent, and all the children’s exchanges have the same type, or there is no way that the
parent may communicate with all of its children.

5.1 Security and Resource Access Control
The communication model over which Boxed Ambients are defined has other interesting payoffs
when it comes to security and resource protection policies.

As we have argued, the primitives for communication have immediate and very natural in-
terpretations as access requests: for example, the input prefix (x)n can be seen as a request to
read from (the anonymous channel located into) child ambient n and, dually,hMi" can be in-
terpreted as write request to the parent ambient (equivalently, its local channel). Based on that,
Boxed Ambients provide for a direct characterization of classical resource access control mecha-
nisms, such asMandatory Access Controlor MAC policies. In addition,multilevel security, and
the associatedMilitary (no read-up, no write-down) andCommercial(no read-up, no write-up)
security models may directly be accounted for by embedding security levels into types, and using
typing rules to statically enforce the desired constraintson access. For an thorough discussion of
MAC multilevel security for Boxed Ambients the reader is referred to [BCC01]. What is interest-
ing to note here, instead, is that the mechanisms for ambientinteraction and communication fit
nicely and complement the security model of Mobile Ambients, which predicates in/out access
to ambients on possession of appropriate passwords or cryptokeys.

The download example, revisited.To exemplify, consider again the download example inx 1.
With Mobile Ambients, security relies solely on authorization based on knowledge of names: the
agenta[[Q]] acquires authorization to enter the hosth by knowing the nameh and embedding it
into the capabilityin b: the capability, or the name, may thus be seen as passwords that enable the
access toh, as inh[[a[[Q]] j P]] . Once insideh, the ambienta (or a messenger ambient exitinga) is dissolved to enable interaction. As we argued, this may be upsetting to the host, as it grantsQ (or the messenger insidea) indiscriminate access to whatever is insideh.

Instead, ifa andh are Boxed Ambients, authorization by possession of capabilities can be
complemented by finer-grained control over the access requests byQ to the contents ofh. As-
sume, for the purpose of the example, thath encapsulates its resources in a set of subambientsr1; : : : ; rn. ThenP insideh could mediate the access requests bya to each of theri’s by means
of an interface process of the form(x:W)ahxiri . In addition, the incoming agent could be forced
to be upward silent to prevent it from interfering with the local exchanges held withinh: this can
be accomplished by imposing a suitable security policy, based on typing, as shown in [BCC01].

5.2 Discussion
Having argued in favor of the communication model of Boxed Ambients with specialized type
system, it is obvious that giving up upward exchanges is a problem: for instance, we would not be
able to type-check “transport” ambients, such as those usedin the encoding of the Seal Calculus’
channeled communications ofx 3.2, whose function is to silently carry a process to a certain
destination where the process will eventually deliver its output to and/or receive input from its
enclosing context. As we show in the next section, it is actually possible to refine and extend
the type system to support a smoother and type safe interaction of upward communication and
mobility.

6 Moded Typing
The typing technique we develop in this section is based on a refinement of the observation we
just made of the specialized type system, namely that ambients enclosing upward-silent processes

may safely move across other ambients, regardless of the types of the latter. The new type system
uses type modifiers to characterize the computation progress of processes, and in particular, to
identify the silent and non-silent phases in the computation of the processes enclosed within
ambients: based on that, it enhances the typing of mobility during the ambients’ silent phases.

6.1 Moded Types

The new type system is built around the extended classes of process and expression types defined
below:

Process Types T ::= Pro[E;F] j Pro[E; �F] j Pro[E; �F] j Pro[E; MF]
Expression TypesW ::= Amb[E;F] j Amb�[E; F] j Cap[E] j W1 � � � � �Wn

Ambient types of the formAmb[E;F] are exactly as inx 4, and their enclosed processes have
“regular” process typesPro[E;F], deduced by the same rules. On the other hand, ambient types
of the formAmb�[E; F] are associated with “transport” (or moded) ambients, whoseenclosed
processes are assigned moded types, according to the following intuitions:Pro[E; �W]: upward silent processes with local exchanges of typeE. The typeW signals that

processes with this type may be safely run in parallel with processes with upward exchanges
of typeW .Pro[E; �W]: processes with local exchanges of typeE and upward exchanges of typeW . The
upward exchanges are temporarily inactive since the process is moving.Pro[E; MW]: processes with local exchanges of typeE and that, after performing upward ex-
changes of typeW , evolve into processes of typePro[E; �W] or Pro[E; MW].

The syntax allows the formation of process types of the formPro[E; �shh], Pro[E; �shh] andPro[E; Mshh]. These types are convenient in stating definitions and typing rules: to make sense
of them, we stipulate that�shh = �shh = Mshh = shh. To exemplify moded types, consider the
following process, where we assume� `M :W .(x:W 0)hxim j in n:hMi":out n : Pro[W 0; �W].
The left component of this process does not have upward exchanges, hence it can be assigned the
typePro[W 0; �W] provided, of course, thatm : Amb[W 0; E] for someE. On the other hand, the
right component does have upward exchanges, but is currently silent because the output prefix
is blocked by the move: thusin n:hMi":out n : Pro[W 0; �W], provided thatn : Amb[W;W].
The typePro[W 0; �W] can also be assigned to the parallel composition which is, infact, cur-
rently silent. Interestingly, the typePro[W 0; �W] cannotbe assigned to the continuation processhMi":out n (nor to the parallel composition(x:W 0)hxim j hMi":out n), because, after consum-
ing the capabilityin b, the upward exchanges of this process are active. At this stage, a legal type
for the process isPro[W 0; MW], signaling, that after the upward exchange, the process enters
again an upward-silent phase.

As the example shows, processes that are subject to moded typing may have different types
at different stages of their computation. This does not break subject reduction, as it would seem,
as reductions involving the consumption of capabilities only involve the ambients enclosing the
capabilities being consumed: as a consequence, while the process enclosed in an ambient changes
its type according to the process’ progress, the type of the ambient itself is invariant through
reduction.

The reader may wonder whether the new class of “transport” ambients is really necessary,
and why the same effect can not be obtained by solely relying on “regular” ambient types. The
problem is that moded typing is not powerful enough to control mobility: in particular, moded

types can not be employed to prevent non-silent ambients to exit their parent during the upward-
silent phases of the latter. To see the problem, assume that ambient, saya, is currently silent and
moving across ambients with local exchanges, sayW . Also assume thata contains a non-silent
ambientb with upward exchanges of typeW 0 incompatible withW . As long asb is enclosed ina, its upward exchanges do not interfere with the local exchangesW of the ambients traversed
by a. But if b exitsa, then its upward exchanges may cause a type mismatch. In our system6, the
problem is solved by providing guarantees that transport ambients can only be exited by (regular
or transport) ambients whose upward exchanges have typeshh.

6.2 Capabilities and Moded Judgments

The modes attached to process types also affect the typing ofcapabilities. This is accounted for by
a new form of judgment, denoted by� �̀M : Cap[E]. This notation indicates a “silent mode”
for typing the capabilityM , which is useful when typing capability paths: if typed in silent mode,
every intermediate move on the path may safely disregard thetype of the ambient traversed along
the move.

6.3 Typing Rules

The new type system includes all the typing rules fromx 4.2. In addition, we have a richer subtype
structure for process types, and new rules for deriving silent typings of capabilities, and moded
types for processes.

Definition 2 (Process Subtyping).
Let6 denote the same relation of exchange subtyping
of Definition 1. Process subtyping is the smallest re-
flexive and transitive relation such thatPro[shh; �F] 6Pro[E; �F] and in addition, satisfies the diagram on the
right for all E andF .

Pro[E; MF]% -Pro[E;F] Pro[E; �F]- %Pro[E; �F]
The intuition underlying process subtyping is as follows. As we said, the typePro[; �E] identi-
fies upward-silent processes that move their enclosing ambient only through locations with local
exchanges of typeE. Clearly, any such process can always be considered as a process of typePro[; E] that is, as a process whose all upward exchanges are of typeE and that moves the
enclosing ambient only through locations with local communications of typeE. In fact, it can
also be considered as a process of typePro[; �E], that is as a temporary upward-silent process
that guarantees its enclosing ambient that whenever it performs an upward communication it will
be in a context with local exchanges of typeE. The two typesPro[; E] andPro[; �E] are
incompatible, as processes of the first type may not be assumed to be (even temporary) upward-
silent, while processes of the second type may move across ambients regardless of the types of the
latter and therefore across ambients whose local exchangesare of a type different fromE. Nev-
ertheless, the two types have a common supertypePro[; ME], as this type identifies processes
that may be currently upward-active, and whose enclosing ambients are guaranteed to reside in
contexts with local exchanges of typeE.

Typing for Expressions.We use the following notation and conventions:�W denotes any
of the exchangesMW; �W; �W , while ?W denotes either�W or W ; when occurring in defini-
tions and typing rules, the notations�W and?W are intended to be used uniformly (i.e., all the

6 A different solution would be possible by extending the calculus with co-capabilities à laSafe Ambients
[LS00]. In that case, an ambient would be in a silent phase when its enclosed process does not perform
upward exchanges and does not offer aco-outcapability for nested ambients to exit.

occurrences of� and? in a rule or in the definition denote the same symbol, unless otherwise
stated).

The key rules that characterize moded ambients are those that govern mobility into and out from
a moded ambient:

(OUT �)� `M : Amb�[E;F]� ` outM : Cap[shh] (IN �)� `M : Amb�[F; E] F 0 6 F� ` inM : Cap[F 0]
Note that while there is no constraint for entering a moded ambient —as the rule (IN �) imposes
exactly the same restrictions as the rule (IN)— the rule (OUT �) requires that ifM is moded,
thenoutM can only be exercised in ambients that are upward silent.
The next rules are those that relate and differentiate�̀ from `.

(POLYCAP)� `M : Cap[E]� �̀M : Cap[E] (POLYPATH)� �̀M1 : Cap[E1] � �̀M2 : Cap[E2]� �̀M1:M2 : Cap[E2]
The rulePolyCapstates that for all capabilities, typing and moded-typing coincide. In addition,
for capability paths —that is, for sequences ofin andout moves— we have the special, and more
flexible rule (POLYPATH) stating that we may disregard intermediate steps, as no communication
takes place during those steps: we only need to trace preciseinformation on the last move on the
path. This effectively corresponds to interpretingCap[E] as the type of capability paths whose
last move requires upward exchanges of typeE.

Moded typing of capabilities helps derive moded process types for prefixed processes as
illustrated by the rules below7.

Typing of Processes
As we said, the new type system includes all the typing rules for processes inx 4.2. In addition,
we have the following rules. We start with the typing of prefixes.

(PREFIX �)� �̀M : Cap[G] � ` P : Pro[E; �F]� `M:P : Pro[E; �F] (PREFIXM)� �̀M : Cap[F] � ` P : Pro[E; MF]� `M:P : Pro[E; �F]
(PREFIX �)� `M : Cap[F] � ` P : Pro[E; �F]� `M:P : Pro[E; �F]

(PREFIX �) and (PREFIXM) state that prefixing a processP with a move capability always yields
“moving” types, that is types with mode�. In particular, (PREFIX �) says that we may disregard
the type ofM (as long asM is a capability) ifP is also a moving process.8 This rule has the
same rationale as the (POLYPATH) rule above: both rules are necessary for subject congruence —
specifically, for the congruence rule(M1:M2):P �M1:(M2:P). On the other hand, by (PREFIXM), the upward exchanges ofM andP must be consistent (equal) whenP is not moving. In other

7 The reader may wonder why we introduced a new turnstile symbol rather then adding a mode to capabil-
ities types, as inCap�. In fact, the two choices are almost equivalent, in terms of expressive power, while
the current is slightly less verbose.

8 This characterization is possible because our syntax does not include the empty path.

words, thelastmove of the prefix must be compatible with the upward exchanges that the process
will have right after. Notice, to this regard, that by subsumption, (PREFIX M) also accounts for
the case of prefixing a processP of typePro[E;F].

The rule (PREFIX �) types silent processes running in a context whose upward exchanges (if
any) have typeF . In this case, the type of the pathM in the premise guarantees thatP is type
compatible with the local exchanges of the ambients hit on the move. Hence the typing of the
capability must be “standard”, as in the (PREFIX) rule fromx 4.

The next two rules apply to parallel compositions.

(PARALLEL � LEFT)� ` P : Pro[E; �W] � ` Q : Pro[E; �W]� ` P j Q : Pro[E; �W] (PARALLEL � RIGHT)� ` P : Pro[E; �W] � ` Q : Pro[E; �W]� ` P j Q : Pro[E; �W]
Two rules, and an appeal to subsumption, suffice to capture all cases. IfP andQ are upward-silent
(i.e. with upward exchanges�W), thenP jQ is also upward silent (with upward exchanges�W).P j Q can be typed as moving (that is, with upward exchanges�W), only when(i) eitherP orQ is moving and(ii) the other process is upward silent and type compatible with the exchanges
of the moving process. The same reasoning applies whenP j Q : Pro[E; MW], i.e. whenP j Q
perform some upward exchange and then eventually move, hence the typesPro[E; MW] are
derived with the same rules. We need two rules because we haveto handle the two cases when
the moving subprocess isP orQ.

The rules (DEAD) and (NEW) from x 4 handle also the cases for moded types (of course,
save the fact that nowT ranges over the extended class of process types). This is nottrue of the
rule (REPL). In fact, if P andQ are both moving, thenP j Q may not be typed as moving, as
either of the two could start its upward exchanges before theother. For this reason, there is no
way to type a replicated process as a moving process: the onlytwo possible types for a replicated
process are a “regular” type (deduced by the rule REPL from x 4) or a silent type, as stated by the
following new rule9:

(REPL�)� ` P : Pro[E; �F]� ` !P : Pro[E; �F]
For processes of the formM [[P]] , we need new rules. The rule (AMB) from x 4 is modified
so that it now deduces an upward-silent type, compatible with all the other modes. Two new
rules handle the case whenM is a transport ambient, distinguishing the cases when the enclosed
process is moving or not.

(AMB)� `M : Amb[E;F] � ` P : Pro[E;F]� ` M [[P]] : Pro[F; �H]
(AMB M)� `M : Amb�[E;F] � ` P : Pro[E; MF]� ` M [[P]] : Pro[F; �H] (AMB �)� `M : Amb�[E;F] � ` P : Pro[E; �F]� ` M [[P]] : Pro[G; �H]
9 This is due to the particular semantics of replication we use, which yields to an unrestrained generation

of copies. It is clear that the use of guarded replication or call by need would make replication compatible
with moded types (see also next section).

In (AMB M) P is not moving, and the rule imposes type constraints equivalent to those imposed
by the (AMB) rule: note, in fact, that the judgment� ` P : Pro[E; MF] could be derived by
subsumption from� ` P : Pro[E; F]. If, instead,P is moving, as in (AMB �), its upward
exchanges are blocked by the move, and we have freedom to chose the type of local exchanges
of the processM [[P]] . Once again, subject reduction does not break if exercisingthe capability
in P activates upward exchanges: (AMB M) can be used to type the reductum .

We conclude with the rules for input-output.

(INPUT ? �)�; x:W ` P : Pro[W; �F]� ` (x:W)P : Pro[W; �F] (OUTPUT? �)� `M : W � ` P : Pro[W; �F]� ` hMiP : Pro[W; �F]
(INPUT " M)�; x:W ` P : Pro[F; MW]� ` (x:W)"P : Pro[F; MW] (OUTPUT" M)� `M : W � ` P : Pro[F; MW]� ` hMi"P : Pro[F; MW]

Local communications are not affected by modes: it is the mode of the continuation process that
determines the moded type of the input/output process itself.

Upward exchanges have only non-moving types, for obvious reasons. The particular type they
have —that is, eitherPro[F; MW] or the more informativePro[F;W]— depends on the type of
their continuation. If their continuation is of typePro[F; �W] or Pro[F;W], then the process
—which is clearly not silent— can be typed asPro[F;W]. These cases are captured by the rule
(INPUT/OUTPUT ") of x 4 (together with subsumption for the casePro[F; �W]). If instead the
continuation has typePro[F; MW] or Pro[F; �W], as in (INPUT/OUTPUT " M), we can just say
that the process may eventually evolve into a moving process, hence the typePro[F; MW] in the
conclusion.

Finally, downward communications are not affected by whether the target ambient is moded
or not. The rules fromx 4 work just as well for the new system: two new rules, with the same
format, handle the case when target ambient is moded:

(INPUTM �)� `M : Amb�[W;E] �; x :W ` P : T� ` (x :W)MP : T (OUTPUTM �)� `M : Amb�[W;E] � ` N : W � ` P : T� ` hNiMP : T
Note that in all output rules, the typing of the expressionM being output is subject to “regular”
typing. As a consequence, capability paths may be communicated only if well-typed under regular
typing. This restriction could be lifted, had we employed moded capability types as suggested inx 6.3 (cf. footnote 7), but with no significant additional expressive power.

6.4 Subject Reduction

The results ofx 4 hold for the new system as well. As a matter of fact, subject reduction for
the type system ofx 4 is a direct consequence of the subject reduction for moded typing. The
theorem, and its proof are standard.

Lemma 1 (Substitution).Let` ? denote either̀ or �̀ .

– Assume�; x : W ` ?M : W 0 and� ` N : W . Then� ` ?Mfx := Ng : W 0.
– Assume�; x:W ` P : T and� ` N : W . Then� ` Pfx := Ng : T .

Proof. Standard: by induction on the derivations of the two judgments�; x : W ` ?M : W 0
and� ` P : T .

Lemma 2 (Subject Congruence).If � ` P : T andP � Q then� ` Q : T .

Proof. By simultaneous induction on the derivations ofP � Q andQ � P .

Theorem 2 (Subject Reduction).If � ` P : T andP➞Q then� ` Q : T .

Proof. By induction on the derivation ofP➞Q.

We conclude this section with an example showing how moded typing help type-check the trans-
port ambients used inx 3.2 to encode communication on named channels à la Seal Calculus. We
give the case of downward input on a channel of typeW , as incm(x : W)P , as representative.

In the typed encoding, the channelc is expressed by the Boxed Ambientc[[!(x:W)hxi]] .
Now, the typed encoding of downward input is as follows:hh cm(x:W)P ii = (�p:Amb�[W;W])p[[inm:in c:(x:W)"out c:outm:hxi]] j (x:W)p hhP ii
We give a type derivation under the most general assumptions, that is:P :Pro[E; ?F],m:Amb?[G;H]
(whereE;F;G;H can be any type), andc:Amb[W; shh]. The fact that the ambientp is typed
as a transport ambient is essential for the typed encoding totype-check. This is shown by the
following analysis that also illustrate the interplay between the modes� andM.

Let � be a type environment wherem:Amb?[G;H]; c:Amb[W; shh] andp:Amb�[W;W].
First observe that, for the encoding to be typable we need� ` p[[inm:in c:(x:W)"out c:outm:hxi]] : Pro[E; �F]
This judgment may be derived by the rule (AMB �), provided that the process enclosed inp can
be typed with mode�, that is, if� ` inm:in c:(x:W)"out c:outm:hxi : Pro[W; �W].
This follows by (PREFIX �) from � �̀ inm:Cap[G] and� ` in c:(x:W)"out c:outm:hxi : Pro[W; �W]
Note that here we use the flexibility of moded typing as no relation is required betweenG andW . The last judgment follows again by (PREFIX �) from � �̀ in c:Cap[W] and from� ` (x:W)"out c:outm:hxi : Pro[W; MW],
This judgment can be derived by (INPUT " M) from�; x:W ` out c:outm:hxi:Pro[W; MW].
Again, we rely on moded typing: the whole process type-checks since the move that precedes
the upward output brings the ambient in an environment with the right exchange type. Deriv-
ing the last judgment is not difficult. From�; x:W `� out m:Cap[H] and from�; x:W `hxi:Pro[W; �W], we have�; x:W ` out m:hxi : Pro[W; �W]. Now, from the last judg-
ment and from�; x:W `� out c:Cap[shh] an application of (PREFIX �) yields �; x:W `out c:out m:hxi:Pro[W; �W] as desired. To conclude, we can apply subsumption, based on the
subtypingPro[W; �W] 6 Pro[W; MW], and then (INPUT " M) to obtain the desired typing.

7 Asynchronous communications

As noted in [Car99], mobile and distributed computation canhardly rely on synchronous input-
output as the only mechanism of communication. Also, experience with implementation of dis-
tributed calculi [BV02,FLA00] shows that the form of consensus required for synchronous com-
munication is quite hard to implement in a distributed environment.

In x 2 we said that asynchronous communication can be recovered in our calculus in two
possible ways:(i) either by coding it with synchronous output and null continuations, or(ii)
by introducing the additional equivalencehMi�P � hMi� j P . The first solution allows syn-
chronous and asynchronous output to coexist. An asynchronous output-prefixhMi� followed by
a continuationP can be expressed in terms of synchronous output by the parallel compositionhMi�0 j P . The second solution takes this idea to its extreme, and leads to a purely asynchronous
calculus.

Neither alternative is entirely satisfactory. One problemwith the first is thathMi�P andhMi�0 j P are only equivalent under the type system ofx 4, not with moded types. In fact, for� =", it is not difficult to find situations wherehMi�P is well-typed andhMi�0 j P is not
(with moded typing). An immediate consequence of this observation is that the congruence lawhMi"P � hMi" j P is not preserved by moded typing, hence the second alternative is not sound
for the system ofx 6.

A further reason for being unsatisfied with the first solutionis that the use of null continua-
tions to code asynchronous output has the effect of essentially defeating moded typing. Moded
typing is possible, and effective, only along a single thread, while the coding of asynchronous
output introduces parallel compositions and leaves no residual following an output. Notice, how-
ever, that the problem is not a consequence of moded typing and asynchrony being inherently
incompatible. To see that, observe that inhMi"P the continuationP could be typed with a mode
independently of whether the prefix denotes synchronous or asynchronous output. All that mat-
ters forP to receive a (sound) “moving” type is thathMi gets delivered to the parent ambient
before unleashingP : once delivered, whether or nothMi also synchronizes with local input is
irrelevant.

Based on this observation, a smoother integration of asynchronous output and moded typing
may be achieved by re-stating the congruence law as a reduction rule, and making it location-
aware so that the output is delivered to the appropriate ambient.

Different formulations of the asynchronous version of the calculus are possible. A first solu-
tion, given below, is to replace the reductions (output n) and (output") of x 2 with the reductions
(asynch output n) and (asynch output") below, and to introduce the new reduction (asynch out-
put ?): (asynch output?) hMiP ➞ hMi j P(asynch output n) hMinP j n[[Q]] ➞ P j n[[hMi j Q]](asynch output") n[[hMi"P j Q]] ➞ hMi j n[[P j Q]]
With these reductions, the problem with moded types is solved: an upward output followed by
a move, as inhNi"M:P may safely be typed with modeM (based on the mode� for M:P)
irrespective of whether the output synchronizes or not. More generally, we may prove that subject
reduction holds for this form of asynchronous reduction andthe moded type system presented in
the previous section: no further modification is needed.

A second possibility, is to combine synchrony and asynchrony. Cardelli [Car00], advocates
that local exchanges can be synchronous, while remote communication ought to be asynchronous.
This is a sound choice for our calculus: in fact, the reduction (asynch output?) for local exchanges
may be dispensed with, as local asynchronous output may be coded byhMi0 j P without af-
fecting moded typing. Although this is sound, it would introduce some form of asymmetry in the

implementation since non-local read accesses on local synchronous output would be synchronous
with this solution.

A third possibility arises from the observation that the newoutput rules described for the first
solution, together with the reduction rules for input prefixes ofx 2 derive the following new set
of reductions for input:(asynch input?) (x)P j hMi ➞ Pfx := Mg(asynch input n) (x)nP j n[[hMi j Q]] ➞ Pfx := Mg j n[[Q]](asynch input") hMi j n[[(x)"P j Q]] ➞ n[[Pfx := Mg j Q]]
One could then take theasynch inputrules as primitive, and use them instead of the corresponding
rules of x 2. In other words the third solution consists in replacing all the reduction rules of
Section 2 by the sixasynch-rules defined in this section. Although this solution is very close to
the first one (but more “inefficient” since it adds new intermediate reduction steps), the result is
rather interesting, as it suggests a novel interpretation of the process formhMi as amemory cell.
Indeed, one may viewhMi0 andhMi as denoting two very distinct processes, the former being
a local output with a null continuation, the latter being a memory cell (more precisely a one-place
buffer)10. Taking this view, every communication becomes a two-step protocol and the reductions
have new interpretations. To exemplify, (asynch output?) describes how a writer processhMiP
writes a memory cellhMi and then continues asP ; (asynch input?) shows a reader that makes a
destructive access to a memory cellhMi. The same reasoning applies to downward and upward
exchanges. As a result, memory cells, that is the output formhMi, take the role of the resources
of the calculus, which are bound to their location.

Whatever solution we choose in this section, they are all compatible with the moded typing
of x 6 and,a fortiori, with the type system ofx 4.

7.1 Synchrony versus asynchrony: security trade-offs

The choice of synchronous versus asynchronous communication has other consequences on the
calculus, specifically, in terms of the security guaranteesthat can be made for it.

On one side, it is well known that synchronous communicationgenerates hard-to-detect in-
formation flows based on synchronization. Our definition of synchronous input-output ofx 2
also has this problem. For example, in the systema[[Q j b[[hMiP]]]] , the sub-ambientb, gets
to know exactly when (and if)Q makes a downward read access to its contents. Therefore
one bit of information flowed by a read access from the reader to the writer. This makes non-
interference [GM82,FG97] quite hard to satisfy.

On the other hand, by asynchronous communication we effectively give upmediation(seex 1.2), that is, control over interaction between sibling ambients. With synchronous input-output
no ambient can be “spoiled” with unexpected (and possibly unwanted) output by its enclosing
or enclosed ambients. As an example, consider the systema[[(x:W)bP j b[[c[[hMi" j Q]]]]]]
which is typable in our system provided thatM :W and theb is declared of typeAmb[W;F]
for someF . With synchronous reductions there is no way for the upward output in c and the
downward input ina to synchronize. Instead, in the asynchronous case, the initial configuration

10 To make it more explicit, for this last solution we could haveused a different syntax for a memory cell
containingM , sayM, so that for example the local reduction rules would be written as(asynch output?) hMiP ➞ M j P(asynch input?) (x)P j M ➞ Pfx := Mg
an asynchronous output produce a cell, and a process reads from a cell.

would evolve intoa[[(x:W)bP j b[[hMi j c[[Q]]]]]] ; by a further reduction step the ambienta
gets hold of the messagehMi without any mediation ofb.

Similarly, two siblings may establish a covert channel:b[[a[[(x:W)"P]] j c[[hMi"Q]]]] re-
duces in two steps intob[[a[[Pfx := Mg]] j c[[Q]]]] . These kind of covert channels are two
examples of security breaches that cannot be prevented by the existing primitives of the calculus.
A possible solution is to resort to further synchronizationmechanisms, such as those offered by
portals in the Seal calculus: this however, would essentially defeat asynchrony. A different, and
more effective, way to avoid covert channels is by multilevel security, based on types, as we show
in [BCC01].

8 Conclusion and related work

We have presented a variant of Mobile Ambients, based on a different choice of communication
primitives. The new calculus complements the constructs for mobility of Mobile Ambients with
what we believe to be more effective mechanisms for resourceprotection and access control. In
addition, it provides for more flexible typing of communications, and new insight into the relation
between synchrony and asynchrony.

As we mentioned, other alternatives for parent-child communication would be possible. One
alternative, suggested by the anonymous referees could be based on the following reductions:(x)nP j n[[hMi"Q j R]] ➞ Pfx := Mg j n[[Q j R]]hMinP j n[[(x)"Q j R]] ➞ P j n[[Qfx := Mg j R]]
These reductions are similar in spirit to the correspondingreductions adopted in [CGZ01] for the
Seal Calculus. We had considered this option for our Boxed Ambients, and initially dismissed
it because it appeared to be enforcing an interpretation of channels as shared resources, thus
undermining the notion of locality we wished to express. Looking at it retrospectively, it is now
only fair to observe that the alternative reductions would still enable the view of an ambient
as having two channels: a private channel which is only available for local exchanges, and an
“upward channel” which the ambient offers to its enclosing context for read and write access.

In fact, a first analysis shows that there are trade-offs between our solution and the one given
above. The latter has a number of security benefits, as it provides ambients with full control of
the exchanges they may have with their children. Our solution, instead, enables communication
protocols that would be difficult (if at all possible) to express with the above reductions. One
example is the possibility for an ambient to “broadcast” a message toany entering ambient:a[[! hMi]] . Here,a could be thought of as an “information site” which any ambient can enter
to get a copy ofM (reading it from upwards, after having entereda). The same protocol could
hardly be expressed with the reductions given above, as theyrequires an ambient to know the
names of its children in order to communicate with them. Nevertheless, a more in-depth analysis
of the trade-offs between the two solutions deserves to be made, and is part of our plans of future
work.

Besides Mobile Ambients and Seals, whose relationships with Boxed Ambients have been dis-
cussed all along, the new calculus shares the same motivations, and is superficially similar to
Sewell and Vitek’s Boxed-� [SV00]. The technical development, however, is entirely different.
We do not provide direct mechanisms for constructingwrappers, rather we propose a new con-
struct for ambient interaction in the attempt to provide easier-to-monitor communications. Also,
our form of communication is anonymous, and based on a notionof locality which is absent in the
Boxed-� Calculus. This latter choice has important consequences inthe formalization of classic
security models as we discuss in [BCC01]. Finally Boxed-� does not consider mobility which is
a fundamental component of this work.

Our type system is clearly also related to other typing systems developed for Mobile Ambi-
ents. In [CG99] types guarantees absence of type confusion for communications. The type sys-
tems of [CGG99] and [Zim00] provide control over ambients moves and opening. Furthermore,
the introduction ofgroupnames [CGG00] and the possibility of creating fresh group names, give
flexible ways to statically prevent unwanted propagation ofnames. The powerful type discipline
for Safe Ambients, presented in [LS00], add a finer control over ambient interactions and remove
all grave interference, i.e. all non-deterministic choice between logical incompatible interactions.

All those approaches are orthogonal to the particular communication primitives. We believe
that similar typing disciplines as well as the use of group names and mobility types (without
opening control, of course), can be adapted to Boxed Ambients to obtain similar strong results.

Last, but not least, in [HR01,HR00] Hennessy and Riley discuss resource protection inD�-
calculus, a distributed variant of�-calculus, where processes are placed in movable locations. In
spite of the fact that the design choices in the two calculi are different, and largely unrelated (dif-
ferent primitives, no location nesting,: : :) the ideas discussed in [HR01,HR00] were a constant
source of inspiration for us.

Acknowledgments.Thanks to Santiago Pericas for his comments of on earlier draft of the paper.
Comments by the anonymous referees helped improve the presentation: we gratefully acknowl-
edge their effort.

References

[BC01] M. Bugliesi and G. Castagna. Secure safe ambients. InProc. of the 28th ACM Symposium
on Principles of Programming Languages, pages 222–235, London, 2001. ACM Press.

[BCC01] M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile ambients. In
CONCUR 2001 (12th. International Conference on Concurrency Theory), number 2154 in
Lecture Notes in Computer Science, pages 102–120, Aahrus, Danemark, 2001. Springer.

[Bou92] G. Boudol. Asynchrony and the�-calculus. Research Report 1702, INRIA, http://www-
sop.inria.fr/mimosa/personnel/Gerard.Boudol.html, 1992.

[BV02] C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. Autonomous Agents and Multi-
Agent Systems, 2002. To appear.

[Car99] L. Cardelli. Abstractions for Mobile Computation, volume 1603 ofLecture Notes in Com-
puter Science, pages 51–94. Springer, 1999.

[Car00] L. Cardelli. Global computing. InIST FET Global Computing Consultation Workshop,
2000. Slides.

[CG98] L. Cardelli and A. Gordon. Mobile ambients. InProceedings of POPL ’98. ACM Press,
1998.

[CG99] L. Cardelli and A. Gordon. Types for mobile ambients.In Proceedings of POPL ’99, pages
79–92. ACM Press, 1999.

[CGG99] L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambients. InProceed-
ings of ICALP ’99, number 1644 in Lecture Notes in Computer Science, pages 230–239.
Springer, 1999.

[CGG00] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. InInter-
national Conference IFIP TCS, number 1872 in Lecture Notes in Computer Science, pages
333–347. Springer, 2000.

[CGZ01] G. Castagna, G. Ghelli, and F. Zappa. Typing mobility in the Seal Calculus. InCONCUR
2001 (12th. International Conference on Concurrency Theory), number 2154 in Lecture
Notes in Computer Science, pages 82–101, Aahrus, Danemark,2001. Springer.

[DCS00] M. Dezani-Ciancaglini and I. Salvo. Security typesfor safe mobile ambients. InProceed-
ings of ASIAN ’00, pages 215–236. Springer, 2000.

[DLB00] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control flow analysis and security. In
Proceedins of ASIAN ’00, volume 1961 ofLNCS, pages 199–214. Springer, 2000.

[FG97] R. Focardi and R. Gorrieri. Non interference: Past, present and future. InProceedings of
DARPA Workshop on Foundations for Secure Mobile Code, pages 26–28, march 1997.

[FLA00] C. Fournet, J-J. Levy, and Shmitt. A. An asynchronous, distributed implementation of mo-
bile ambients. InInternational Conference IFIP TCS, number 1872 in Lecture Notes in
Computer Science. Springer, 2000.

[GM82] J.A. Goguen and J. Meseguer. Security policy and security models. InProceedings of
Symposium on Secrecy and Privacy, pages 11–20. IEEE Computer Society, april 1982.

[HR00] M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous�-
calculus (extended abstract). InAutomata, Languages and Programming, 27th International
Colloquium, volume 1853 ofLecture Notes in Computer Science, pages 415–427. Springer,
2000.

[HR01] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.Information
and Computation, 2001. To appear.

[LS00] F. Levi and D. Sangiorgi. Controlling interference in Ambients. InPOPL ’00, pages 352–
364. ACM Press, 2000.

[NN00] H. R. Nielson and F. Nielson. Shape analysis for mobile ambients. InPOPL ’00, pages
135–148. ACM Press, 2000.

[NNHJ99] F. Nielson, H. Riis Nielson, R. R. Hansen, and J. G. Jensen. Validating firewalls in mobile
ambients. InProc. CONCUR ’99, number 1664 in LNCS, pages 463–477. Springer, 1999.

[SV00] P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers and causality types.
In 13th IEEE Computer Security Foundations Workshop, 2000.

[VC99] J. Vitek and G. Castagna. Seal: A framework for securemobile computations. InInternet
Programming Languages, number 1686 in Lecture Notes in Computer Science. Springer,
1999.

[Zim00] P. Zimmer. Subtyping and typing algorithms for mobile ambients. InProceedins of FoSSaCS
’99, volume 1784 ofLNCS, pages 375–390. Springer, 2000.

A Moded Typing: the complete type system
Recall that, in order to have a more compact set of rules, we use �W to denote any of the ex-
changesMW; �W; �W , and use?W to denote either�W orW . Similarly we useAmb?[E;F] to
denote eitherAmb[E;F] orAmb�[E; F]. The use of such shorthands make it possible to express
different rules ofx 4 and 6 as instances of a same rule. For this reason the rules here are slightly
different from those in the main text.

Expressions

(PROJECTION)� (M) = W� `M : W (TUPLE)� `Mi : Wi 8i 2 1::k� ` (M1; : : : ;Mk) : W1 � � � � �Wk
(IN)� `M : Amb?[F; E] F 0 6 F� ` inM : Cap[F 0] (OUT)� `M : Amb[E;F] F 0 6 F� ` outM : Cap[F 0]
(OUT �)� `M : Amb�[E; F]� �̀ outM : Cap[shh] (CAP �)� `M : Cap[E]� �̀M : Cap[E]
(PATH)� `M1 : Cap[F] � `M2 : Cap[F]� `M1:M2 : Cap[F] (POLYPATH)� �̀M1 : Cap[E1] � �̀M2 : Cap[E2]� �̀M1:M2 : Cap[E2]

Processes

(PREFIX �)� �̀M : Cap[G] � ` P : Pro[E; �F]� `M:P : Pro[E; �F] (PREFIXM)� �̀M : Cap[F] � ` P : Pro[E; MF]� `M:P : Pro[E; �F]
(PREFIX �)� `M : Cap[F] � ` P : Pro[E; �F]� `M:P : Pro[E; �F] (PREFIX)� `M : Cap[F] � ` P : Pro[E; F]� `M:P : Pro[E;F]
(PAR)� ` P : Pro[E;F] � ` Q : Pro[E;F]� ` P j Q : Pro[E;F] (PAR �)� ` P : Pro[E; �W] � ` Q : Pro[E; �W]� ` P j Q; Q j P : Pro[E; �W]
(DEAD)� ` 0 : T (NEW)�; x : W ` P : T� ` (�x :W)P : T (REPL)� ` P : Pro[E;F]� ` !P : Pro[E;F] (REPL�)� ` P : Pro[E; �F]� ` !P : Pro[E; �F]

(AMB)� `M : Amb[E;F] � ` P : Pro[E;F]� ` M [[P]] : Pro[F; �H]
(AMB M)� `M : Amb�[E;F] � ` P : Pro[E; MF]� ` M [[P]] : Pro[F; �H] (AMB �)� `M : Amb�[E; F] � ` P : Pro[E; �F]� ` M [[P]] : Pro[G; �H]
(INPUT ?)�; x :W ` P : Pro[W; ?E]� ` (x :W)P : Pro[W; ?E] (OUTPUT ?)� `M : W � ` P : Pro[W; ?E]� ` hMiP : Pro[W; ?E]
(INPUTM)� `M : Amb?[W;E] �; x :W ` P : T� ` (x :W)MP : T (OUTPUTN)� ` N : Amb?[W;E] � `M : W � ` P : T� ` hMiNP : T
(INPUT ")�; x :W ` P : Pro[E;W]� ` (x :W)"P : Pro[E;W] (OUTPUT ")� `M : W � ` P : Pro[E;W]� ` hMi"P : Pro[E;W]
(INPUT " M)�; x : W ` P : Pro[F; MW]� ` (x : W)"P : Pro[F; MW] (OUTPUT " M)� `M : W � ` P : Pro[F; MW]� ` hMi"P : Pro[F; MW]

In addition, we have a standard subsumption rule stating that � ` P : T 0 whenever� ` P : T
andT 6 T 0.

