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Abstract

We present a calculus for processing semistructured data that spans
differences of application area among several novel query lan-
guages, broadly categorized as “NoSQL”. This calculus lets users
define their own operators, capturing a wider range of data process-
ing capabilities, whilst providing a typing precision so far typical
only of primitive hard-coded operators. The type inference algo-
rithm is based on semantic type checking, resulting in type infor-
mation that is both precise, and flexible enough to handle structured
and semistructured data. We illustrate the use of this calculus by
encoding a large fragment of Jaql, including operations and itera-
tors over JSON, embedded SQL expressions, and co-grouping, and
show how the encoding directly yields a typing discipline for Jaql
as it is, namely without the addition of any type definition or type
annotation in the code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Ope-
rational semantics; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure; H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Retrieval—
Query formulation

Keywords NoSQL, BigData Analytics, Jaql, Cloud Computing,
Type Inference.

1. Introduction

The emergence of Cloud computing, and the ever growing impor-
tance of data in applications, has given birth to a whirlwind of new
data models [17, 22] and languages. Whether they are developed
under the banner of “NoSQL” [28, 33], for BigData Analytics [6,
16, 26], for Cloud computing [4], or as domain specific languages
(DSL) embedded in a host language [19, 25, 30], most of them
share a common subset of SQL and the ability to handle semistruc-
tured data. While there is no consensus yet on the precise bound-
aries of this class of languages, they all share two common traits:
(i) an emphasis on sequence operations (eg, through the popular
MapReduce paradigm) and (ii) a lack of types for both data and pro-
grams (contrary to, say, XML programming or relational databases
where data schemas are pervasive). In [19, 20], Meijer argues that
such languages can greatly benefit from formal foundations, and
suggests comprehensions [8, 31, 32] as a unifying model. Although
we agree with Meijer for the need to provide unified, formal foun-
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dations to those new languages, we argue that such foundations
should account for novel features critical to various application do-
mains that are not captured by comprehensions. Also, most of those
languages provide limited type checking, or ignore it altogether. We
believe type checking is essential for many applications, with usage
ranging from error detection to optimization. But we understand the
designers and programmers of those languages who are averse to
any kind of type definition or annotation. In this article, we propose
a calculus which is expressive enough to capture languages that go
beyond SQL or comprehensions. We show how the calculus adapts
to various data models while retaining a precise type checking that
can exploit in a flexible way limited type information, information
that is deduced directly from the structure of the program even in
the absence of any explicit type declaration or annotation.

Example. We use Jaql [6, 16], a language over JSON [17] devel-
oped for BigData analytics, to illustrate how our proposed calculus
works. Our reason for using Jaql is that it encompasses all the fea-
tures found in the previously cited query languages and includes a
number of original ones, as well. Like Pig [26] it supports sequence
iteration, filtering, and grouping operations on non-nested queries.
Like AQL [4] and XQuery [7], it features nested queries. Further-
more, Jaql uses a rich data model that allows arbitrary nesting of
data (it works on generic sequences of JSON records whose fields
can contain other sequences or records) while other languages are
limited to flat data models, such as AQL whose data-model is sim-
ilar to the standard relational model used by SQL databases (tuples
of scalars and of lists of scalars). Lastly, Jaql includes SQL as an
embedded sub-language for relational data. For these reasons, al-
though in the present work we focus almost exclusively on Jagl, we
believe that our work can be adapted without effort to a wide array
of sequence processing languages.

The following Jaql program illustrates some of those features.
It performs co-grouping [26] between one JSON input, containing
information about departments, and one relational input contain-
ing information about employees. The query returns for each de-
partment its name and id, from the first input, and the number of
high-income employees from the second input. A SQL expression
is used to select the employees with income above a given value,
while a Jaq] filter is used to access the set of departments and the
elements of these two collections are processed by the group ex-
pression (in Jagl “$” denotes the current element).

group
(depts -> filter each x (x.size > 50))
by g = $.depid as ds,
(SELECT * FROM employees WHERE income > 100)
by g = $.dept as es
into { dept: g,
deptName: ds[0].name,
numEmps: count(es) };

The query blends Jaql expressions (eg, £ilter which selects, in
the collection depts, departments with a size of more than 50
employees, and the grouping itself) with a SQL statement (select-



ing employees in a relational table for which the salary is more
than 100). Relations are naturally rendered in JSON as collections
of records. In our example, one of the key difference is that field
access in SQL requires the field to be present in the record, while
the same operation in Jaql does not. Actually, field selection in Jaql
is very expressive since it can be applied also to collections with the
effect that the selection is recursively applied to the components of
the collection and the collection of the results returned, and simi-
larly for £ilter and other iterators. In other words, the expression
filter each x (x.size > 50) above will work as much when
x is bound to a record (with or without a size field: in the latter
case the selection returns null), as when x is bound to a collection
of records or of arbitrary nested collections thereof. This accounts
for the semistructured nature of JSON compared to the relational
model. Our calculus can express both, in a way that illustrates the
difference in both the dynamic semantics and static typing.

In our calculus, the selection of all records whose mandatory
field income is greater than 100 is defined as:
let Sel =

‘nil => ‘nil
| ({income: x, .. } as y , tail) =>
if x > 100 then (y,Sel(tail)) else Sel(tail)
(collections are encoded as lists a /a Lisp) while the filtering among
records or arbitrary nested collections of records of those where the
(optional) size field is present and larger than 50 is:
let Fil =
‘nil => ‘nil
| ({size: x, .. } as y,tail) =>
if x > 50 then (y,Fil(tail)) else Fil(tail)
| ((x,xs),tail) => (Fil(x,xs),Fil(tail))

| (_,tail) => Fil(tail)

The terms above show nearly all the basic building blocks of our
calculus (only composition is missing), building blocks that we dub
filters. Filters can be defined recursively (eg, Sel(tail) is a recur-
sive call); they can perform pattern matching as found in functional
languages (the filter p = f executes f in the environment resulting
from the matching of pattern p); they can be composed in alterna-
tion (f1|f2 tries to apply fi and if it fails it applies f2), they can
spread over the structure of their argument (eg, ( f1,f2) —of which
(x,Sel(tail)) is an instance— requires an argument of a prod-
uct type and applies the corresponding f; component-wise).

For instance, the filter Fil scans collections encoded as lists a
la Lisp (ie, by right associative pairs with ‘nil denoting the empty
list). If its argument is the empty list, then it returns the empty list;
if it is a list whose head is a record with a size field (and possibly
other fields matched by “..”), then it captures the whole record in
y, the content of the field in x, the tail of the list in tail, and keeps
or discards y (ie, the record) according to whether x (ie, the field)
is larger than 50; if the head is also a list, then it recursively applies
both on the head and on the tail; if the head of the list is neither a
list, nor a record with a size field, then the head is discarded. The
encoding of the whole grouping query is given in Section 5.1.

Our aim is not to propose yet another “NoSQL/cloud comput-
ing/bigdata analytics” query language, but rather to show how to
express and type such languages via an encoding into our core cal-
culus. Each such language can in this way preserve its execution
model but obtain for free a formal semantics, a type inference sys-
tem and, as it happens, a prototype implementation. The type infor-
mation is deduced via the encoding (without the need of any type
annotation) and can be used for early error detection and debugging
purposes. The encoding also yields an executable system that can
be used for rapid prototyping. Both possibilities are critical in most
typical usage scenarios of these languages, where deployment is
very expensive both in time and in resources. As observed by Mei-
jer [19] the advent of big data makes it more important than ever

for programmers (and, we add, for language and system designers)
to have a single abstraction that allows them to process, transform,
query, analyze, and compute across data presenting utter variability
both in volume and in structure, yielding a “mind-blowing number
of new data models, query languages, and execution fabrics” [19] .
The framework we present here, we claim, encompasses them all.
A long-term goal is that the compilers of these languages could use
the type information inferred from the encoding and the encoding
itself to devise further optimizations.

Types. Pig [26], Jaql [16, 27], AQL [4] have all been conceived
by considering just the map-reduce execution model. The type (or,
schema) of the manipulated data did not play any role in their de-
sign. As a consequence these languages are untyped and, when
present, types are optional and clearly added as an afterthought.
Differences in data model or type discipline are particularly im-
portant when embedded in a host language (since they yield the
so-called impedance mismatch). The reason why types were/are
disregarded in such languages may originate in an alleged tension
between type inference and heterogeneous/semistructured data: on
the one hand these languages are conceived to work with collec-
tions of data that are weakly or partially structured, on the other
hand current languages with type inference (such as Haskell or
ML) can work only on homogeneous collections (typically, lists of
elements of the same type).

In this work we show that the two visions can coexist: we type
data by semantic subtyping [15], a type system conceived for semi-
structured data, and describe computations by our filters which are
untyped combinators that, thanks to a technique of weak typing in-
troduced in [10], can polymorphically type the results of data query
and processing with a high degree of precision. The conception of
filters is driven by the schema of the data rather than the execution
model and we use them () to capture and give a uniform semantics
to a wide range of semi structured data processing capabilities, (7)
to give a type system that encompasses the types defined for such
languages, if any, notably Pig, Jaql and AQL (but also XML query
and processing languages: see Section 5.1), (i4) to infer the pre-
cise result types of queries written in these languages as they are
(so without the addition of any explicit type annotation/definition or
new construct), and (iv) to show how minimal extensions/modifi-
cations of the current syntax of these languages can bring dramatic
improvements in the precision of the inferred types.

The types we propose here are extensible record types and het-
erogeneous lists whose content is described by regular expressions
on types as defined by the following grammar:

Types t = w (singleton)
| {et,. .. 0t} (closed record)
| {est,. .. 08,3} (open record)
| [r] (sequences)
|  int | char (base)
| any|empty|null (special)
|t (union)
| i\t (difference)

Regexp r = e |t |rmx|r+ | 7?2 |rr|r

where € denotes the empty word. The semantics of types can be
expressed in terms of sets of values (values are either constants
—such as 1, 2, true, false, null, >1’, the latter denoting the
character 1—, records of values, or lists of values). So the single-
ton type v is the type that contains just the value v (in particular
null is the singleton type containing the value null). The closed
record type {a:int, b:int} contains all record values with exactly
two fields a and b with integer values, while the open record
type {a:int,b:int,..} contains all record values with ar least two
fields a and b with integer values. The sequence type [7] is the set



of all sequences whose content is described by the regular expres-
sion r; o, for example [charx*] contains all sequences of charac-
ters (we will use string to denote this type and the standard double
quote notation to denote its values) while [({a:int} {a:int})+]
denotes nonempty lists of even length containing record values of
type {a:int}. The union type s|t contains all the values of s and
of ¢, while the difference type s\t contains all the values of s that
are not in ¢. We shall use bool as an abbreviation of the union of
the two singleton types containing true and false: ‘true|‘false.
any and empty respectively contain all and no values. Recursive
type definitions are also used (see Section 2.2 for formal details).

These types can express all the types of Pig, Jagl and AQL,
all XML types, and much more. So for instance, AQL includes
only homogeneous lists of type ¢, that can be expressed by our
types as [ t* 1. In Jagl’s documentation one can find the type
[ long(value=1), string(value="a"), boolean* ] which
is the type of arrays whose first element is 1, the second is the string
"a" and all the other are booleans. This can be easily expressed in
our types as [1 "a" boolx]. But while Jaql only allows a lim-
ited use of regular expressions (Kleene star can only appear in tail
position) our types do not have such restrictions. So for exam-
ple [char* ’@’ charx >.°> ((°f’ ’r’)| (i’ ’t?))] is the
type of all strings (ie, sequences of chars) that denote email ad-
dresses ending by either .fr or .it. We use some syntactic sugar
to make terms as the previous one more readable (eg, [ .* ’@°
.+ (2. fr’ |’ .it?)]). Likewise, henceforth we use {a?: t} to de-
note that the field a of type ¢ is optional; this is just syntactic sugar
for stating that either the field is undefined or it contains a value of
type ¢ (for the formal details of this encoding see the full version of
this work available on line).

Coming back to our initial example, the filter Fil defined before
expects as argument a collection of the following type:

.} | Depts )x* ]

that is a, possibly empty, arbitrary nested list of records with an
optional size field of type int: notice that it is important to specify
the optional field and its type since a size field of a different type
would make the expression x > 50 raise a run-time error. This
information is deduced just from the structure of the filter (since
Fil does not contain any type definition or annotation).

We define a type inference system that rejects any argument of
Fil that has not type Depts, and deduces for arguments of type
[({size: int, addr: string}| {sec: int} | Depts)+]
(which is a subtype of Depts) the result type [({size: int,
addr: string}|Depts)*] (so it does not forget the field addr
but discards the field sec, and by replacing * for + recognizes that
the test may fail).

By encoding primitive Jaql operations into a formal core cal-
culus we shall provide them a formal and clean semantics as
well as precise typing. So for instance it will be clear that apply-
ing the following dot selection [ [{a:3}] {a:5, b:true} ].a
the result will be [ [3] 5 ] and we shall be able to deduce
that _.a applied to arbitrary nested lists of records with an op-
tional integer a field (ie, of type t = {a?:int} | [ t*x 1)
yields arbitrary nested lists of int or null values (ie, of type
v =int | null | [ ux* ]).

Finally we shall show that if we accept to extend the current
syntax of Jaql (or of some other language) by some minimal filter
syntax (eg, the pattern filter) we can obtain a huge improvement in
the precision of type inference.

type Depts = [ ( {size?: int,

Contributions. The main contribution of this work is the defini-
tion of a calculus that encompasses structural operators scattered
over NoSQL languages and that possesses some characteristics
that make it unique in the swarm of current semi-structured data
processing languages. In particular it is parametric (though fully

embeddable) in a host language; it uniformly handles both width
and deep nested data recursion (while most languages offer just the
former and limited forms of the latter); finally, it includes first-class
arbitrary deep composition (while most languages offer this opera-
tor only at top level), whose power is nevertheless restrained by the
type system.

An important contribution of this work is that it directly com-
pares a programming language approach with the tree transducer
one [13]. Our calculus implements transformations typical of top-
down tree transducers but has several advantages over the trans-
ducer approach: (1) the transformations are expressed in a formal-
ism immediately intelligible to any functional programmer; (2) our
calculus, in its untyped version, is Turing complete; (3) its trans-
formations can be statically typed (at the expenses of Turing com-
pleteness) without any annotation yielding precise result types (4)
even if we restrict the calculus only to well-typed terms (thus losing
Turing completeness), it still is strictly more expressive than well-
known and widely studied deterministic top-down tree transducer
formalisms.

The technical contributions are (i) the proof of Turing com-
pleteness for our formalism, (7¢) the definition of a type system
that copes with records with computable labels (4i7) the definition
of a static type system for filters and its correctness, (iv) the defini-
tion of a static analysis that ensures the termination (and the proof
thereof) of the type inference algorithm with complexity bounds
expressed in the size of types and filters and (iv) the proof that
the terms that pass the static analysis form a language strictly more
expressive than top-down tree transducers.

Outline. In Section 2 we present the syntax of the three com-
ponents of our system. Namely, a minimal set of expressions, the
calculus of filters used to program user-defined operators or to en-
code the operators of other languages, and the core zypes in which
the types we just presented are to be encoded. Section 3 defines
the operational semantics of filters and a declarative semantics for
operators. The type system as well as the type inference algorithm
are described in Section 4. In Section 5 we present how to han-
dle a large subset of Jaql. Section 6 reports on some subtler design
choices of our system and compare with related work. For space
constraints, proofs, secondary results, encodings, some formal def-
initions (in particular the definition of the static analysis for ter-
mination and the interpretation of record values as quasi-constant
functions), and further extensions can be found only in the full ver-
sion available online.

2. Syntax

In this section we present the syntax of the three components of our
system: a minimal set of expressions, the calculus of filters used to
program user-defined operators or to encode the operators of other
languages, and the core types in which the types presented in the
introduction are to be encoded.

The core of our work is the definition of filters and types. The
key property of our development is that filters can be grafted to
any host language that satisfies minimal requirements, by simply
adding filter application to the expressions of the host language.
The minimal requirements of the host language for this to be possi-
ble are quite simple: it must have constants (typically for types int,
char, string, and bool), variables, and either pairs or record val-
ues (not necessarily both). On the static side the host language must
have at least basic and products types and be able to assign a type to
expressions in a given type environment (ie, under some typing as-
sumptions for variables). By the addition of filter applications, the
host language can acquire or increase the capability to define poly-
morphic user-defined iterators, query and processing expressions,
and be enriched with a powerful and precise type system.



2.1 Expressions

In this work we consider the following set of expressions

Definition 1 (expressions).

Exprs e = c (constants)
| =z (variables)
| (eye) (pairs)
| A{ete,... e} (records)
| e+te (record concatenation)
|  e\/? (field deletion)
|  op(e,... e) (built-in operators)
|  fe (filter application)

where f ranges over filters (defined later on), c over generic con-
stants, and £ over string constants.

Intuitively, these expressions represent the syntax supplied by
the host language —though only the first two and one of the next
two are really needed— that we extend with (the missing expres-
sions and) the expression of filter application. Expressions are
formed by constants, variables, pairs, records, and operation on
records: record concatenation gives priority to the expression on
the right. So if in 71 + r2 both records contains a field with the
same label, it is the one in 72 that will be taken, while field deletion
does not require the record to contain a field with the given label
(though this point is not important). The metavariable op ranges
over operators as well as functions and other constructions belong-
ing to or defined by the host language. Among expressions we sin-
gle out a set of values, intuitively the results of computations, that
are formally defined as follows:

v o= c|(v,v)|{lw; ... L}

We use "foo" for character string constants, >c’ for characters,
1 2 3 4 5 and so on for integers, and backquoted words, such as
‘foo, for atoms (ie, user-defined constants). We use three distin-
guished atoms ‘nil, ‘true, and ‘false. Double quotes can be
omitted for strings that are labels of record fields: thus we write
{name:"John"} rather than {"name":"John"}. Sequences (aka,
heterogeneous lists, ordered collections, arrays) are encoded a la
LISP, as nested pairs where the atom ‘nil denotes the empty list.

We use [e1 ... e,] assyntactic sugar for (e1, ..., (€n, ‘nil)...).

2.2 Types

Definition 2 (types).

Types t == b (basic types)

v (singleton types)
(t,t) (products)
{e:t, ... Lt} (closed records)
{e:t,... 0:¢,..} (open records)
t|t (union types)
t&t (intersection types)
-t (negation type)
empty (empty type)
any (any type)
pT'.t (recursive types)
T (recursion variable)
Op(t, ..., t) (foreign type calls)

where every recursion is guarded, that is, every type variable is
separated from its binder by at least one application of a type
constructor (ie, products, records, or Op).

Most of these types were already explained in the introduction.
We have basic types (int, bool, ....) ranged over by b and sin-
gleton types v denoting the type that contains only the value v.
Record types come in two flavors: closed record types whose val-
ues are records with exactly the fields specified by the type, and

open record types whose values are records with at least the fields
specified by the type. Product types are standard and we have a
complete set of type connectives, that is, finite unions, intersections
and negations. We use empty, to denote the type that has no values
and any for the type of all values (sometimes denoted by “_" when
used in patterns). We added a term for recursive types, which al-
lows us to encode both the regular expression types defined in the
introduction and, more generally, the recursive type definitions we
used there. Finally, we use Op (capitalized to distinguish it from
expression operators) to denote the host language’s type operators
(if any). Thus, when filter applications return values whose type
belongs just to the foreign language (eg, a list of functions) we sup-
pose the typing of these functions be given by some type operators.
For instance, if succ is a user defined successor function, we will
suppose to be given its type in the form Arrow(int,int) and, simi-
larly, for its application, say apply(succ,3) we will be given the type
of this expression (presumably int). Here Arrow is a type operator
and apply an expression operator.

The denotational semantics of types as sets of values, that we
informally described in the introduction, is at the basis of the defi-
nition of the subtyping relation for these types. We say that a type
t1 is a subtype of a type ¢2, noted t1 < to, if and only if the set
of values denoted by ¢; is contained (in the set-theoretic sense) in
the set of values denoted by ¢2. For the formal definition and the
decision procedure of this subtyping relation the reader can refer to
the work on semantic subtyping [15].

2.3 Patterns

Filters are our core untyped operators. All they can do are three
different things: (1) they can structurally decompose and transform
the values they are applied to, or (2) they can be sequentially
composed, or (3) they can do pattern matching. In order to define
filters, thus, we first need to define patterns.

Definition 3 (patterns).

Patterns p = ¢ (type)
| =z (variable)
| (pp) (pair)
| {&p,..., ep} (closed rec)
| {&p,....0p,..} (open rec)
| plp (or/union)
|  p&p (and/intersection)

where the subpatterns forming pairs, records, and intersections
have distinct capture variables, and those forming unions have the
same capture variables.

Patterns are essentially types in which capture variables (ranged
over by z, y, ...) may occur in every position that is not under a
negation or a recursion. A pattern is used to match a value. The
matching of a value v against a pattern p, noted v/p, either fails
(noted §2) or it returns a substitution from the variables occurring
in the pattern, into values. The substitution is then used as an
environment in which some expression is evaluated. If the pattern is
a type, then the matching fails if and only if the pattern is matched
against a value that does not have that type, otherwise it returns
the empty substitution. If it is a variable, then the matching always
succeeds and returns the substitution that assigns the matched value
to the variable. The pair pattern (p1,p2) succeeds if and only if it
is matched against a pair of values and each sub-pattern succeeds
on the corresponding projection of the value (the union of the two
substitutions is then returned). Both record patterns are similar to
the product pattern with the specificity that in the open record
pattern “..” matches all the fields that are not specified in the
pattern. An intersection pattern p1&p2 succeeds if and only if
both patterns succeed (the union of the two substitutions is then



returned). The union pattern p1 | o first tries to match the pattern p;
and if it fails it tries the pattern po.

For instance, the pattern (int&x,y) succeeds only if the
matched value is a pair of values (v1,v2) in which v; is an in-
teger —in which case it returns the substitution {z/v1,y/v2}—
and fails otherwise. Finally notice that the notation “p as z” we
used in the examples of the introduction, is syntactic sugar for p&z.

This informal semantics of matching (see [15] for the formal
definition) explains the reasons of the restrictions on capture vari-
ables in Definition 3: in intersections, pairs, and records all patterns
must be matched and, thus, they have to assign distinct variables,
while in union patterns just one pattern will be matched, hence the
same set of variables must be assigned, whichever alternative is se-
lected.

The strength of patterns is their connections with types and the
fact that the pattern matching operator can be typed exactly. This is
entailed by the following theorems (both proved in [15]):

Theorem 4 (Accepted type [15]). For every pattern p, the set of all
values v such that v/p # Q is a type. We call this set the accepted
type of p and note it by pf.

The fact that the exact set of values for which a matching succeeds
is a type is not obvious. It states that for every pattern p there exists
a syntactic type produced by the grammar in Definition 2 whose
semantics is exactly the set of all and only values that are matched
by p. The existence of this syntactic type, which we note pf, is
of utmost importance for a precise typing of pattern matching. In
particular, given a pattern p and a type ¢ contained in (ie, subtype of)
1pJ, it allows us to compute the exact type of the capture variables
of p when it is matched against a value in ¢:

Theorem 5 (Type environment [15]). There exists an algorithm
that for every pattern p, and t < p§ returns a type environment

t/p € Vars(p) — Types such that (t/p)(z) = {(v/p)(x) | v : t}.

2.4 Filters
Definition 6 (filters). A filter is a term generated by:

Filters f == e (expression)
| p=>f (pattern)
) (product)
| {ef,...,0:f,.} (record)
| flf (union)
|  wX.f (recursion)
|  Xa (recursive call)
| f5f (composition)
| o (declarative operators)
Operators o := groupby f (filter grouping)
|  orderby f (filter ordering)
Arguments a = =z (variables)
| ¢ (constants)
| (aa) (pairs)
| {twaq,...,L:a} (record)

such that for every subterm of the form f;g, no recursion variable
is free inf.

Filters are like transducers, that when applied to a value re-
turn another value. However, unlike transducers they possess more
“programming-oriented” constructs, like the ability to test an in-
put and capture subterms, recompose an intermediary result from
captured values and a composition operator. We first describe in-
formally the semantics of each construct.

The expression filter e always returns the value corresponding
to the evaluation of e (and discards its argument). The filter p = f

applies the filter f to its argument in the environment obtained by
matching the argument against p (provided that the matching does
not fail). This rather powerful feature allows a filter to perform two
critical actions: (i) inspect an input with regular pattern-matching
before exploring it and (ii) capture part of the input that can be
reused during the evaluation of the subfilter f. If the argument ap-
plication of f; to v; returns v; then the application of the product
filter (f1,f2) to an argument (v1, v2) returns (v1, vy); otherwise, if
any application fails or if the argument is not a pair, it fails. The
record filter is similar: it applies to each specified field the corre-
sponding filter and, as stressed by the “..”, leaves the other fields
unchanged; it fails if any of the applications does, or if any of the
specified fields is absent, or if the argument is not a record. The fil-
ter f1| f2 returns the application of fi to its argument or, if this fails,
the application of f>. The semantics of a recursive filter is given by
standard unfolding of its definition in recursive calls. The only real
restriction that we introduce for filters is that recursive calls can be
done only on arguments of a given form (ie, on arguments that have
the form of values where variables may occur). This restriction in
practice amounts to forbid recursive calls on the result of another
recursively defined filter (all other cases can be easily encoded).
The reason of this restriction is technical, since it greatly simpli-
fies the analysis of Section 4.4 (which ensures the termination of
type inference) without hampering expressiveness: filters are Tur-
ing complete even with this restriction (see Theorem 7). Filters can
be composed: the filter f1;f2 applies fo to the result of applying
f1 to the argument and fails if any of the two does. The condition
that in every subterm of the form f;g, f does not contain free re-
cursion variables is not strictly necessary. Indeed, we could allow
such terms. The point is that the analysis for the termination of the
typing would then reject all such terms (apart from trivial ones in
which the result of the recursive call is not used in the composition).
But since this restriction does not restrict the expressiveness of the
calculus (Theorem 7 proves Turing completeness with this restric-
tion), then the addition of this restriction is just a design (rather
than a technical) choice: we prefer to forbid the programmer to
write recursive calls on the left-hand side of a composition, than
systematically reject all the programs that use them in a non-trivial
way.

Finally, we singled out some specific filters (specifically, we
chose groupby and orderby ) whose semantics is generally
specified in a declarative rather than operational way. These do not
bring any expressive power to the calculus (the proof of Turing
completeness, Theorem 7, does not use these declarative operators)
and actually they can be encoded by the remaining filters, but it
is interesting to single them out because they yield either simpler
encodings or more precise typing.

3. Semantics

The operational semantics of our calculus is given by the reduction
semantics for filter application and for the record operations. Since
the former is the only novelty of our work, we save space and omit
the latter, which are standard anyhow.

We define a big step operational semantics for filters. The definition
is given by the inference rules in Figure 1 for judgments of the
form 03y Fau f(a) ~ r and describes how the evaluation of
the application of filter f to an argument a in an environment -y
yields an object r where 7 is either a value or €2. The latter is
a special value which represents a runtime error: it is raised by
the rule (error) either because a filter did not match the form of
its argument (eg, the argument of a filter product was not a pair)
or because some pattern matching failed (ie, the side condition
of (patt) did not hold). Notice that the argument a of a filter is
always a value v unless the filter is the unfolding of a recursive
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Figure 1. Dynamic semantics of filters

call, in which case variables may occur in it (¢f. rule rec-call).
Environment ¢ is used to store the body of recursive definitions.

The semantics of filters is quite straightforward and inspired
by the semantics of patterns. The expression filter discards its
input and evaluates (rather, asks the host language to evaluate) the
expression e in the current environment (expr). It can be thought
of as the right-hand side of a branch in a match_with construct.

The product filter expects a pair as input, applies its sub-filters
component-wise and returns the pair of the results (prod). This
filter is used in particular to express sequence mapping, as the first
component f; transforms the element of the list and f> is applied
to the tail. In practice it is often the case that f5 is a recursive call
that iterates on arbitrary lists and stops when the input is ‘nil. If
the input is not a pair, then the filter fails (rule (error) applies).

The record filter expects as input a record value with at least the
same fields as those specified by the filter. It applies each sub-filter
to the value in the corresponding field leaving the contents of other
fields unchanged (recd). If the argument is not a record value or it
does not contain all the fields specified by the record filter, or if the
application of any subfilter fails, then the whole application of the
record filter fails.

The pattern filter matches its input value v against the pattern p.
If the matching fails so the filter does, otherwise it evaluates its sub-
filter in the environment augmented by the substitution v/p (patt).

The alternative filter follows a standard first-match policy: If the
filter f1 succeeds, then its result is returned (union-1). If f; fails,
then f5 is evaluated against the input value (union-2). This filter is
particularly useful to write the alternative of two (or more) pattern
filters, making it possible to conditionally continue a computation
based on the shape of the input.

The composition allows us to pass the result of f as input to fa.
The composition filter is of paramount importance. Indeed, without
it, our only way to iterate (deconstruct) an input value is to use a
product filter, which always rebuilds a pair as result.

Finally, a recursive filter is evaluated by recording its body in
¢ and evaluating it (rec), while for a recursive call we replace the
recursion variable by its definition (rec-call).

This concludes the presentation of the semantics of non-
declarative filters (ie, without groupby and orderby). These form a
Turing complete formalism (complete proof in the full version):

Theorem 7 (Turing completeness). The language formed by
constants, variables, pairs, equality, and applications of non-
declarative filters is Turing complete.

Proof (sketch). We can encode untyped call-by-value A-calculus
by first applying continuation passing style (CPS) transformations
and encoding CPS term reduction rules and substitutions via filters.
Thanks to CPS we eschew the restrictions on composition. O

To conclude the presentation of the semantics we have to define the
semantics of groupby and orderby. We prefer to give the semantics
in a declarative form rather than operationally in order not to tie it
to a particular order (of keys or of the execution):

Groupby: groupby f applied to a sequence [v; ... v, ] reduces

to a sequence [ (k1,01) ... (kn,ln) 1 such that:

1.Vi, 1 <i<m, 35, 1 <j<mn, st k;=f(n)

2.Vj, 1<j<m, 3i, 1<i<m, stk = f(uvi)

3.Vj, 1<j<mn,l;jisasequence: [v] ... v7,;1
4.V5,1<j<n,Vk, 1<k <ny, fvl) =k;
S.ki=kj=>i=7

6. 11, ...,l is a partition of [v; ... vy, ]

Orderby: orderby f appliedto [v1 ... v,] reducesto [v] ... v),]
such that:

1. [v}...v,] is a permutation of [v1 ...v,],

2. Vi, st 1 <i<j <, f(vi) < f(vy)

Since the semantics of both operators is deeply connected to a
notion of equality and order on values of the host language, we
give them as “built-in” operations. However we will illustrate how
our type algebra allows us to provide very precise typing rules,
specialized for their particular semantics. It is also possible (see
full version) to encode co-grouping (or groupby on several input
sequences) with a combination of groupby and filters.

Syntactic sugar. The reader may have noticed that the produc-
tions for expressions (Definition 1) do not define any destructor
(eg, projections, label selection, ...), just constructors. The reason
is that destructors, as well as other common expressions, can be
encoded by filter applications:

el 9 ({bz,.} = 2)e
fst(e) £ ((z,any) = z)e
snd(e) £ ((any,z) = )
let p=e; ines «f (p=e2)er

if ¢ then e; else ez = (‘true = e1|‘false = ea)e
matchewithpi = eil...|lp, = en

def

= (pr=e1]|...|pn = en)e

These are just a possible choice, but others are possible. For in-
stance in Jaql dot selection is overloaded: when _. ¢ is applied to
a record, Jaql returns the content of its ¢ field; if the field is ab-
sent or the argument is null, then Jaql returns null and fails if
the argument is not a record; when applied to a list (‘array’ in Jaql
terminology) it recursively applies to all the elements of the list. So
Jagl’s “_.¢” is precisely defined as

pX.({t:x,.} =z | ({.}|null) = null | (h,t) = (Xh,X1))



Besides the syntactic sugar above, in the next section we will use
t1 4 t2 to denote the record type formed by all field types in 2
and all the field types in ¢; whose label is not already present in to.
Similarly ¢\ £ will denote the record types formed by all field types
in ¢ apart from the one labeled by /, if present. Finally, we will also
use for expressions, types, and patterns the syntactic sugar for lists
used in the introduction. So, for instance, [p1 p2 ... p»] is matched
by lists of n elements provided that their i-th element matches p;.

4. Type inference

The type inference system assign types to expressions. Variables,
constants, and pairs are typed by standard rules, while we suppose
that the typing of foreign expressions is provided by the host lan-
guage.! So we omit the corresponding rules (they can be found in
the full version). The core of our type system starts with records.

4.1 Typing of records

The typing of records is novel and challenging because record ex-
pressions may contain string expressions in label position, such as
in {e1:e2}, while in all type systems for record we are aware of,
labels are never computed. It is difficult to give a type to {e1:e2}
since, in general, we do not statically know the value that e; will
return, and which is required to form a record type. All we can
(and must) ask is that this value will be a string. To type a record
expression {ei:ez}, thus, we distinguish two cases according to
whether the type t1 of e is finite (ie, it contains only finitely many
values, such as, say, Bool) or not. If a type is finite, (finiteness of
regular types seen as tree automata can be decided in polynomial
time [11]), then it is possible to write it as a finite union of values
(actually, of singleton types). So consider again {e1:e2} and let ¢q
be the type of e1 and t2 the type of ez. First, 1 must be a sub-
type of string (since record labels are strings). So if ¢ is finite
it can be expressed as £1] - - - |, which means that e; will return
the string ¢; for some ¢ € [1..n]. Therefore {e1:e2} will have type
{¢; : t2} for some i € [1..n] and, thus, the union of all these types,
as expressed by the rule [RCD-FIN] below. If ¢; is infinite instead,
then all we can say is that it will be a record with some (unknown)
labels, as expressed by rule [RCD-INF].

[RcD-FIN]
The:ly|--|n Tre:t

Tk {ewe'} : {last}] - - |[{ln:t}

[RCD-INF]
Fke:t e :t t<string
T+ {e:e/} . {} t is infinite
[RCcD-MUL]
Tk {eizel} : t Tk {enten} : ty
TF{ezel,...,enten} it + - -+ 1ty
[RcD-CoNC] [RCcD-DEL]
I'tei:t1 Thes:ts tlg{,,} I'ke:t tS{}
F}_61—|—62:t1+t2 tzf{..} FF@\K?&\K

Records with multiple fields are handled by the rule [RCD-MUL]
which “merges” the result of typing single fields by using the type
operator + as defined in CDuce [5, 14], which is a right-priority
record concatenation defined to take into account undefined and
unknown fields: for instance, {a:int,b:int} + {a7:bool} =
{a:int|bool, b:int}; unknown fields in the right-hand side may

! Notice that our expressions, whereas they include filter applications, do
not include applications of expressions to expressions. Therefore if the host
language provides function definitions, then the applications of the host
language must be dealt as foreign expressions, as well (cf. apply in §2.2).

override known fields of the left-hand side, which is why, for in-
stance, we have {a:int,b:bool} + {b:int,..} = {biint,..};
likewise, for every record type ¢ (ie, for every t subtype of {..})
we have ¢ + {..} = {..}. Finally, [RcD-CoNc] and [RCD-DEL]
deal with record concatenation and field deletion, respectively, in a
straightforward way: the only constraint is that all expressions must
have a record type (ie, the constraints of the form ... < {..}). See
the full version for formal definitions of all these type operators.
Notice that these rules do not ensure that a record will not have
two fields with the same label, which is a run-time error. Detect-
ing such an error needs sophisticated type systems (eg, dependent
types) beyond the scope of this work. This is why in the rule [RCD-
MuL] we used type operator “+4” which, in case of multiple occur-
ring labels, since records are unordered, corresponds to randomly
choosing one of the types bound to these labels: if such a field is
selected, it would yield a run-time error, so its typing can be am-
biguous. We can fine tune the rule [RCD-MUL] so that when all the
t; are finite unions of record types, then we require to have pairwise
disjoint sets of labels; but since the problem would still persist for
infinite types we prefer to retain the current, simpler formulation.

4.2 Typing of filter application

Filters are not first-class: they can be applied but not passed around
or computed. Therefore we do not assign types to filters but, as for
any other expression, we assign types to filter applications. The
typing rule for filter application

[FILTER-APP]
'ke:t ;00 f(t):s

'k fe:s

relies on an auxiliary deduction system for judgments of the form
;A3 M b4 f(t) @ s that states that if in the environments
T, A, M (explained later on) we apply the filter f to a value of
type t, then it will return a result of type s.

To define this auxiliary deduction system, which is the core of
our type analysis, we first need to define { f§, the type accepted by
a filter f. Intuitively, this type gives a necessary condition on the
input for the filter not to fail:

Definition 8 (Accepted type). Given a filter f, the accepted type
of f, written | f{ is the set of values defined by:

[G)) = any
i SPe
() = (L1, Uy (erousby /] = fanyed
Usf2l = AT lorderby f§ = [any*]
z{elzf17“7£n:fn"'}g = {Zl: z fl S 7--7gn: Z f2 S 9..}

It is easy to show that an argument included in the accepted type is
anecessary (but not sufficient, because of the cases for composition
and recursion) condition for the evaluation of a filter not to fail:

Lemma 9. Let f be a filter and v be a value such that v ¢ | f§.
Forevery =, 6, if ;7 Fou f(v) ~ 7, then T = Q.

1Xaf = any
X 1] = U]

The last two auxiliary definitions we need are related to product
and record types. In the presence of unions, the most general form
for a product type is a finite union of products (since intersections
distribute on products). For instance consider the type

(int,int)|(string,string)
This type denotes the set of pairs for which either both projections
are int or both projections are string. A type such as
(int|string,int|string)

is less precise, since it also allows pairs whose first projection is an
int and second projection is a string and vice versa. We see that
it is necessary to manipulate finite unions of products (and similarly
for records), and therefore, we introduce the following notations:



Lemma 10 (Product decomposition). Let t € Types such that
t < (any,any). A product decomposition of t, denoted by w(t) is a

set of types: x(t) = {(t},83), ..., (t0,t5)}

such that t = \/tieﬂ(t) t;. For a given product decomposition, we
say that n is the rank of t, noted rank(t), and use the notation
wl(t) for the type t..

There exist several suitable decompositions whose details are
out of the scope of this article. We refer the interested reader to
[14] and [21] for practical algorithms that compute such decompo-
sitions for any subtype of (any,any) or of {..}. These notions of
decomposition, rank and projection can be generalized to records:

Lemma 11 (Record decomposition). Let ¢t € Types such that
t < {..}. A record decomposition of t, denoted by p(t) is a finite
set of types p(t)={r1, ..., n} where each r; is either of the form
{03:t5, ... 0 st} or of the form {€i:th, ... 0.t , ..} and
such that t = \/Ti6 () Tis For a given record decomposition, we
say that n is the rank of t, noted rank(t), and use the notation p}(t)
for the type of label £ in the §™ component of p(t).

In our calculus we have three different sets of variables. The
set Vars of term variables, ranged over by z,y, ..., introduced
in patterns and used in expressions and in arguments of calls of
recursive filters. The set RVars of term recursion variables, ranged
over by X, Y, ... and that are used to define recursive filters. The
set TVars of type recursion variables, ranged over by T', U, ... used
to define recursive types. In order to use them we need to define
three different environments: I' : Vars — Types denoting fype
environments that associate term variables with their types; A :
RVars — Filters denoting definition environments that associate
each filter recursion variable with the body of its definition; M :
RVars x Types — TVars denoting memoization environments
which record that the call of a given recursive filter on a given
type yielded the introduction of a fresh recursion type variable.
Our typing rules, thus work on judgments of the form I"; A; M +
f(#) : t' stating that applying f to an expression of type t in the
environments ', A, M yields a result of type '. This judgment
can be derived with the set of rules given in Figure 2.

These rules are straightforward, when put side by side with the
dynamic semantics of filters, given in Section 3. It is clear that this
type system simulates at the level of types the computations that are
carried out by filters on values at runtime. For instance, rule [FIL-
ExpRr] calls the typing function of the host language to determine
the type of an expression e. Rule [FIL-ProOD] applies a product filter
recursively on the first and second projection for each member of
the product decomposition of the input type and returns the union
of all result types. Rule [FIL-REC] for records is similar, recursively
applying sub-filters label-wise for each member of the record de-
composition and returning the union of the resulting record types.
As for the pattern filter (rule [FIL-PAT]), its subfilter f is typed in
the environment augmented by the mapping ¢/p of the input type
against the pattern (¢f. Theorem 5). The typing rule for the union
filter, [FIL-UNION] reflects the first match policy: when typing the
second branch, we know that the first was not taken, hence that at
runtime the filtered value will have a type that is in ¢ but not in { f1 §.
Notice that this is not ensured by the definition of accepted type —
which is a rough approximation that discards grosser errors but,
as we stressed right after its definition, is not sufficient to ensure
that evaluation of f; will not fail— but by the type system itself:
the premises check that fi(t1) is well-typed which, by induction,
implies that f; will never fail on values of type ¢; and, ergo, that
these values will never reach fa. Also, we discard from the output
type the contribution of the branches that cannot be taken, that is,
branches whose accepted type have an empty intersection with the

input type t. Composition (rule [FIL-CoMP]) is straightforward. In
this rule, the restriction that f; is a filter with no open recursion
variable ensures that its output type s is also a type without free
recursion variables and, therefore, that we can use it as input type
for f2. The next three rules work together. The first, [FIL-F1x] intro-
duces for a recursive filter a fresh recursion variable for its output
type. It also memoize in A that the recursive filter X is associated
with a body f and in M that for an input filter X and an input type
t, the output type is the newly introduced recursive type variable.
When dealing with a recursive call X two situations may arise.
One possibility is that it is the first time the filter X is applied to
the input type ¢. We therefore introduce a fresh type variable T'
and recurse, replacing X by its definition f. Otherwise, if the input
type has already been encountered while typing the filter variable
X, we can return its memoized type, a type variable 7. Finally,
Rule [FiL-OrDBY] and Rule [FiL-GRPBY] handle the special cases
of groupby and orderby filters. Their typing is explained in the
following section.

4.3 Typing of orderby and groupby

While the “structural” filters enjoy simple, compositional typing
rules, the ad-hoc operations orderby and groupby need specially
crafted rules. Indeed it is well known that when transformation
languages have the ability to compare data values type-checking
(and also type inference) becomes undecidable (eg, see [2, 3]).
We therefore provide two typing approximations that yield a good
compromise between precision and decidability. First we define an
auxiliary function over sequence types:

Definition 12 (Item set). Let t € Types such that ¢ < [any*].
The item set of t denoted by item(t) is defined by:

item(empty) =0
item(t) = item(t&(any,any)) ift £ (any,any)
sten(\/ (1) = |J({#'} U sten(s))

1<i<rank(t) 1<i<rank(t)

The first and second line in the definition ensure that item() returns
the empty set for sequence types that are not products, namely for
the empty sequence. The third line handles the case of non-empty
sequence type. In this case ¢ is a finite union of products, whose
first components are the types of the “head” of the sequence and
second components are recursively the types of the tails. Note also
that this definition is well-founded. Since types are regular trees the
number of distinct types accumulated by item() is finite. We can
now defined typing rules for the orderby and groupby operators.

orderby f: The orderby filter uses its argument filter f to
compute a key from each element of the input sequence and then
returns the same sequence of elements, sorted with respect to their
key. Therefore, while the types of the elements in the result are still
known, their order is lost. We use item() to compute the output
type of an orderby application:

OrderBy(t) = [(\/t:) *]

t; Eitem(t)

groupby f: The typing of orderby can be used to give a rough
approximation of the typing of groupby as stated by rule [FIL-
GRPBY]. In words, we obtain a list of pairs where the key com-
ponent is the result type of f applied to the items of the sequence,
and use OrderBy to shuffle the order of the list. A far more pre-
cise typing of groupby that keeps track of the relation between list
elements and their images via f is given in the full version.

4.4 Soundness, termination, and complexity

The soundness of the type inference system is given by the property
of subject reduction for filter application



[FIL-EXPR] [FIL-PAT]
TUt/p; AsM by f(t):s

DsAsMbgp= f(t):s

D3 A5 M by e(t) : type(T,e,)

[FIL-REC]

i=1..rank(t), j=1..m DA M by fj(pzj () : sj-

t<1lpf&1ff

[FIL-PROD]

i=l.rank(t), j=1,2  T;A;M by fi(nl(t)) : s

J
DA M by (ff)®): \/ (s1s8)

i=1..rank(t)

[FIL-UNION]

L A M e LU TS
7 1,2 F,A,Mkﬁlfz(tz) Si tlztxlz i 2

D505 M b {0if, . bmifms 3 @) 0\ {zsh, o lmish, 0} D5 A5 M b filf2(t) \/ s t2=1&=1AT
i=1..rank(t) {i|t; #empty}
[FIL-CoMP] [FIL-FIx]
DyA; M by fi(t):s D505 M by fa(s) : s DA (X = ) M, (X,1) = T) b f() 0 s T fresh
D305 M Fp fiifa(t) - s T;0; M by (X f)(t) : puT.s e
[FIL-CALL-NEW] (T, a) [FIL-CALL-MEM]
DA M, (X, t) = T) Fu AX)(#) : ¢/ t=type(Ta -
s A M, (X, t) = T) b AX)(2) (X, ) & dom(M) t = type(T', a)
T3 A M by (Xa)(s) : pT.t T fresh D;A; M by (Xa)(s) : M(X,t) (X, 1) € dom(DM)

[FIL-ORDBY]
Vi; € item(t) T3 A3 M b f(t:) s

I'; A M by (orderby f)(t) : OrderBy(t)

t < [anyx]
V/ ;si is ordered

[FIL-GRPBY]
Vt; € item(t) T3 A3 M by f(t) @ ss

t < [any*]
'; Ay M by (groupby f)(t) : [((V, si),0rderBy(t))*]

Figure 2. Type inference algorithm for filter application

Theorem 13 (subject reduction). If @; ;3 Fu f(t) : s, then
Sforallv :t, ;@ Fou f(v) ~ rimpliesT : s.

whose proof is given in the full version. It is easy to write a fil-
ter for which the type inference algorithm, that is the deduction
of k4, does not terminate: pX.x = X(z,z). The deduction of
T3 A3 M by f(t) - s simulates an (abstract) execution of the filter
f on the type t. Since filters are Turing complete, then in general
it is not possible to decide whether the deduction of - for a given
filter f will terminate for every input type t. For this reason we
define a static analysis Check(f) for filters that ensures that if f
passes the analysis, then for every input type ¢ the deduction of
T'; A3 M by f(t) @ s terminates. For space reasons the formal
definition of Check(f) is available in only the full version, but its
behavior can be easily explained. Imagine that a recursive filter f
is applied to some input type ¢. The algorithm tracks all the recur-
sive calls occurring in f; next it performs one step of reduction of
each recursive call by unfolding the body; finally it checks in this
unfolding that if a variable occurs in the argument of a recursive
call, then it is bound to a type that is a subtree of the original type
t. In other words, the analysis verifies that in the execution of the
derivation for f(t) every call to s/p for some type s and pattern
p always yields a type environment where variables used in re-
cursive calls are bound to subtrees of ¢. This implies that the rule
[FIL-CALL-NEW] will always memoize for a given X, types that are
obtained from the arguments of the recursive calls of X by replac-
ing their variables with a subtree of the original type ¢ memoized
by the rule [FIL-Fix]. Since ¢ is regular, then it has finitely many
distinct subtrees, thus [FIL-CALL-NEW] can memoize only finitely
many distinct types, and therefore the algorithm terminates.

More precisely, the analysis proceeds in two passes. In the first
pass the algorithm tracks all recursive filters and for each of them it
(7) marks the variables that occur in the arguments of its recursive
calls, (i%) assigns to each variable an abstract identifier represent-
ing the subtree of the input type to which the variable will be bound
at the initial call of the filter, and (47) it returns the set of all types
obtained by replacing variables by the associated abstract identifier
in each argument of a recursive call. The last set intuitively repre-
sents all the possible ways in which recursive calls can shuffle and
recompose the subtrees forming the initial input type. The second
phase of the analysis first abstractly reduces by one step each re-
cursive filter by applying it on the set of types collected in the first
phase of the analysis and then checks whether, after this reduction,
all the variables marked in the first phase (ie, those that occur in ar-

guments of recursive calls) are still bound to subtrees of the initial
input type: if this checks fails, then the filter is rejected.

It is not difficult to see that the type inference algorithm con-
verges if and only if for every input type there exists a integer n
such that after n recursive calls the marked variables are bound
only to subtrees of the initial input type (or to something that does
not depend on it, of course). Since deciding whether such an n
exists is not possible, our analysis checks whether for all possible
input types a filter satisfies it for n=1, that is to say, that at every
recursive call its marked variables satisfy the property; otherwise it
rejects the filter.

Theorem 14 (Termination). [f Check(f), then for every type t the
deduction of T'; @ ;@ Fu f(t) : s is in 2-EXPTIME. Furthermore,
if t is given as a non-deterministic tree automaton (NTA) then
;239 by f(t) : s isin EXPTIME, where the size of the problem
is |1 [t

This complexity result is in line with those of similar formalisms.
For instance in [18], it is shown that type-checking non determin-
istic top-down tree transducers is in EXPTIME when the input and
output types are given by a NTA.

All filters defined in this article pass the analysis. As an example
consider the filter rotate that applied to a list returns the same list
with the first element moved to the last position (and the empty list
if applied to the empty list):

pX. ((2(y:2)) = (1,X(2,2)) | w=>w)
The analysis succeeds on this filter. If we denote by ¢, the abstract
subtree bound to the variable z, then the recursive call will be ex-
ecuted on the abstract argument (¢4, ). So in the unfolding of the
recursive call x is bound to ¢, whereas y and z are bound to two
distinct subtrees of ¢.. The variables in the recursive call, x and z,
are thus bound to subtrees of the original tree (even though the ar-
gument of the recursive call is not a subtree of the original tree),
therefore the filter is accepted . In order to appreciate the precision
of the inference algorithm consider the type [int+ bool+], thatis,
the type of lists formed by some integers (at least one) followed by
some booleans (at least one). For the application of rotate to an
argument of this type our algorithm szatically infers the most pre-
cise type, that is, [int* bool+ int]. If we apply it once more the
inferred type is [int* bool+ int int]|[bool* int bool].

Generic filters are Turing complete. However, requiring that
Check () holds —meaning that the filter is typeable by our system—
restricts the expressive power of our filters by preventing them



from recomposing a new value before doing a recursive call. For
instance, it is not possible to typecheck a filter which reverses the
elements of a sequence. Determining the exact class of transforma-
tions that typeable filters can express is challenging. However it is
possible to show (see the full version for the proof) that typeable
filters are strictly more expressive than top-down tree transducers
with regular look-ahead, a formalism for tree transformations in-
troduced in [13]. For an intuition of this result consider the tree:
a(us(... (ua ())vr(- . - (v ))))

that is, a tree whose root is labeled a with two children, each being
a monadic tree of height n and m, respectively. It is not possible
to write a top-down tree transducer with regular look-ahead that

creates the tree
a(wr(.... (un(v1(...vm())))))

which is just the concatenation of the two children of the root, seen
as sequences, a transformation that can be easily programmed by
typeable filters. The key difference in expressive power comes from
the fact that filters are evaluated with an environment that binds
capture variables to sub-trees of the input. This feature is essential
to encode sequence concatenation and sequence flattening —two
pervasive operations when dealing with sequences— that cannot be
expressed by top-down tree transducers with regular look-ahead.

5. Jaql

In this Section, we show how filters can be used to capture some
popular languages for processing data on the Cloud. We consider
Jaql [16], a query language for JSON developed by IBM. We give
translation rules from a subset of Jaql into filters.

Definition 15 (Jaql expressions). We use the following simplified
grammar for Jaql (where we distinguish simple expressions, ranged
over by e, from “core expressions” ranged over by k).

e 1= ¢ (constants)
| =z (variables)
[} (current value)
| le,..., €l (arrays)
| {ee,..., ece ¥ (records)
| e.l (field access)
| ople,...,e) (function call)
| e >k (pipe)

k ::= filter (each z )7 e (filter)
| transform (each z)? e (transform)
|  expand ((each z)? e)? (expand)
| group ((each z)? by z=e (as x)?)? intoe (grouping)

In order to ease the presentation we extend our syntax by adding
“filter definitions” (already informally used in the introduction) to
filters and “filter calls” to expressions:

e == 1let filter F'[F4,...,F,]1=fine (filter defn.)
f o= FIIf,..., f] (call)

where F' ranges over filter names. The mapping for most of the
language we consider rely on the following built-in filters.

let filter Filter [F]=pX.
‘nil = ‘nil
I ((z, zs),tl) = (X (z,xs),X (t))
| (z,¢tl) = Fa ;(‘true = (z, X (t]))|‘false = X (tl))

let filter Transform [F]=pX.
‘nil = ‘nil
I (=, zs),tl) = (X (z, zs),X (tl))
I (z,tl) = (Fz, X(¢))

let filter Expand =pX.
‘nil = ‘nil
I (‘nil,tl) = X (¢)
I ((z, zs),tl) = (x,X (s, tl))
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Jaql expressions are mapped to our expressions as follows (where
$ is a distinguished expression variable interpreting Jagl’s §):

c] = ¢

z] = z

8] = ¢

{er:el,.senien ] = A{le]:lell, - lex] :[en] }
e.1] = [e].l

Op(ela e’ﬂ)]] = Op([[@l]] ) "-v[[e”]])
Le1,...,en]] = (e, .-(en], ‘nil)...)
e->k] = lebsl¥le

Jaql core expressions are mapped to filters as follows:

filter e]; =[filter each $e]
filter eachuz e]g = Filter [z =[e]]
transform e], =[transform each $e]g

transform eachz e]; = Transform [z = [e] ]
expand each x €] [expand] ;[transform each z €]
expand]; = Expand
group into e]p =[group by y=true into e]p
group by y=e1 into ex]].=[group each § byy=e: into e2]g
group each x by y=e; into 62]]F =

[group each z by y = e as § into ea]
[group eachz by y=e; as gintoes]y =

groupby = = [e1] ; Transform [(y,g) = [e2] ]

This translation defines the (first, in our knowledge) formal seman-
tics of Jaql. Such a translation is all that is needed to define the
semantics of a NoSQL language and, as a bonus, endow it with the
type inference system we described without requiring any modi-
fication of the original language. No further action is demanded
since the machinery to exploit it is all developed in this work.

As for typing, every Jaql expression is encoded into a filter for
which type-checking is ensured to terminate: Check() holds for
Filter[], Transform[], and Expand (provided it holds also for
their arguments) since they only perform recursive calls on recom-
binations of subtrees of their input; by its definition, the encoding
does not introduce any new recursion and, hence, it always yields a
composition and application of filters for which Check() holds.

5.1 Examples

To show how we use the encoding, let us encode the example of
the introduction. For the sake of the concision we will use filter
definitions (rather than expanding them in details). We use Fil
and Sel defined in the introduction, Expand and Transform[]
defined at the beginning of the section, the encoding of Jaql’s field
selection as defined in Section 3, and finally Head that returns the
first element of a sequence and a family of recursive filters Rgrp:
with i € NT both defined below:

let filter Head = ‘nil => null | (x,xs) => x

= ‘nil => ‘nil
| ((Gi,x),tail) => (x , Rgrpi tail)
| => Rgrp: tail

let filter Rgrp:

Then, the query in the introduction is encoded as follows

[employees depts];
[Sel Fill;
[Transform[x =>(1,x)] Transform[x =>(2,x)]1];
Expand;
groupby ( (1,$)=>$.dept | (2,$)=>$.depid );
Transform[(g,1)=>(

[(1; Rgrp1l) (1; Rgrp2)];

[es ds] =>

{ dept: g,
deptName: (ds ; Head) .name),

numEmps: count(es) } )]
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In words, we perform the selection on employees and filter the
departments (lines 1-2); we tag each element by 1 if it comes from
employees, and by 2 if it comes from departments (line 3); we
merge the two collections (line 4); we group the heterogeneous list
according to the corresponding key (line 5); then for each element
of the result of grouping we capture in g the key (line 6), split the
group into employees and depts (line 7), capture each subgroup into
the corresponding variable (ie, es and ds) (line 8) and return the
expression specified in the query after the “into” (lines 8-10). The
general definition of the encoding for the co-grouping can be found
in the full version.

Let us now illustrate how the above composition of filters is
typed. Consider an instance where:

e employees has type [ Remp* ], where
Remp = { dept: int, income:int, ..}

e depts hastype [ (Rdep | Rbranch)* 1, where
Rdep = {depid:int, name: string, size: int}
Rbranch = {brid:int, name: string}
(this type is a subtype of Dept as defined in the introduction)

The global input type is therefore (line 1)
[ [ Rempx 1 [ (Rdep | Rbranch)* 1 ]
which becomes, after selection and filtering (line 2)
[ [ Rempx 1 [ Rdepx 1 1
(note how all occurrences of Rbranch are ignored by Fil). Tagging
with an integer (line 3) and flattening (line 4) yields
[ (1,Remp)* (2,Rdep)* ]
which illustrates the precise typing of products coupled with sin-
gleton types (ie, 1 instead of int). While the groupby (line 5) in-
troduces an approximation the dependency between the tag and the
corresponding type is kept
[ (int, [ ((1,Remp) | (2,Rdep) )+ 1) * ]

Lastly the transform is typed exactly, yielding the final type

[ {dept:int, deptName:string|null, numEmps:int }* ]
Note how null is retained in the output type (since there may be
employees without a department, then Head may be applied to an
empty list returning null, and the selection of name of null re-
turns null). For instance suppose to pipe the Jaql grouping defined
in the introduction into the following Jaql expression, in order to
produce a printable representation of the records of the result

transform each x (
(x.deptName)@":"@(to_string x.dep)@":"Q(x.numEmps))

where @ denotes string concatenation and to_string is a conver-
sion operator (from any type to string). The composition is ill-typed
for three reasons: the field dept is misspelled as dep, x .numEmps
is of type int (so it must be applied to to_string before con-
catenation), and the programmer did not account for the fact that
the value stored in the field deptName may be null. The encoding
produces the following lines to be appended to the previous code:

Transform[ x =>
(x.deptName)@":"@(to_string x.dep)@":"@(x.numEmps)]

in which all the three errors are detected by our type system. A
subtler example of error is given by the following alternative code

Transform[
{ dept : d, deptName: n&String, numEmps: e } =>

n @ ":" @ (to_string d) @ ":" @ (to_string e)
| { deptName: null, .. } => ""
| _ => "Invalid department" ]
which corrects all the previous errors but adds a new one since, as
detected by our type system, the last branch can be never selected.
As we can see, our type-system ensures soundness, forcing the pro-

grammer to handle exceptional situations (as in the null example
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above) but is also precise enough to detect that some code paths
can never be reached.

In order to focus on our contributions we kept the language of
types and filters simple. However there already exists several con-
tributions on the types and expressions used here. Two in particular
are worth mentioning in this context: recursive patterns and XML.

Definition 3 defines patterns inductively but, alternatively, we
can consider the (possibly infinite) regular trees coinductively gen-
erated by these productions and, on the lines of what is done in
CDuce, use the recursive patterns so obtained to encode regular
expressions patterns (see [5]). Although this does not enhance ex-
pressiveness, it greatly improves the writing of programs since it
makes it possible to capture distinct subsequences of a sequence by
a single match. For instance, when a sequence is matched against
a pattern such as [ (int as x | bool as y | _)* 1], then x
captures (the list of) all integer elements (capture variables in reg-
ular expression patterns are bound to lists), y captures all Boolean
elements, while the remaining elements are ignored. By such pat-
terns, co-grouping can be encoded without the Rgrp. For instance,
the transform in lines 6-11 can be more compactly rendered as:

Transform[(g,[ ((1,es)|(2,ds))* 1) =>
{ dept: g,
deptName: (ds;Head) .name,
numEmps: count (es) }]

For what concerns XML, the types used here were originally de-
fined for XML, so it comes as a no surprise that they can seam-
lessly express XML types and values. For example CDuce uses
the very same types used here to encode both XML types and ele-
ments as triples, the first element being the tag, the second a record
representing attributes, and the third a heterogeneous sequence for
the content of the element. Furthermore, we can adapt the results
of [10] to encode forward XPath queries in filters. Therefore, it
requires little effort to use the filters presented here to encode lan-
guages such as JSONiq [28] designed to integrate JSON and XML,
or to precisely type regular expressions, the import/export of XML
data, or XPath queries embedded in Jaql programs. The description
of these encodings can be found in the long version of this article,
where we also argue that it is better to extend NoSQL languages
with XML primitives directly derived from our system rather than
to use our system to encode languages such as JSONiq. As a mat-
ter of fact, existing approaches tend to juxtapose XML and JSON
operators thus yielding to stratified (ie, not tightly integrated) sys-
tems which have several drawbacks (eg, JSONiq does not allow
XML nodes to contain JSON objects and arrays). Such restrictions
are absent from our approach since both XML and JSON operators
are encoded in the same basic building blocks and, as such, can be
freely nested and combined.

5.2 Extensions

Hitherto we used filters only to encode primitive operators of some
NoSQL languages, in particular Jaql. However, it is possible to add
filters to other languages, so as to have user-defined operators typed
as precisely as primitive ones. From a linguistic point of view this is
ano-brainer: it suffices to add filter application to the expressions of
the host language. However, such an extension can be problematic
from a computational viewpoint, since it may disrupt the execution
model, especially for what concerns aspects of parallelism and dis-
tribution. A good compromise is to add only filters that have “local”
effects, which can already bring dramatic increases in expressive-
ness and type precision without disrupting the distributed compila-
tion model. For instance, one can add just pattern and union filters
as in the following (extended) Jaql program:

transform ( {a:x,..}asy => {y.*, sum:x+x} | y=>y)
(with the convention that a filter occurring as an expression de-



notes its application to the current argument §). With this syntax,
our inference system is able to deduce that feeding this expression
with an argument of type [{a?:int, c:booll}*] returns a result
of type [({a:int, c:bool, sum:int} | {c:bool})*]. This
precision comes from the capacity of our inference system to dis-
criminate between the two branches of the filter and deduce that
a sum field will be added only if the a field is present. Similarly
by using pattern matching in a Jaql “filter” expression, we can
deduce that filter ( int=>true | _ =>false ) fed with any
sequence of elements always returns a (possibly empty) list of in-
tegers. An even greater precision can be obtained for grouping ex-
pressions when the generation of the key is performed by a filter
that discriminates on types: the result type can keep a precise cor-
respondence between keys and the corresponding groups.

6. Commentaries

Finally, let us explain some subtler design choices for our system.

Filter design: The reader may wonder whether products and
record filters are really necessary since, at first sight, the filter
(f1,f2) could be encoded as (z,y) = (fiz, f2y) and similarly
for records. The point is that fiz and foy are expressions —and
thus their pair is a filter— only if the f;’s are closed (ie, without
free term recursion variables). Without an explicit product filter it
would not be possible to program a filter as simple as the identity
map, pX.‘nil = ‘nil|(h,t) = (h,Xt) since Xt is not an ex-
pression (X is a free term recursion variable). Similarly, we need
an explicit record filter to process recursively defined record types
such as pX.({head:int, tail: X }|‘nil).

Likewise, one can wonder why we put in filters only the “open”
record variant that copy extra fields and not the closed one. The
reason is that if we want a filter to be applied only to records with
exactly the fields specified in the filter, then this can be simply
obtained by a pattern matching. So the filter {¢1:f1,...,0n:fn}
(ie, without the trailing “..”) can be simply introduced as syntactic
sugar for {¢1:any, ..., lytany} = {li:f1, ..., lnifn, -}

Constructors: The syntax for constructing records and pairs is
exactly the same in patterns, types, expressions, and filters. The
reader may wonder why we did not distinguish them by using, say,
x for product types or = instead of : in record values. This, com-
bined with the fact that values and singletons have the same syntax,
is a critical design choice that greatly reduces the confusion in these
languages, since it makes it possible to have a unique representation
for constructions that are semantically equivalent. Consider for in-
stance the pattern (z,(3, ‘nil)). With our syntax (3, ‘nil) denotes
both the product type of two singletons 3 and ‘nil, or the value
(3,‘nil), or the singleton that contains this value. According to
the interpretation we choose, the pattern can then be interpreted as
a pattern that matches a product or a pattern that matches a value.
If we had differentiated the syntax of singletons from that of values
(eg, {v}) and that of pairs from products, then the pattern above
could have been written in five different ways. The point is that
they all would match exactly the same sets of values, which is why
we chose to have the same syntax for all of them.

Record types:  In order to type records with computed labels we
distinguished two cases according to whether the type of a record
label is finite or not. Although such a distinction is simple, it is not
unrealistic. Labels with singleton types cover the (most common)
case of records with statically fixed labels. The dynamic choice
of a label from a statically known list of labels is a usage pattern
seen in JavaScript when building an object which must conform to
some interface based on a run-time value. Labels with infinite types
cover the fairly common usage scenario in which records are used
as dictionaries: we deduce for the expression computing the label

the type string, thus forcing the programmer to insert some code
that checks that the label is present before accessing it.

The rationale behind the typing of records was twofold. First
and foremost, in this work we wanted to avoid type annotations
at all costs (since there is not even a notion of schema for JSON
records and collections —only the notion of basic type is defined—
we cannot expect the Jaql programmer to put any kind of type
information in the code). More sophisticated type systems, such
as dependent types, would probably preclude type reconstruction:
dependent types need a lot of annotations and this does not fit our
requirements. Second, we wanted the type-system to be simple
yet precise. Making the finite/infinite distinction increases typing
precision at no cost (we do not need any extra machinery since
we already have singleton types). Adding heuristics or complex
analysis just to gain some precision on records would have blurred
the main focus of our article, which is not on typing records but
on typing transformations on records. We leave such additions for
future work.

Record polymorphism: The type-oriented reader will have no-
ticed that we do not use row variables to type records, and nev-
ertheless we have a high degree of polymorphism. Row variables
are useful to type functions or transformations since they can keep
track of record fields that are not modified by the transformation. In
this setting we do not need them since we do not type transforma-
tions (ie, filters) but just the application of transformations (filters
are not first-class terms). We have polymorphic typing via filters
(see how the first example given in Section 5.2 keeps track of the ¢
field) and therefore open records suffice.

Related work: In the (nested) relational (and SQL) context, many
works have studied the integration of (nested)-relational algebra or
SQL into general purpose programming languages. Among the first
attempts was the integration of the relational model in Pascal [29]
or in Smalltalk [12]. Also, monads or comprehensions [8, 31,
32] have been successfully used to design and implement query
languages including a way to embed queries within host languages.
Significant efforts have been done to equip those languages with
type systems and type checking disciplines [1, 9, 23, 24] and more
recently [25] for integration and typing aspects. However, these
approaches only support homogeneous sequences of records in
the context of specific classes of queries (practically equivalent to
a nested relational algebra or calculus), they do not account for
records with computable labels, and therefore they are not easily
transposable to a setting where sequences are heterogeneous, data
are semi-structured, and queries are much more expressive.

While the present work is inspired and stems from previous
works on the XML iterators, targeting NoSQL languages made the
filter calculus presented here substantially different from the one
of [10, 21] (dubbed XML filters in what follows), as well in syntax
as in dynamic and static semantics. In [10] XML filters behave as
some kind of top-down tree transducers, termination is enforced by
heavy syntactic restrictions, and a less constrained use of the com-
position makes type inference challenging and requires sometimes
cumbersome type annotations. While XML filters are allowed to
operate by composition on the result of a recursive call (and, thus,
simulate bottom-up tree transformations), the absence of explicit
arguments in recursive calls makes programs understandable only
to well-trained programmers. In contrast, the main focus of the
current work was to make programs immediately intelligible to any
functional programmer and make filters effective for the typing
of sequence transformations: sequence iteration, element filtering,
one-level flattening. The last two are especially difficult to write
with XML filters (and require type annotations). Also, the integra-
tion of filters with record types (absent in [10] and just sketched in
[21]) is novel and much needed to encode JSON transformations.



7. Conclusion

Our work addresses two very practical problems, namely the typ-
ing of NoSQL languages and a comprehensive definition of their
semantics. These languages add to list comprehension and SQL
operators the ability to work on heterogeneous data sets and are
based on JSON (instead of tuples). Typing precisely each of these
features using the best techniques of the literature would probably
yield quite a complex type-system (mixing row polymorphism for
records, parametric polymorphism, some form of dependent typ-
ing,...) and we are skeptical that this could be achieved without us-
ing any explicit type annotation. Therefore we explored the formal-
ization of these languages from scratch, by defining a calculus and a
type system. The thesis we defended is that all operations typical of
current NoSQL languages, as long as they operate structurally (ie,
without resorting on term equality or relations), amount to a com-
bination of more basic bricks: our filters. On the structural side, the
claim is that combining recursive records and pairs by unions, inter-
sections, and negations suffices to capture all possible structuring of
data, covering a palette ranging from comprehensions, to heteroge-
neous lists mixing typed and untyped data, through regular expres-
sions types and XML schemas. Therefore, our calculus not only
provides a simple way to give a formal semantics to, reciprocally
compare, and combine operators of different NoSQL languages,
but also offers a means to equip these languages, in they current
definition (ie, without any type definition or annotation), with pre-
cise type inference. This type inference yields and surpasses in pre-
cision systems using parametric polymorphism and row variables.
The price to pay is that transformations are not first class: we do
not type filters but just their applications. However, this seems an
advantageous deal in the world of NoSQL languages where “se-
lects” are never passed around (at least, not explicitly), but early
error detection is critical, especially in the view of the cost of code
deployment.”

The result are filters, a set of untyped terms that can be easily
included in a host language to complement in a typeful framework
existing operators with user-defined ones. The requirements to in-
clude filters into a host language are so minimal that every modern
typed programming language satisfies them. The interest resides
not in the fact that we can add filter applications to any language,
rather that filters can be used to define a smooth integration of calls
to domain specific languages (eg, SQL, XPath, Pig, Regex) into
general purpose ones (eg, Java, C#, Python, OCaml) so as both can
share the same set of values and the same typing discipline. Like-
wise, even though filters can provide a prototyping platform for
queries, they cannot currently be used as a final compilation stage
for NoSQL languages: their operations rely on a Lisp-like encod-
ing of sequences and this makes the correspondence with optimized
bulk operations on lists awkward. Whether we can derive an effi-
cient compilation from filters to map-reduce (recovering the bulk
semantics of the high-level language) is a challenging open ques-
tion. Future plans include practical experimentation of our tech-
nique: we intend to benchmark our type analysis against existing
collections of Jaql programs, gauge the amount of code that is ill
typed and verify on this how frequently the programmer adopted
defensive programming to cope with the potential type errors.
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