In TACS 2001, Lecture Notes in Computer Science,(C) Springer, 2001. To appear.

Boxed Ambients *

Michele Bugliesl, Giuseppe Castaghgand Silvia Crafa?

! Dipartimento di Informatica ’ 2 Département d’Informatique
Univ. “Ca’ Foscari”, Venezia, Italy Ecole Normale Supérieure, Paris, France

Abstract. Boxed Ambientare a variant of Mobile Ambients, that result from
(7) dropping theopen capability and(i:) providing new primitives for ambient
communication while retaining the construatsandout for mobility. The new
model of communication is faithful to the principles of dikution and location-
awareness of Mobile Ambients, and complements the constfoicMobile Am-
bient mobility with finer-grained, and more effective, mansms for ambient
interaction.

1 Introduction

There is a general agreement that calculi and programmimgukeges for wide-area computing
and mobile-code environments should be designed accotdiagpropriate principles, among
which distribution and location awareness are the mostdorehtal.

Cardelli and Gordon’s Mobile Ambients [CG98] are one of thistfiand currently one of the
most successful implementations of these principles irftoraal calculus. Their design is cen-
tered around four basic notions: location, mobility, awiketion to move (based on acquisition
of names and capabilities), and communication by sharextitot

Boxed Ambientsare a variant of Mobile Ambients, from which they inherit theémitives
in and out for mobility, with the exact same semantics. Though, Boxedbfents rely on a
completely different model of communication, which resdtom dropping thepen capability.
The new communication primitives fit nicely the design pijies of Mobile Ambients, and
complement the existing constructs for ambient mobilityhwiner-grained, and more effective,
mechanisms for ambient interaction. As a result Boxed Amtiestain the expressive power and
the computational flavor of Ambient Calculus, as well as tleg@nce of its formal presentation.
In addition, they enhance the flexibility of typed commutimas over Mobile Ambients, and
provide new insight into the relationship between synchtmnand asynchronous input-output.

1.1 Mobile Ambients

Ambients are named process of the foupP] wherea is a name and® a process. Processes
can be composed in parallel, asih| @, exercise a capability, as iW. P, declare local names
as in(vzx)P, or simply do nothing as ifd. Ambients may be nested to form a tree structure
that can be dynamically reconfigured by exercising the déipabin, out andopen. In addition,
ambients and processes may communicate. Communicatiomig/@ous, and happens inside
ambients. The configuratiofx) P | (M) represents the parallel composition of two processes,
the output proces$M) “dropping” the messagéd/, and the input procesge)P reading the
messageV/ and continuing a®’{x := M}. Theopen capability has a fundamental interplay
with communication: in fact, communication results fromoanbination of mobility andpening
control. To exemplify, consider two ambients running ingal as in the following configuration
a[()P | Q] | b[(M) | R]. The exchange of the valug fromb to the proces® enclosed ir

* Work partially supported by MURST Project 99014038233, by CNRS Prograrfielecommunications
“Collaborative, distributed, and secure programming faetnet”, and by Galileo Action n. 02841UD

! The name is inspired by Sewell and ViteB&xedr-Calculus[SV00].

happens as a result of, say, fisshoving insides, and theruz openingb. Thus, if) is the process
open b, andR is in a, communication is the result of the following sequence dfigions:

a[()P |opend] | b[(M) |ina] O a[(x)P |openbd|b[(M)]] by exercisingn a
O a[(x)P | (M)] by open b, unleashing\/
O a[P{z := M}] by local communication

A case against ambient openingWhile fundamental to the Ambient Calculus for the rea-
sons just illustrated, an unrestricted use of tien capability appears to bring about serious
security concerns in wide-area distributed applications.

Consider a scenario where a proc&seunning on host downloads an application program
@ from some other host over the network. This situation can bdeted by the configuration
a[inh.Q] | R[P], whereQ@ is included in the transport ambieatwhich is routed toh in
response to the download request frétn As a result ofa exercising the capabilityn h, the
system evolves into the new configuratioha[Q] | P], where the download is completed. The
application progrand) may be running and computing within but as long as it is encapsulated
into a, there is no way thaP and@ can effectively interact. To allow for interactionB,will need
to dissolve the transport ambientNow, dissolvingz produces the new configuratiérf P | Q]
where nowP and() are granted free access to each other’s resources: theprobf course, is
that there is no way to tell wh@ may do with them. An alternative, but essentially equivglen
solution to the above scenario, is to treaas asandboxand take the Java approach to security:
P clones itself and enters the sandbox to interact @itti\gain, however, the kind of interaction
betweenP and(@ is not fully satisfactory: either they interact freely wiithz, or are isolated from
each other.

Static or dynamic analysis of incoming code are often adwatas solutions to the above
problem: incoming code must be statically checked andfiitprior to being granted access
to resources and sensitive data. Various papers exploiegaksibility, proposing control-flow
analyses [NNHJ99,NN00,DLB00] and type systems [CGG99,@ICBCO1] for Mobile Ambi-
ents. The problem with these solutions is that they may natlways possible, or feasible, in
practice. The source code of incoming software may be natadla for analysis, or be other-
wise inaccessible or too complex to ensure rigorous assFgwhits behavior. This is not meant
to dismiss the role of static analysis. To the contrary, dutl be taken as a motivation to seek
new design principles enabling a more effective use ofcstatialysis. One such principle for
Mobile Ambients, which we advocate and investigate in tldpgy, is that ambient interaction
should be controlled by finer-grained policies to preveatfrunrestricted resource access while
still providing effective communication primitives.

1.2 Boxed Ambients: overview and main results

Boxed Ambients result from Cardelli and Gordon’s Mobile Aeits essentially by dropping
the open capability while retaining thén andout capabilities for mobility. Disallowingopen
represents a rather drastic departure from the Ambientu@iadcand requires new primitives for
process communication.

As in the Ambient Calculus, processes in the new calculusntonicate via anonymous
channels, inside ambients. This is a formal parsimony timaplfies the definition of the new
calculus while not involving any loss of expressive powarfdact, named communication chan-
nels can be coded in faithful ways using the existing privagi In addition, to compensate for
the absence afpen, Boxed Ambients are equipped with primitives for commuti@a across
ambient boundaries, between parent and children. Syoédigtithis is obtained by means of tags
specifying thdocation where the communication has to take place: for instafacé,P indicates
an input from child ambient, while (M)" is an output to the parent ambient.

The choice of these primitives, and the resulting model ghmmnication is inspired to
Castagna and Vitek'Seal CalculugvC99], from which Boxed Ambients also inherit the two
principles ofmediationandlocality. Mediation implies that remote communication, i.e. betwee
sibling ambients, is not possible: it either requires mopior intervention by the ambients’ par-
ent. Locality means that communication resourcedaa to ambients, and message exchanges
result from explicit read and write requests on those resesirTo exemplify, consider the fol-
lowing nested configuration:

n[()" P | p[(M) | (2)Q | ¢[{N)"111]

Ambientn makes a downward request to reasl local valueM, while ambienty makes an up-
ward write request to communicate its vali¥eto its parent. The downward input requés)? P
may only synchronize with the outp(i/) local top. Instead(z)@ may non-deterministically
synchronize with either output: of course, type safety megthat)d/ and NV be of the same type.
Interestingly, however, exchanges of different types naetplace within the same ambient
without type confusion:

n[(@)’ P | (2)'Q [p[{M)] | ¢[(N)]1]

The two valuesM and N are local top and g, respectively, and may very well have different
types: there is no risk of type confusion, @sg” P requests a read from, while (z)?Q requests
aread fromy.

This flexibility of communication results from the combiimat of two design choices: di-
rected input/output operations, and resource localitjatt, these choices have other interesting
consequences.

— They provide the calculus with fine-grained primitives fotaient interaction, and with clear
notions of resource ownership and access request. Basé@ipiBoxed Ambients enable a
rather direct formalization of classical security polEifor resource protection and access
control: this is not easy (if at all possible) with Mobile Amehts (see [BCCO01]).

— They ease the design of type systems providing precise atcofilambient behavior. As we
show in§ 4, a rather simple structure of types suffices for that pugpésnbient and process
types are defined simply as two-place constructors deagritiie types of exchanges that
may take place locally, and with the enclosing context.regtngly, this simple type struc-
ture is all that is needed to give a full account of ambiergriattion. This is a consequence
of (¢) there being no way for ambients to communicate directlyscmore than one bound-
ary, and(#i) communication being the only means for ambient to inteBased on that, the
typing of Boxed Ambients provides for more flexibility of conunication and mobility than
existing type systems for Mobile Ambients (SgB).

— Finally, resource locality and directed input/output pd@/new insight into the relation be-
tween the synchronous and asynchronous models of comntionic&pecifically, the clas-
sic w-calculus relations between synchronous and asynchrangpsit, as stated by Boudol
in [Bou92], no longer hold as a result of combining remote oamications, resource local-
ity and mobility. More precisely asynchronous output nmaylongerbe viewed as a special
case of synchronous output with null continuation, neitten it be encoded by structural
equivalence, by stipulating th&l/)P = (M) | P. As we show (sed 7) these two solu-
tions, which are equivalent in the-calculus, have rather different consequences in Boxed
Ambients.

1.3 Plan of the paper

§ 2 introduces Boxed Ambients. We first define the calculus ims$eof synchronous output,
and the subsequent four sections discuss various aspeitis édrmulation. In§ 3 we give the

encoding of different forms of channeled communicatiorssda either om-calculus’ channels
or on the Seal Calculusbcatedchannels. Ir§ 4, we introduce a type system, and§rb we
compare the expressive power of typed Boxed Ambients andI#éimbients. In§ 6 we give a
different and more refined type system that further enhatygexi communication and mobility.
In § 7 we study an asynchronous variant of the calculus, and siste relationship between the
two forms of communication and their impact on mobility. Wenclude in§ 8, with final remarks
and comparisons with related work.

2 Boxed Ambients

Syntax.The syntax of the untyped calculus is defined by the followinzductions:

Expressions Processes
M = a,b,... names P:=0 stop
O z,y,... variables 0 M.P action
O inM enterM 0 (vx)P restriction
O outM exit M O P|P composition
O (My,...,M;) tuple,k >0 O M[P] ambient
0 MM path alp replication
O (x)"P patterned input
g (M)"P synchronous output
Locations
n =M names and variables Patterns
a1t enclosing ambient r = variable
O« local O z1,...,zx tuple,k >0

Patterns and expressions are as in the polyadic AmbientlDalcsave that the capabilibpen
and the “empty path? are left out. As in the Ambient Calculus, the syntax allows fitlrmation

of meaningless process forms suclirasitm or (open a)[P]: these terms may arise as a result
of reduction, in the untyped calculus, but are ruled out by tifpe system. We use a number
of notation conventions. We reserweb, ¢, ..., n, m,p,q for ambient names, and, y, z for
variables. As usual we omit trailing dead processes, vgritthfor /.0, and(1) for (A)0. The
empty tuple plays the role of synchronization messageslligjthe superscript denoting local
communication, is omitted.

The operational semantics is defined in terms of reductighstémuctural congruence.

Structural CongruenceAs in the Ambient Calculus, structural congruence is defiagdhe
least congruence relation that is a commutative monoi@ fand | and closed under the follow-
ing rules ¢n(P), the set of free names @1, has standard definition)

(Res Dead) (vz)0 =0 (Res Res) (vz)(vy)P = (vy)(vz)P = £y
(Path Assoc)M.M').P = M.(M'.P) (ResPar) (vz)(P|Q)=P| (vz)Q z¢fn(P)
(Repl) \P=IP|P (Res Amb)(vz)y[P] = y[(vz)P] z#vy

As usual, structural congruence is used to rearrange theeggoso that they can redude’ =
P, POQ,Q=Q = P 0 Q'. Reduction is defined by the rules for mobility and communi-
cation given below plus the standard context reductiorsr[€598].

Mobility. Ambient mobility is governed by the following rules, inhted from Mobile Ambients:

(entey a[inb.P| Q] | B[R] O b[a[P | Q] | R]
(exit) a[b[outa.P|Q] | R] O b[P|Q] | a[R]

Communication.Communication can be local, as in Mobile Ambients, or acraswbient
boundaries, between parent and child.

(local) ()P | (M)Q O P{z:= M} |Q
(input ()"P [n[(M)Q | R] O P{a:= M} |n[Q| R]
(input 1) (M)P | n[(2)'Q| R] O P|n[Q{z:= M}|R]
(output (M)"P [n[(2)Q|R] O P|n[Q{z:= M}|R]
(output?) ()P | n[(M)'Q| R] O P{z:= M} |n[Q|R]

Four different reduction rules for parent-child communica may be thought of as redundant,
especially because there are only two reducts. Insteasdunting differentdirectionsfor in-
put/output is a key design choice that provides the calcwitls precise notions of resource lo-
cality and resource access request. Directed (towardsiparehild) output captures the notion
of write accesgo a resource, by identifying the ambient towards which #mguest is directed.
Dually, directed input captures the notionrefid access

As such, the formulation given above enables the study gbepties related to standard
resource access control policies, even in the absence phelsa(seg 5; for more details refer
to [BCCO1]). Channels, on the other hand, can be encodedrlggas we show in the next
section.

As we noted, in the present formulation output is synchrendtor the time being, asyn-
chronous output can either be considered as the specialofagachronous communication
with null continuation, or else be accounted for by intradgcthe following rule of structural
equivalence inspired by [Bou92{M)" P = (M)" | P. As we shall discuss later on, these in-
terpretations are equivalent, and both type sound, withp#” types, that is, up t§ 5. Instead,
with “moded types” we introduce il 6 they are different, and neither one satisfactory, as the
former is too restrictive while the latter is unsound.

3 Communication Channels

We first show how to defing-calculus channels. Then, we refine the encoding to accaunt f
parent-child channeled communications. Throughout thitien, we use two extra congruence
laws: (vz)z[0] = 0and!P =!P | | P to garbage collect inert ambients and useless replications
respectively. Neither of the two relations is derivable asmagruence law: on the other hand, they
both would be derivable as observational equivalencesrfgpreasonable notion of observable
for the calculus.

3.1 m-calculus channels

We start with asynchronous output, and then use it to encguighsonous output.

2 Other alternatives would be possible: we discuss thegn8n

Asynchronous outputTwo processes communicating over channdlave the forme(y) P
(output) ande(z)Q (input). For uniformity, we consider the case where outputcpsses have
continuations, and one haér)P = c(x) | P. With Boxed Ambients, a first way to implement
the channet is to use the ambient] !(z)(z)] representing a buffer with an unbounded number
of positions: the buffer simply waits for local input and cerreceived, releases local output. The
output and input prefixes may then be represented, respBctas the write request)© and
the read requegtr)© on the buffer. We use a slightly different encoding basedroordounded
number of these buffers.

The following sequence of reductions shows that the engoctaptures the intended behav-
ior:

e[Ha) (@)] [() | (2)°P = e[M) ()] |)
O le[Wx){z)] | e[(z)(z
0 e x)e)] |

)11 ()* | (2)°P
| ()P

Based on these intuitions, we may define the encoding cotigualy, as follows:

(wa)P) = wa)(P) {IP) =1(P) {c{@)P) =le[\(a)(x)] | («)° | (P)
(P1Q) =(P)[{Q) (0) =0 (c@)P) =le[(2)(@)] | (&) (P)

An input and an output on the same channel, sagenerate multiple copies of the buffer
le[!(z)(z)] : this is not a problem, however, since the multiple copiestmagarbage collected
by the congruence laWP | I P =!P. Of course, there are other ways for structuring the enapdin
For instance, one could create the buffer when the chanmeé ns introduced by a restriction:
this would avoid the proliferation of channels. A furthetemhative would be to collect free and
bound names in the inductive cases of the translation, Sinc)P) o = (vz) (P) aufa}
(c(x)P)a = (2)°(P) auiay, and introduce them in the base cdse$0) ., c.; =
leg[Wz)(z)] | ... | len[Y(z){z)]. With this encoding, we could prove that#f reduces to
Q in the w-calculus, then the same is true of the encoding?odnd @, and conversely, if an
encoding ofP reduces to a process then this is equivalent to the encodlimgealuctum ofP.

However, none of the alternatives would scale to the caserafrrunication with local chan-
nels of§ 3.2: this justifies our choice of the encoding given above.

Synchronous output.et nowcz. P andéz.Q denoter-calculussynchronousnput and output
on channet. Synchronous input-output can be encoded in the asynchsqmalyadicr-calculus
as follows:cz.P = (vr)c(z,r)r() P, cy.Q = c(y, r)r{) P wherer ¢ fn(P). That is, the output
process sends the intended message as well as a privatethémmnthe reader to acknowledge
receipt of the message.

The encoding of the synchronouscalculus with Boxed Ambients is obtained by simply
composing the two encodings and simplifying the rés@ne only needs a different definition
for the prefix forms:

(ce.P) = (wr)(r[OO] | (2,r)°0"(P)) r¢M(P)
(cy.Q) ='le[!(u,v)(u,)] | (y,5)°0° (Q) s & (Q)
The rest is unchanged.

3 Of course, for parallel composition, one has to arbitractypose one subprocess; for example the left one:

(P1QYa=(P)al(Q)o

4 To make it more readable we erase duplicates and replacerst&icomposition for some parallel ones.

3.2 Parent-child channeled communicatiora la Seal Calculus

Having looked atr-calculus channels, we now discuss an extension of the amgtitht conforms
with the notion of locality and directed input-output of tbere calculus. The extension yields
a notion of located channels and a set of communication pottcthat are similar, in spirit,
to those given as primitive in the Seal Calculus [VC99]. Ia 8eal Calculus, one can express
output prefixes of the form™ (M) requesting a write access on the chanrn@siding in ambient
(or seal)n. Dually, the input prefix:" (z) denotes a read request on the channesiding in
the parent ambient. Upward output and downward input onl lcizannels may be expressed in
similar ways. All these communication protocols can be egped in the core calculus: below,
we only consider only the asynchronous case (i.e. coniimnlass outputs) and we give detailed
descriptions of downward output and upward input.
The intended reduction of a downward output is:

M) | n[e(x)P | Q] O n[P{e = M} | Q).
The channet is local ton, and the outer process requests a write access bhere are several
ways that the reduction can be captured with the existingttocts. Here, we describe an encod-
ing that renders the locality @f The channet is represented as before as a buffer, and the input
prefixc(z) as read access requestto

c@)P = le[(z)(@)] | (2)°P
Now, however, the write access tocannot be represented directly as we did above forrthe
calculus channel, becausds located inton. To capture the desired behavior we can rely on
mobility:

(M) = (vp)p[in n.in c.(M)T]
The output)M is encapsulated into a transport ambigntvhich enters: and thenc to deliver

the message (the name of the transport amhiemast be fresh). Thus, the Seal Calculus process
¢ (M) | n[e(z)P | Q] is encoded as follows:

(wp)plinninc(M)'] | n[le[!(z)(2)] | (x)°P | Q]

By a sequence of reductions, the process above evolves into

nlte[Hz)(x)] | c[!(z)(z) | (vp)p[0]] | Pz := M} [Q],
which is equivalent tav[!c[!(z)(z)] | P{z := M} | Q] by structural congruence.

Remote inputs are slightly more complex, since the trarisgpobient must fetch the output and
bring it back. The intended reductiond¢M) | n[c'(z)P | Q] O n[P{z := M} | Q]. Up-
ward input from within a seat is simulated in Boxed Ambients as

cM(x)P 2 (vp)p[out n.in c.(z)out c.in n.(z)] | (z)?P
Note that the definition depends on the naim& the enclosing ambient. For a formal definition,
it is enough to keep track of this information, and extendeheoding of the asynchronous
calculus with the following clauses:

(c™(@))n = (wp)p[inm.inc(z)']

(c"x))n = (vp)p[out ninc.(zx)T]

(c™(x)PYn = (vp)p[in m.in c.(x)Tout c.out m.(z)]
(" (@)P). = (vp)p[outn.inc.(z) out c.inn.(z)]

a[{P)a]

=
S
—
o
—
=~
S
I

4 Typing Boxed Ambients

As we stated at the outset, one of the goals in the design oé@éxnbients was to enhance
static reasoning on ambient and process behavior, by egabitused and precise analyses while
preserving the expressive power of the calculus. The defindgf the type system, given in this
section, proves that the design satisfies these requirement

A rather simple structure of types suffices to provide preiscounts of process behavior.
Ambient and process types are defined simply as two-placstrembors describing the types
of the exchanges that may take place locally and with theosimd context. Interestingly, this
simple type structure is all that is needed to give a full act@f ambient interaction. This is a
consequence dfi) there being no way for ambients to communicate directly s&more than
one boundary, an¢ii) communication being the only means for ambient to interact.

4.1 Types
The structure of types is defined by the following producsion
Expression Types Exchange Types
W = Amb[E, F] ambient E,F ::= shh no exchange
0 CaplE] capability 0w exchange
O Wix--xW, tuple Process Types
T ::= Pro[E,F] composite exchange

The type structure is superficially similar to that of comipantype systems for the Ambient
Calculus [CG99,CGGY99]. The interpretation, however, fiedent.

Amb[E, F] ambients that enclose processes of type E, F],
Cap[E] capabilities exercised within ambients withupward exchanges,
Pro[E, F] processes whose local and upward exchanges have B/pasd F', respectively.

Notice that capability types are defined as one-place ametstis, and disregard the local ex-
changes of the ambients where they are exercised. This @ube) exercising a capability
within an ambient, say, may only cause to move, andi) the safety of ambient mobility may
be established regardless of the ambient’s local exchanges

As for process types, a few examples help explain the iotuiibout composite exchange.
We use a Church style typed syntax, in which all inputs anttiotiens specify the type of the
bound variable: more precisely we ugex: W)P and(z: W)P instead of(vz)P and(z)P,
respectively.

(z:W)(z) : Pro[W,shh]. W is exchanged (read and written) locally, and there is no ugwa
exchange.

(z:W)™(x)™ : Pro[shh, W]. W is exchanged (i.e. read from) upwards, and then written to
ambientn. There is no local exchange, hence the typk as the first component of the
process type. For the typing to be derivable, one needé\mb[W, E|] for some exchange
type E.

(W) (y: W) ((x)™ | (y)) : Pro[W’',W]. W is exchanged (read from) upwards, and then
forwarded to ambient, while W' is exchanged (read and written) locally. Again, for the
typing to be derivable, one needs Amb[W, E] for some exchange typg.

(x:W){x)" : Pro[W, W]. W is read locally, and written upwards.

These simple examples give a flavor of the flexibility prodd®y the constructs for communi-
cation: like mobile ambients, boxed ambients are “placesoof/ersation”, but unlike ambients

they allow more than just one “topic” of conversation. Thsisriade possible by the local nature of
(anonymous) channels, and the consequent “directed” fofrimgout/output. Specifically, every
ambient may exchange values of different types with anysaofliildren, as long as the exchange
is directed from the ambient to the children. Instead, uphzammunication is more constrained:
all the children must agree on the (unique) type of exchahgg tnay direct to their parent.

4.2 Typing Rules

The judgments of the type system have two forsns:- M : W, read ‘expression’/ has type
W" andx + P : T, read ‘processP has typel™. Accordingly we have two sets of typing rules,
one for names and capabilities, one for processes. In additie introduce a subsumption rule
for process types, based on the following definition of spinty.

Definition 1 (Subtyping). We denote ky the smallest reflexive and transitive relation over ex-
change types such thahh < E for every exchange typE. Exchange subtyping is lifted to
process types as followBro[shh, F'] < Pro[E, F].

Process subtyping is used in conjunction with subsumpérchange subtyping is not. The intu-
ition for exchange subtyping is that a (locally or upwashl) exchange is always type compatible
with a situation in which some exchange is expected: thiséul in the typing of capabilities.
As for process subtyping, it would be tempting to extend thigtyging relation so as to allow
subtyping over upward exchanges, as well. However, as wiaiexater in this section, uses of
this relation in conjunction with a subsumption rule for gess types would not be sound. As a
final remark, note that our notion of subtyping is quite shallit is “almost equality” as there is
no deepsubtyping. This holds true for the moded types of Sectiorséyell.

Typing of Expressions

(PrRoJECTION (TUPLE) (PATH)
*(n):W *x = M;:W,; Viel.k * I—M1Cap[F} * I—MQCap[F}
xFn: W * l—(Ml,...,Mk):Wlx...ka * I—MlMZCap[F]
(IN) (OuT)
* FM:Amb[F,E] F' <F % FM:Amb[E,F] F'<F
*x Fin M : Cap[F'] * Fout M : Cap[F']

The (FRROJECTION, (TUPLE), and (RATH) rule are standard. The rulesnjl and (QuT) define
the constraints for safe ambient mobility, and explain whapability types are built around a
single component. The intuition is as follows: take a caltghsayin n with n : Amb[F, E], and
suppose that this capability is exercised within ambieay, s. If m has upward exchanges of
type F', thenin n : Cap[F']. Now, for the move ofn into n to be safe, one must ensure that the
type F of the local exchanges afbe equal to the typ&” of the upward exchanges of. In fact,

the typing can be slightly more flexible, forqif has no upward exchange, theh = shh < F,
andm may safely move inta. Dual reasoning applies to the (@) rule: the upward exchanges
of the exiting ambient must have tyge-compatible with the type of the upward exchanges of
the ambient being exited.

Typing of Processes

(DEAD) (NEW) (PARALLEL)
x,c:WHFP:T * F P :Pro]E,F] x FQ:Pro[E, F]
*xkFO:T * F (v W)P: T * FP|Q:ProlE, F|
(PREFIX) (AMB)
* M :Cap[F] xFP:Pro[E,F] xt M:Amb[E,F] x F P:Pro[E,F]
*x = M.P: Pro[E, F| *x F M[P] : Pro[F,G|
(SuBsuM ProcC) (REPLICATION)
xFP:T TLT * = P : ProlE, F]
xFP:T *x F1P . Pro[E, F]

(DEAD), (NEW), (PARALLEL), (REPLICATION) and the subsumption rule are standatd the
(PREFIX) rule, the typing of the capabilitpy/ ensures, via the), (OuT), and (RRTH) rules
introduced earlier, that each of the ambients being traekes a result of exercisiny/ have
local exchanges of type compatible with the upward exchaoféhe current ambient.

The rule (AvB) establishes the constraints that must be satisfielt by be enclosed ii/:
specifically, the exchanges declared fdrmust have the same typé&sand F' as the exchanges
of P. In fact, P could be locally silent, and the typing @[P] be derivable fromx F P :
Pro[shh, F'] by subsumption. In addition, # + A : Amb[E, shh], andx + P : Pro[E, shh],
then by (AvB) and subsumption one derives- M [P] : Amb[F, G] for any F' andG, as the
rule imposes no constraint on the upward exchanges of tfreessd/ [P] .

(INPUT %) (OUTPUT)

*,z:W P : Pro[W, E| * FM:W % F P:Pro[W, E]

* b (z:W)P : Pro[W, E] * F (M)P : Pro[W, E]

(INPUT M) (OuTPUT M)

x FM:AmbW,E] x,2WkFP:T x+FM:Amb[W,E] x FN:W % FP:T
* F(@wW)MP.T * F(MNMp.T

(INPUTT) (OuTPUTT)

*x,2:W F P : Pro[E, W] x FM:W x F P:Pro[E, W]

* F (x:W)'P: Pro[E, W] * F(M)'P : Pro[E, W]

The rules for input/output are not surprising. In all caghs,type of the exchange must comply
with the local exchange type of the target ambient, as eggeétlso note that input/output ex-
changes with children, in the rulesn@guT M) and (QuTPUT M), do not impose any constraint
on local and upward exchanges.

As we noted earlier, type soundness requires that subtyg@hgeen upward silent and up-
ward non-silent processes be disallowed. To see why, cenfidexample allowing the relation
Pro[E, shh] < Pro[E, F], implying that upward-silent processes may be subsumedrtesitent

5 The reason why in (ARALLEL) and (REPLICATION) we usedPro[E, F'| rather tharil” will become clear
in Section 6

processes with any upward exchange typaVhile this form of subsumption seems reasonable,
itis unsound in the presence of parallel composition. Giershe ambient.[in 8.0 | (M)TP]
with, sayM : W for some type¥, and note thaith .0 can be typed aBro[shh, shh] regardless

of the type ofb. If the suggested subtyping were available, then the ghredimposition could
be typed aPro[shh, W]. However, ifb : Amb[W', F] for someW' # W, the ambient could
move intob and have unsound upward exchanges after the move. By famgiddbtyping on the
upper component of process types, instead, the types thdiecdeduced for the processb.0
above may only be of the forfAro[E , W'] or Pro[E, shh] for some exchangé&.

The type system rules ensures that communication insidaeeds ambients never leads to type
mismatches. The latter result is a consequence of the subphection property stated next.

Theorem 1 (Subject Reduction)If x - P : T'and andPO @, thenx + Q : T.

Proof. By induction on the derivation d?0), and appeal to standard lemma of substitution
and subject congruence.

5 Mobile Ambients versus Boxed Ambients

We now look at the impact of typing on mobility and communieat and contrast it with mobility
and communication of Mobile Ambients.

We already noted that type safety for ambient mobility carebmblished irrespective of
local exchanges. On the other hand, upward communicaties thopose somewhat restrictive
constraints over ambient mobility. Specifically, ambienith upward exchanges of tyg& may
only traverse ambients whose local exchanges also haveltypdowever, when we compare
the flexibility of mobility and communication in Boxed Amlnits versus the corresponding con-
structs found in Mobile Ambients, we find that typed Mobile Bients have, in fact, even more
severe constraints.

To see that, it is instructive to note that the type systenheffrevious section can be spe-
cialized to only allow upward-silent ambient types in thenioAmb[E, shh]. This effectively
corresponds to inhibiting all forms of upward exchangess fbllows from the format of the
(AmB) rule. On the other hand, it provides full flexibility for mibiby, while still allowing pow-
erful forms of communication. We may note the following o tépecialized type system.

— Mobility for Boxed Ambients is as flexible as mobility foragigViobile AmbientsThis fol-
lows by the (N) and (QuT) rules discussed iy 4.2. Capabilities exercised within upward
silent ambients have typ@ap[shh], andshh < F for every F': consequently, upward silent
ambients have full freedom of moving across ambient boueslaFurthermore, since Boxed
Ambients may not be opened, they may move regardless of thédachanges of the ambi-
ents they traverse. As a consequence, with the specialipedystem, an ambient can move
independently of its type, and of the type of its (intermésl@nd final) destinations.

— Communication is more flexible than in the Ambient Calcubwgn in the absence of up-
ward exchanges‘Upward silent” does not imply “non communicating”: an ugsd-silent
ambient may very well move to a target ambientand communication betweenand the
incoming ambient may rely on accessing the incoming ambient by downward requests.
Indeed, an ambient may access all of its children’s anongnobannels as well as those of
any incoming ambient: all these exchanges may be of difféyges. Besides, the ambient
may hold local exchanges of yet a different type. The engpdirchannels give§ 3.1 can
also be used for encoding local exchanges of different tyghesambientc[!(z :W)(z)]
can be viewed as a local chanmelf type W, whose input output operators &re: W)¢ and
(M)“: the type system allows (encoded) channels of differeredytp be used in the same
ambient.

In the ambient calculus, instead, parent-child commuitinatquires the parent to first open
the child (or else a “messenger” ambient [CG98] exiting thiédy. As a consequence, either
the parent, and all the children’s exchanges have the sgmee @y there is no way that the
parent may communicate with all of its children.

5.1 Security and Resource Access Control

The communication model over which Boxed Ambients are ddfires other interesting payoffs
when it comes to security and resource protection policies.

As we have argued, the primitives for communication have @diate and very natural in-
terpretations as access requests: for example, the inpfik f&)™ can be seen as a request to
read from (the anonymous channel located into) child antbieand, dually,(3)" can be in-
terpreted as write request to the parent ambient (equitipléts local channel). Based on that,
Boxed Ambients provide for a direct characterization obslaal resource access control mecha-
nisms, such aMandatory Access Contrar MAC policies. In additionmultilevel securityand
the associateMilitary (no read-up, no write-down) andommercial(no read-up, no write-up)
security models may directly be accounted for by embeddéegrsty levels into types, and using
typing rules to statically enforce the desired constraimsiccess. For an thorough discussion of
MAC multilevel security for Boxed Ambients the reader isee€d to [BCCO1]. What is interest-
ing to note here, instead, is that the mechanisms for ambigeraction and communication fit
nicely and complement the security model of Mobile Ambiemtkich predicates in/out access
to ambients on possession of appropriate passwords o&eyE.

The download example, revisiteth exemplify, consider again the download examplg in
With Mobile Ambients, security relies solely on authoripatbased on knowledge of names: the
agenta[@] acquires authorization to enter the hadty knowing the namé and embedding it
into the capabilityin b: the capability, or the name, may thus be seen as passwaitdsrthble the
access td, asinh[a[Q] | P]. Once inside:, the ambient: (or a messenger ambient exiting
a) is dissolved to enable interaction. As we argued, this neypsetting to the host, as it grants
Q (or the messenger insidg indiscriminate access to whatever is inside

Instead, ifa andh are Boxed Ambients, authorization by possession of cafiabican be
complemented by finer-grained control over the access stgly () to the contents of. As-
sume, for the purpose of the example, thagncapsulates its resources in a set of subambients
ri,...,rs. ThenP insideh could mediate the access request iy each of the;’'s by means
of an interface process of the forftm:1)“(z)"*. In addition, the incoming agent could be forced
to be upward silent to prevent it from interfering with the& exchanges held withit: this can
be accomplished by imposing a suitable security policyetams typing, as shown in [BCCO01].

5.2 Discussion

Having argued in favor of the communication model of BoxedbAents with specialized type

system, it is obvious that giving up upward exchanges is blpno: for instance, we would not be

able to type-check “transport” ambients, such as those instheé encoding of the Seal Calculus’
channeled communications §f3.2, whose function is to silently carry a process to a certai
destination where the process will eventually deliver ittpoit to and/or receive input from its

enclosing context. As we show in the next section, it is dlstymossible to refine and extend

the type system to support a smoother and type safe intenastiupward communication and

mobility.

6 Moded Typing

The typing technique we develop in this section is based @fiaement of the observation we
just made of the specialized type system, namely that angbéeeclosing upward-silent processes

may safely move across other ambients, regardless of tles tfithe latter. The new type system
uses type modifiers to characterize the computation pregreprocesses, and in particular, to
identify the silent and non-silent phases in the computatibthe processes enclosed within
ambients: based on that, it enhances the typing of mobilitind the ambients’ silent phases.

6.1 Moded Types

The new type system is built around the extended classescéps and expression types defined
below:

Process Types T ::= Pro[E, F] | Pro[E,*F] | Pro|E,°F] | Pro[E,"F]
Expression Type® ::= Amb[E, F] | Amb°[E, F| | Cap[E] | W1 x --- x W,

Ambient types of the forrAmb[E, F'| are exactly as if§ 4, and their enclosed processes have
“regular” process typeBro[E, F'|, deduced by the same rules. On the other hand, ambient types
of the formAmb°[E, F] are associated with “transport” (or moded) ambients, whesgosed
processes are assigned moded types, according to the ifgdlawtuitions:

Pro[E, *W]: upward silent processes with local exchanges of #p&he typelV signals that
processes with this type may be safely run in parallel withtpsses with upward exchanges
of typeW.

Pro[E, °W]: processes with local exchanges of typend upward exchanges of typg. The
upward exchanges are temporarily inactive since the psdsaaoving.

Pro[E, ®W]: processes with local exchanges of tyBeand that, after performing upward ex-
changes of typ&V, evolve into processes of tyfRo[E, °W] or Pro[E, *W].

The syntax allows the formation of process types of the f@mw[E, *shh], Pro[E, °shh] and
Pro[E, ®shh]. These types are convenient in stating definitions and gypifes: to make sense
of them, we stipulate thashh = °shh = “shh = shh. To exemplify moded types, consider the
following process, where we assume- M : W.

(z:W") (@)™ | in n.(M)".out n : Pro[W”, W],

The left component of this process does not have upward agelsahence it can be assigned the
typePro[W’, *W] provided, of course, that : Amb[W', E] for someE. On the other hand, the
right component does have upward exchanges, but is curreitght because the output prefix
is blocked by the move: thig n.(M)™.out n : Pro[W’, °W], provided that: : Amb[W, W].
The typePro[W’, °W] can also be assigned to the parallel composition which ifadt cur-
rently silent. Interestingly, the typero[WW', ° W] cannotbe assigned to the continuation process
(M) .out n (nor to the parallel compositiofx: W')(z)™ | (M)".out n), because, after consum-
ing the capabilityin b, the upward exchanges of this process are active. At thie stelegal type
for the process i®ro[W', W], signaling, that after the upward exchange, the processent
again an upward-silent phase.

As the example shows, processes that are subject to moded tyay have different types
at different stages of their computation. This does notlbeedbject reduction, as it would seem,
as reductions involving the consumption of capabilitiely@nvolve the ambients enclosing the
capabilities being consumed: as a consequence, whiletlbegs enclosed in an ambient changes
its type according to the process’ progress, the type of thbient itself is invariant through
reduction.

The reader may wonder whether the new class of “transportiiants is really necessary,
and why the same effect can not be obtained by solely relym{egular” ambient types. The
problem is that moded typing is not powerful enough to cdmrobility: in particular, moded

types can not be employed to prevent non-silent ambientsittheir parent during the upward-
silent phases of the latter. To see the problem, assumerttideat, say, is currently silent and
moving across ambients with local exchanges, 8ayAlso assume that contains a non-silent
ambienth with upward exchanges of tyd#”’ incompatible withi¥. As long ash is enclosed in
a, its upward exchanges do not interfere with the local exgeai of the ambients traversed
by a. But if b exitsa, then its upward exchanges may cause a type mismatch. lrysteng, the
problem is solved by providing guarantees that transpoliants can only be exited by (regular
or transport) ambients whose upward exchanges haveshype

6.2 Capabilities and Moded Judgments

The modes attached to process types also affect the typoapabilities. This is accounted for by
a new form of judgment, denoted By o M : Cap[E]. This notation indicates a “silent mode”
for typing the capabilityl/, which is useful when typing capability paths: if typed ileat mode,
every intermediate move on the path may safely disregartypieeof the ambient traversed along
the move.

6.3 Typing Rules

The new type system includes all the typing rules ftp#2. In addition, we have a richer subtype
structure for process types, and new rules for derivingnsitgpings of capabilities, and moded
types for processes.

Definition 2 (Process Subtyping). Pro[E, * F]

Let < denote the same relation of exchange subtyping s N

of Definition 1. Process subtyping is the smallest re: o
flexive and transitive relation such thBto[shh, *F] < quo[E’F] Pro[E,*F]
Pro[E, " F] and in addition, satisfies the diagram on the N e

right for all £ and F'. Pro[E,*F]

The intuition underlying process subtyping is as follows.we said, the typ€ro[-, * E] identi-
fies upward-silent processes that move their enclosingemhbinly through locations with local
exchanges of typ&. Clearly, any such process can always be considered as esgrot type
Pro[_, E] that is, as a process whose all upward exchanges are offiyged that moves the
enclosing ambient only through locations with local comiations of typeFE. In fact, it can
also be considered as a process of tpe] -, ° E], that is as a temporary upward-silent process
that guarantees its enclosing ambient that whenever ibpes an upward communication it will
be in a context with local exchanges of type The two typesPro[-, E] and Pro[_, °E] are
incompatible, as processes of the first type may not be asstorige (even temporary) upward-
silent, while processes of the second type may move acrdsieata regardless of the types of the
latter and therefore across ambients whose local exchargesf a type different fron. Nev-
ertheless, the two types have a common superBpé_, * E], as this type identifies processes
that may be currently upward-active, and whose enclosingiems are guaranteed to reside in
contexts with local exchanges of type

Typing for Expressions.We use the following notation and conventiori$V denotes any
of the exchangeS§W, *W, °W, while W denotes eithet W or W; when occurring in defini-
tions and typing rules, the notation&” and’WW are intended to be used uniformly (i.e., all the

6 A different solution would be possible by extending the ohls with co-capabilities a I8afe Ambients
[LS00]. In that case, an ambient would be in a silent phasewitseenclosed process does not perform
upward exchanges and does not off@oaoutcapability for nested ambients to exit.

occurrences ok and? in a rule or in the definition denote the same symbol, unleksratise
stated).

The key rules that characterize moded ambients are thosgdiarn mobility into and out from
a moded ambient:

(OuT 0) (IN o)
* F M : Amb°[E, F] * FM:Amb°[F,E] F'<F
* Fout M : Cap[shh] x Fin M : Cap[F']

Note that while there is no constraint for entering a modetliant —as the rule § o) imposes
exactly the same restrictions as the rulg)d the rule (QUT o) requires that ifA/ is moded,
thenout M can only be exercised in ambients that are upward silent.

The next rules are those that relate and differentiatérom .

(PoLy CaP) (PoOLYPATH)
* M : Cap[E] * Fo My : Cap[E1] * ko M, : Cap[Es]
* Fo M Cap[E] * |_OM1.M2 : Cap[Eg]

The rulePolyCapstates that for all capabilities, typing and moded-typin@cide. In addition,
for capability paths —that is, for sequencesrodndout moves— we have the special, and more
flexible rule (FoLy PATH) stating that we may disregard intermediate steps, as noncorication
takes place during those steps: we only need to trace priefisenation on the last move on the
path. This effectively corresponds to interpretiGgp[E] as the type of capability paths whose
lastmove requires upward exchanges of type

Moded typing of capabilities helps derive moded procesggsyjor prefixed processes as
illustrated by the rules belolw

Typing of Processes
As we said, the new type system includes all the typing rudeprfocesses if 4.2. In addition,
we have the following rules. We start with the typing of prefix

(PREFIX 0) (PREFIX A)
* Fo M : Cap[G] % + P:ProlE,°F] % Fo M : Cap[F] * + P:Pro[E,*F]
*x = M.P: Pro[E, °F] x = M.P: Pro[E,°F]
(PREFIX o)

% b M :Cap[F] % F P:Pro[E,"F]

* = M.P : Pro[E,*F)

(PREFIX 0) and (RREFIX A) state that prefixing a procegswith a move capability always yields
“moving” types, that is types with mode In particular, (REFIX o) says that we may disregard
the type of M (as long asV/ is a capability) if P is also a moving procesThis rule has the
same rationale as the ¢y PATH) rule above: both rules are necessary for subject congeuenc
specifically, for the congruence ru|@/; . M>).P = M, .(M,.P). On the other hand, by fEFIX
A), the upward exchanges &f and P must be consistent (equal) whéhs not moving. In other

” The reader may wonder why we introduced a new turnstile synaltieer then adding a mode to capabil-
ities types, as it€ap°®. In fact, the two choices are almost equivalent, in termspfessive power, while
the current is slightly less verbose.

8 This characterization is possible because our syntax dmdaciude the empty path.

words, thdastmove of the prefix must be compatible with the upward exchautiget the process
will have right after. Notice, to this regard, that by subgiion, (FREFIX A) also accounts for
the case of prefixing a processof typePro[E, F].

The rule (RREFIX o) types silent processes running in a context whose upwansbeges (if
any) have typer'. In this case, the type of the paidlf in the premise guarantees tHatis type
compatible with the local exchanges of the ambients hit enntiove. Hence the typing of the
capability must be “standard”, as in theREriX) rule from§ 4.

The next two rules apply to parallel compositions.

(PARALLEL * LEFT) (PARALLEL * RIGHT)
* FP:Pro[E,"W] % FQ:Pro[E,*W] x F P:Pro[E,*W] % FQ:ProlE,"W]

x FP|Q:Pro[E,"W] *x FP|Q:ProlE, W]
Two rules, and an appeal to subsumption, suffice to captlcas®s. IfP andQ are upward-silent
(i.e. with upward exchangés$¥’), thenP | @ is also upward silent (with upward exchandég).
P | @ can be typed as moving (that is, with upward excharig€9, only when(z) either P or
@ is moving and(i7) the other process is upward silent and type compatible witrekchanges
of the moving process. The same reasoning applies Whe@ : Pro[E, “ W], i.e. whenP | Q
perform some upward exchange and then eventually move ehidrectypesPro[E, “ W] are
derived with the same rules. We need two rules because wetbdandle the two cases when
the moving subprocess B or .

The rules (EAD) and (New) from § 4 handle also the cases for moded types (of course,
save the fact that no@ ranges over the extended class of process types). This tsueodf the
rule (REPL). In fact, if P and@ are both moving, the® | @ may not be typed as moving, as
either of the two could start its upward exchanges beforeother. For this reason, there is no
way to type a replicated process as a moving process: thawalgossible types for a replicated
process are a “regular” type (deduced by the ruRfrom § 4) or a silent type, as stated by the
following new rule®:

(REPLe)
* = P :Pro[E,*F]

* 1P : Pro[E,* F]

For processes of the form/[P], we need new rules. The rulaNs) from § 4 is modified
so that it now deduces an upward-silent type, compatiblé it the other modes. Two new
rules handle the case whéi is a transport ambient, distinguishing the cases when ttlessd
process is moving or not.

(AmB)
* F M :Amb[E,F] % F P:Pro[E, F]

* = M[P] : Pro[F,*H]

(AMB A) (AmB o)
* F M :Amb°[E,F] x + P:Pro[E,"F] * F M :Amb°[E,F] % F P:ProlE,°F]
* F M[P] : Pro[F,*H|] x F M[P] : Pro[G, " H|

% This is due to the particular semantics of replication we ug@ch yields to an unrestrained generation
of copies. Itis clear that the use of guarded replicationadirtty need would make replication compatible
with moded types (see also next section).

In (AMB A) P is not moving, and the rule imposes type constraints ecgiiwdab those imposed
by the (AMB) rule: note, in fact, that the judgment - P : Pro[E, * F] could be derived by
subsumption fromk + P : Pro[E, F]. If, instead,P is moving, as in (AMB o), its upward
exchanges are blocked by the move, and we have freedom te thesype of local exchanges
of the process//[P] . Once again, subject reduction does not break if exercisiagapability
in P activates upward exchanges:NA A) can be used to type the reductum .

We conclude with the rules for input-output.

(INPUT % %) (OUTPUT % %)

*x,z:W F P : Pro|]W, " F] * =EM:W x + P:Pro[W,"F]
* b (z:W)P : Pro[W," F] * F(M)P : Pro[W,” F]
(INPUTT A) (OuTPUTT A)

x,x:W F P : Pro[F,* W] xFM:W %k P:ProlF,"W]
*x F (z:W)"P : Pro[F, *W] *x F(M)"P: Pro[F,* W]

Local communications are not affected by modes: it is theeraidhe continuation process that
determines the moded type of the input/output procesd.itsel

Upward exchanges have only non-moving types, for obvioasaes. The particular type they
have —that is, eithePro[F, “ W] or the more informative’ro[F', W]— depends on the type of
their continuation. If their continuation is of tygero[F, *W] or Pro[F, W], then the process
—which is clearly not silent— can be typed Bso[F, W]. These cases are captured by the rule
(INPUT/OuTPUT 1) Of § 4 (together with subsumption for the caBeo[F, *W)). If instead the
continuation has typEro[F, W] or Pro[F, °W], as in (INPUT/OUTPUT 1 A), we can just say
that the process may eventually evolve into a moving prodeste the typ@ro[F, “ W] in the
conclusion.

Finally, downward communications are not affected by whethe target ambient is moded
or not. The rules front 4 work just as well for the new system: two new rules, with thee
format, handle the case when target ambient is moded:

(INPUT M o) (OUTPUT M o)
* M :Amb°[W,E] x,z:WkrP:T x b+ M:Amb°[W,E] x FN:W x FP:T

*x F@wW)MP.T * H (NPT

Note that in all output rules, the typing of the expressidnbeing output is subject to “regular”
typing. As a consequence, capability paths may be commuaaicmly if well-typed under regular
typing. This restriction could be lifted, had we employedd®d capability types as suggested in
§ 6.3 (cf. footnote 7), but with no significant additional ezgsive power.

6.4 Subject Reduction

The results of§ 4 hold for the new system as well. As a matter of fact, subjeduction for
the type system of 4 is a direct consequence of the subject reduction for mogaidd. The
theorem, and its proof are standard.

Lemma 1 (Substitution).Lett’ denote eithet or o .
—Assume:,z : W F'M : W' andx F N : W. Thenx + ‘M{z := N} : W'
—Assume,z:-W F P:Tandx - N : W.Thenx - P{z .= N}:T.

Proof. Standard: by induction on the derivations of the twdgmentsc,z : W + "M : W'
andx FP:T.

Lemma 2 (Subject Congruence)lf x - P: TandP = Qthenx - Q : T.

Proof. By simultaneous induction on the derivation®aE Q andQ = P.

Theorem 2 (Subject Reduction)lf x - P: T andPOQ thenx - Q : T.

Proof. By induction on the derivation & Q.

We conclude this section with an example showing how modeiddgyhelp type-check the trans-
port ambients used i§13.2 to encode communication on named channels a la SeallGalVe
give the case of downward input on a channel of t}fogas inc™ (z : W) P, as representative.

In the typed encoding, the channels expressed by the Boxed Ambieaf!(z:W)(z)].
Now, the typed encoding of downward input is as follows:

(™ (x:W)PY = (up:Amb°[W, W])p[in m.in c.(z:W)Tout c.out m.(z)] | (x:W)? (P)

We give a type derivation under the most general assumptieaisis: P:Pro[E, * F|, m:Amb’[G, H]
(whereE, F,G, H can be any type), andAmb[W, shh]. The fact that the ambient is typed
as a transport ambient is essential for the typed encoditgpe-check. This is shown by the
following analysis that also illustrate the interplay beam the modes andA.

Let x be a type environment whete:Amb’[G, H], c:Amb[W, shh] and p:Amb°[W, W].
First observe that, for the encoding to be typable we need

* F p[in m.in c.(z:W)Tout c.out m.(z)] : Pro[E, *F)

This judgment may be derived by the ruleNA& o), provided that the process enclosegitan
be typed with mode, that is, if

% Finm.in c.(x:W)%out c.out m.(z) : Pro[W,°W].
This follows by (RREFIX o) from x Foin m:Cap[G] and
% Finc.(z:W)Tout c.out m.(z) : Pro[W,°W]

Note that here we use the flexibility of moded typing as noti@tais required betweet’ and
W . The last judgment follows again by RBFiX o) from x Foin c:Cap[I¥] and from

* F (z:W)Tout c.out m.(x) : Pro[W, W],
This judgment can be derived byNpuT 1 A) from
*,z:W I out c.out m.(z):Pro[W, *W].

Again, we rely on moded typing: the whole process type-chesiikice the move that precedes
the upward output brings the ambient in an environment withright exchange type. Deriv-
ing the last judgment is not difficult. From, z:W Foout m:Cap[H] and fromx,z:W F
(z):Pro[W, °W], we havex,z:W + out m.(z) : Pro[W,°W]. Now, from the last judg-
ment and fromx, z:W Foout c:Cap[shh] an application of (REFIX o) yields x,z:W F

out c.out m.{z):Pro[WW, W] as desired. To conclude, we can apply subsumption, basdueon t
subtypingPro[W, °W] < Pro[W, ®W], and then (NPUT 1 A) to obtain the desired typing.

7 Asynchronous communications

As noted in [Car99], mobile and distributed computation bardly rely on synchronous input-
output as the only mechanism of communication. Also, exper with implementation of dis-
tributed calculi [BV02,FLAOQ] shows that the form of conses required for synchronous com-
munication is quite hard to implement in a distributed eoniment.

In § 2 we said that asynchronous communication can be recoveredricalculus in two
possible ways(i) either by coding it with synchronous output and null conétions, or(i:)
by introducing the additional equivalen¢a/)”P = (M)" | P. The first solution allows syn-
chronous and asynchronous output to coexist. An asyncheoootput-prefixX)" followed by
a continuationP can be expressed in terms of synchronous output by the glacalnposition
(M)"0 | P. The second solution takes this idea to its extreme, and keealpurely asynchronous
calculus.

Neither alternative is entirely satisfactory. One probleith the first is that(A7)” P and
(M)"0 | P are only equivalent under the type systenf ¥, not with moded types. In fact, for
n =7, it is not difficult to find situations wheréAZ)" P is well-typed and(AZ)"0 | P is not
(with moded typing). An immediate consequence of this olzg@m is that the congruence law
(MY'P = (M)" | Pis not preserved by moded typing, hence the second altegriatiot sound
for the system of; 6.

A further reason for being unsatisfied with the first solutisthat the use of null continua-
tions to code asynchronous output has the effect of esHigriefeating moded typing. Moded
typing is possible, and effective, only along a single tHreahile the coding of asynchronous
output introduces parallel compositions and leaves nauasifollowing an output. Notice, how-
ever, that the problem is not a consequence of moded typidgagynchrony being inherently
incompatible. To see that, observe tha{ i)' P the continuatiorP could be typed with a mode
independently of whether the prefix denotes synchronousyrcironous output. All that mat-
ters for P to receive a (sound) “moving” type is théd/) gets delivered to the parent ambient
before unleashing: once delivered, whether or n¢d/) also synchronizes with local input is
irrelevant.

Based on this observation, a smoother integration of asgnolus output and moded typing
may be achieved by re-stating the congruence law as a reduttie, and making it location-
aware so that the output is delivered to the appropriate exmbi

Different formulations of the asynchronous version of th&ualus are possible. A first solu-
tion, given below, is to replace the reductiowsiput r) and Eutputt) of § 2 with the reductions
(asynch output nand @synch output) below, and to introduce the new reducti@synch out-
putx):

(asynch outpuk) (MYP O (M) | P
(asynchoutputh (M)"P | n[Q] O P |n[(M)|Q]
(asynch output) n[(M)'P Q] O (M)|n[P]|Q]

With these reductions, the problem with moded types is sblae upward output followed by
a move, as i N)"M.P may safely be typed with mods (based on the mode for M.P)
irrespective of whether the output synchronizes or not.eMygnerally, we may prove that subject
reduction holds for this form of asynchronous reduction gr@imoded type system presented in
the previous section: no further modification is needed.

A second possibility, is to combine synchrony and asynchr@ardelli [Car00], advocates
that local exchanges can be synchronous, while remote caation ought to be asynchronous.
This is a sound choice for our calculus: in fact, the redurc@synch output) for local exchanges
may be dispensed with, as local asynchronous output may dedday (/)0 | P without af-
fecting moded typing. Although this is sound, it would irdu@e some form of asymmetry in the

implementation since non-local read accesses on locahsynous output would be synchronous
with this solution.

A third possibility arises from the observation that the ravtput rules described for the first
solution, together with the reduction rules for input prefof§ 2 derive the following new set
of reductions for input:

(asynch input) (z)P| (M) O P{z:= M}
(asynch input (@)"P|n[(M)|Q] O P{z:= M} |n[Q]
(asynch inputp) (M) | n[(2)'P|Q] O n[P{z:= M}|Q]

One could then take thaesynch inputules as primitive, and use them instead of the correspgndin
rules of § 2. In other words the third solution consists in replacingtlaé reduction rules of
Section 2 by the simsynchrules defined in this section. Although this solution isyelose to
the first one (but more “inefficient” since it adds new intediage reduction steps), the result is
rather interesting, as it suggests a novel interpretatidgheoprocess forn§ M) as amemory cell
Indeed, one may vieyM)0 and (M) as denoting two very distinct processes, the former being
a local output with a null continuation, the latter being amoey cell (more precisely a one-place
buffer)!®. Taking this view, every communication becomes a two-stefpol and the reductions
have new interpretations. To exemplifgs{/nch outpuk) describes how a writer proceéa/) P
writes a memory ce{A/) and then continues d3; (asynch inpuk) shows a reader that makes a
destructive access to a memory ggif). The same reasoning applies to downward and upward
exchanges. As a result, memory cells, that is the output fdefy, take the role of the resources
of the calculus, which are bound to their location.

Whatever solution we choose in this section, they are allgagible with the moded typing
of § 6 and,a fortiori, with the type system df 4.

7.1 Synchrony versus asynchrony: security trade-offs

The choice of synchronous versus asynchronous commuorichtis other consequences on the
calculus, specifically, in terms of the security guaranteascan be made for it.

On one side, it is well known that synchronous communicagjenerates hard-to-detect in-
formation flows based on synchronization. Our definition yrichronous input-output of 2
also has this problem. For example, in the systgn® | b[(M)P]], the sub-ambient, gets
to know exactly when (and iff) makes a downward read access to its contents. Therefore
one hit of information flowed by a read access from the reanléheé writer. This makes non-
interference [GM82,FG97] quite hard to satisfy.

On the other hand, by asynchronous communication we efédgtgive upmediation(see
§ 1.2), that is, control over interaction between sibling @&nts. With synchronous input-output
no ambient can be “spoiled” with unexpected (and possiblyamnted) output by its enclosing
or enclosed ambients. As an example, consider the sysfegmW)°P | b[c[(M)" | Q] 11
which is typable in our system provided th&f: W and theb is declared of typeAmb[W, F]
for some F'. With synchronous reductions there is no way for the upwargbut in ¢ and the
downward input inz to synchronize. Instead, in the asynchronous case, thel ioinfiguration

10" 1o make it more explicit, for this last solution we could hawged a different syntax for a memory cell
containingM, say[M [J so that for example the local reduction rules would be emiths

(asynch outpuk) (M)P O O™MO| P
(asynch inpui) (z)P |OMOO P{z:= M}

an asynchronous output produce a cell, and a process resdsfcell.

would evolve intoa[(z:W)2P | b[(M) | ¢c[Q]] 1; by a further reduction step the ambient
gets hold of the messag@/) without any mediation of.

Similarly, two siblings may establish a covert chanidla[(2:W)"P] | c[(M)TQ]] re-
duces in two steps intd[o[P{z := M}] | ¢c[@]]- These kind of covert channels are two
examples of security breaches that cannot be preventeclexisting primitives of the calculus.
A possible solution is to resort to further synchronizatimachanisms, such as those offered by
portalsin the Seal calculus: this however, would essentially dedsgnchrony. A different, and
more effective, way to avoid covert channels is by multileezurity, based on types, as we show
in [BCCO1].

8 Conclusion and related work

We have presented a variant of Mobile Ambients, based orfexelift choice of communication
primitives. The new calculus complements the construatsniability of Mobile Ambients with
what we believe to be more effective mechanisms for resgomotection and access control. In
addition, it provides for more flexible typing of communiicats, and new insight into the relation
between synchrony and asynchrony.

As we mentioned, other alternatives for parent-child comitation would be possible. One
alternative, suggested by the anonymous referees couldgssiton the following reductions:

(@)"P [n[(M)'Q|R] O P{z = M} |n[Q|R]
(M)"P [n[(2)'Q|R] O P|n[Q{z := M}|R]

These reductions are similar in spirit to the correspondéuyctions adopted in [CGZ01] for the
Seal Calculus. We had considered this option for our Boxedignts, and initially dismissed
it because it appeared to be enforcing an interpretatiorhahiels as shared resources, thus
undermining the notion of locality we wished to express. king at it retrospectively, it is now
only fair to observe that the alternative reductions woulld snable the view of an ambient
as having two channels: a private channel which is only akbél for local exchanges, and an
“upward channel” which the ambient offers to its enclosiongtext for read and write access.

In fact, a first analysis shows that there are trade-offs betwour solution and the one given
above. The latter has a number of security benefits, as iigeewambients with full control of
the exchanges they may have with their children. Our salyiitstead, enables communication
protocols that would be difficult (if at all possible) to ergs with the above reductions. One
example is the possibility for an ambient to “broadcast” assage toany entering ambient:
a[!'(M)]. Here,a could be thought of as an “information site” which any ambiean enter
to get a copy of\/ (reading it from upwards, after having enter€d The same protocol could
hardly be expressed with the reductions given above, asréwyires an ambient to know the
names of its children in order to communicate with them. Minadess, a more in-depth analysis
of the trade-offs between the two solutions deserves to loken@and is part of our plans of future
work.

Besides Mobile Ambients and Seals, whose relationshigs Bdtxed Ambients have been dis-
cussed all along, the new calculus shares the same motisaémd is superficially similar to
Sewell and Vitek’s Boxedr [SV00]. The technical development, however, is entirefjedent.
We do not provide direct mechanisms for constructivrgppers rather we propose a new con-
struct for ambient interaction in the attempt to providei@a®-monitor communications. Also,
our form of communication is anonymous, and based on a nofitmtality which is absent in the
Boxed+r Calculus. This latter choice has important consequenct®iformalization of classic
security models as we discuss in [BCCO01]. Finally Boxedees not consider mobility which is
a fundamental component of this work.

Our type system is clearly also related to other typing systdeveloped for Mobile Ambi-
ents. In [CG99] types guarantees absence of type confusiarommunications. The type sys-
tems of [CGG99] and [Zim0O] provide control over ambientsvemand opening. Furthermore,
the introduction ofjroupnames [CGGOO0] and the possibility of creating fresh groupes give
flexible ways to statically prevent unwanted propagationarhes. The powerful type discipline
for Safe Ambients, presented in [LS00], add a finer contr@r@mbient interactions and remove
all grave interferencgi.e. all non-deterministic choice between logical incetilple interactions.

All those approaches are orthogonal to the particular conication primitives. We believe
that similar typing disciplines as well as the use of groumes and mobility types (without
opening control, of course), can be adapted to Boxed Ambienbbtain similar strong results.

Last, but not least, in [HR01,HRO0O0] Hennessy and Riley disgesource protection iBr-
calculus, a distributed variant afcalculus, where processes are placed in movable locations
spite of the fact that the design choices in the two calcelidifferent, and largely unrelated (dif-
ferent primitives, no location nesting, .) the ideas discussed in [HR01,HR0O] were a constant
source of inspiration for us.

Acknowledgmentd.hanks to Santiago Pericas for his comments of on earliérafrthe paper.
Comments by the anonymous referees helped improve therpatisa: we gratefully acknowl-
edge their effort.

References

[BCO1] M. Bugliesi and G. Castagna. Secure safe ambientBrda. of the 28th ACM Symposium
on Principles of Programming Languaggsages 222—-235, London, 2001. ACM Press.

[BCCO1] M. Bugliesi, G. Castagna, and S. Crafa. Reasonimgitagecurity in mobile ambients. In
CONCUR 2001 (12th. International Conference on ConcuryeRgeory) number 2154 in
Lecture Notes in Computer Science, pages 102-120, Aahargark, 2001. Springer.

[Bou92] G. Boudol. Asynchrony and thecalculus. Research Report 1702, INRIA, http://www-
sop.inria.fr/mimosa/personnel/Gerard.Boudol.htmi92.9

[BV02] C. Bryce and J. Vitek. The JavaSeal mobile agent KerAatonomous Agents and Multi-
Agent System2002. To appear.

[Car99] L. Cardelli. Abstractions for Mobile Computatioprolume 1603 ofecture Notes in Com-
puter Sciencegpages 51-94. Springer, 1999.

[Car00] L. Cardelli. Global computing. IS8T FET Global Computing Consultation Workshop

2000. Slides.
[CG98] L. Cardelli and A. Gordon. Mobile ambients. Rroceedings of POPL 'Q8ACM Press,
1998.

[CG99] L. Cardelliand A. Gordon. Types for mobile ambiertsProceedings of POPL '9%ages
79-92. ACM Press, 1999.

[CGG99] L. Cardelli, G. Ghelli, and A. Gordon. Mobility typeor mobile ambients. |Proceed-
ings of ICALP '99 number 1644 in Lecture Notes in Computer Science, pages23%0
Springer, 1999.

[CGGOO0] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient ggms and mobility types. linter-
national Conference IFIP TCSiumber 1872 in Lecture Notes in Computer Science, pages
333-347. Springer, 2000.

[CGZ01] G. Castagna, G. Ghelli, and F. Zappa. Typing mapititthe Seal Calculus. ITONCUR
2001 (12th. International Conference on Concurrency THigatumber 2154 in Lecture
Notes in Computer Science, pages 82—101, Aahrus, Dane@G0k, Springer.

[DCS00] M. Dezani-Ciancaglini and I. Salvo. Security typesssafe mobile ambients. IRroceed-
ings of ASIAN '00pages 215-236. Springer, 2000.

[DLBOO] P. Degano, F. Levi, and C. Bodei. Safe ambients: @britow analysis and security. In
Proceedins of ASIAN 'Q@olume 1961 of. NCS pages 199-214. Springer, 2000.

[FG97] R. Focardi and R. Gorrieri. Non interference: Pastspnt and future. IRroceedings of
DARPA Workshop on Foundations for Secure Mobile Cpdges 26—28, march 1997.

[FLAOO] C. Fournet, J-J. Levy, and Shmitt. A. An asynchrospodistributed implementation of mo-
bile ambients. Innternational Conference IFIP TGS wmber 1872 in Lecture Notes in
Computer Science. Springer, 2000.

[GM82] J.A. Goguen and J. Meseguer. Security policy and igcmodels. InProceedings of
Symposium on Secrecy and Privapgges 11-20. IEEE Computer Society, april 1982.

[HROO] M. Hennessy and J. Riely. Information flow vs. reseuaccess in the asynchronous
calculus (extended abstract). Amtomata, Languages and Programming, 27th International
Colloquium volume 1853 of_ecture Notes in Computer Scienpages 415-427. Springer,
2000.

[HRO1] M. Hennessy and J. Riely. Resource access contrgsiesis of mobile agentinformation
and Computation2001. To appear.

[LS00] F. Leviand D. Sangiorgi. Controlling interferenaeAmbients. InPOPL '0Q pages 352—
364. ACM Press, 2000.

[NNOO] H. R. Nielson and F. Nielson. Shape analysis for mohinbients. IFPOPL '00 pages
135-148. ACM Press, 2000.

[NNHJ99] F. Nielson, H. Riis Nielson, R. R. Hansen, and J.gBsé&n. Validating firewalls in mobile
ambients. IProc. CONCUR '99number 1664 in LNCS, pages 463—477. Springer, 1999.

[SV00] P. Sewell and J. Vitek. Secure composition of ungdstode: Wrappers and causality types.
In 13th IEEE Computer Security Foundations WorksHz{jDO0.

[VC99] J.Vitek and G. Castagna. Seal: A framework for segumbile computations. linternet
Programming Languagesiumber 1686 in Lecture Notes in Computer Science. Springer
1999.

[Zim0O] P. Zimmer. Subtyping and typing algorithms for mietambients. IlProceedins of FOSSaCS
'99, volume 1784 oL NCS pages 375-390. Springer, 2000.

A Moded Typing: the complete type system

Recall that, in order to have a more compact set of rules, e U5 to denote any of the ex-
changes W, "W, °W, and us€ W to denote eithet W or 1. Similarly we useAmb’[E, F] to
denote eitheAmb[E, F] or Amb°[E, F']. The use of such shorthands make it possible to express
different rules oft 4 and 6 as instances of a same rule. For this reason the rukearteeslightly
different from those in the main text.

Expressions

(PROJECTION (TupPLE)

*(M):W * M, :W; Viel.k

* FM:W *x b (M, ..., My): Wy x - x W,
(IN) (our)

* FM:Amb’[F,E] F' <F

* M :Amb[E,F] F' <F

% Fin M : Cap[F']

(OuT 0)
* M : Amb°[E, F]

* Foout M : Cap[shh]

(PATH)

* F M : Cap[F] * F M, : Cap[F]

% Fout M : Cap[F']

(CaPo)
* M : Cap[E]
* ko M : Cap[E]

(POLY PATH)
* Fo My : Cap[E1] * ko M, : Cap[Es]

* M].M2 : Cap[F}

* |_OM1.M2 : Cap[E'Q]

Processes
(PREFIX 0) (PREFIX A)
% Fo M : Cap[G] * - P:Pro[E,°F] x toM : Cap[F] % F P :Pro[E,"F]

* + M.P: Pro[E,°F| * + M.P : Pro[E,°F|

(PREFIX o) (PREFIX)
% =M :Cap[F] % FP:Pro[E,°F] =+ M :Cap[F] %+ P:Pro[E, F]

% F M.P : Pro[E, " F] * F M.P : Pro[E, F]
(PAR) (PAR %)
% P :ProlE,F] %+ Q:Pro[E,F] %+ P:Pro[E,"W] % FQ:ProlE, W]
* FP|Q:Pro[E, F] * FP|Q, Q|P:Pro[E,"W]
(DEAD) (NEW) (REPL) (REPL)
%z WEP:T % FP:ProlE,F] %+ P:Pro[E,"F|
*FO0:T xF@wzW)P:T * HIP:Pro]lE,F] % F!P:ProlE,*F]

(AMB)
* M :Amb[E,F] x F P:Pro[E, F]

* F M[P] : Pro[F,* H]

(AmMB A) (AMB o)

*x F M :Amb°[E,F] %+ P:Pro[E,“F] % + M :Amb°[E,F] * + P :ProlE,°F]
* F M[P] : Pro[F,*H] * F M[P] : Pro[G, *H]

(INPUT %) (OUTPUT %)

*,z:W F P : Pro[W, E] * FM:W x + P:Pro[W, E]

* F (z:W)P : Pro[lW, "E] *x F (M)P : Pro|W, E]

(INPUT M) (OUTPUTN)

x FM:Amb’ [W,E] x,2:WFP:T «bN:Amb' [W,E]x FM:W % +P:T
* F@w)MpP:T * (MNP T

(INPUTT) (OuTPUTY)

*,:W P :Pro[E, W] *x FM:W x k P:Pro[E,W]

* F (z:W)"P : Pro[E, W] * F(M)'P: Pro[E, W]

(INPUTT A) (OuTPUTT A)

x,x: Wk P: Pro[F,*W] x FM:W % F P:Pro[F,*W]

*x F (z: W)'P : Pro[F,“W] * F(M)'P: Pro[F, “W]

In addition, we have a standard subsumption rule statirtgsthia P : T’ whenevesx + P : T
andT < T'.

