A Theory of Contracts for Web Services

Giuseppe Castagna Nils Gesbert Luca Padovani
PPS (CNRS) LRI (CNRS) ISTI
Université Paris 7 Université Paris-Sud Universita degli Studi di Urbino
Paris, France Orsay, France Urbino, Italy

Abstract

Contracts are behavioural descriptions of Web servicesd&Vese
atheory of contracts that formalises the compatibility ofiant to a
service, and the safe replacement of a service with anoéneics.
The use of contracts statically ensures the successfulletiompof
every possible interaction between compatible clientssamdices.

The technical device that underlies the theory is the dedimitf
filters, which are explicit coercions that prevent some possible be
haviours of services and, in doing so, they make servicepatim
ble with different usage scenarios. We show that filters easden
as proofs of a sound and complete subcontracting dedugtiiara
which simultaneously refines and extends Hennessy's cldssi-
iomatisation of the must testing preorder. The relationeisidable
and the decision algorithm is obtained via a cut-eliminapoocess
that proves the coherence of subcontracting as a logictgrsys

Despite the richness of the technical development, thdtiegu
approach is based on simple ideas and basic intuitions. lkkema
ably, its application is mostly independent of the languaged to
program the services or the clients. We also outline theipless
practical impact of such a work and the perspectives of &uter
search it opens.

Categories and Subject Descriptors F.1.2 [Computation by Ab-
stract Devices Modes of Computation—Parallelism and con-
currency; F.3.31l[ogics and Meanings of PrografsStudies of
Program Constructs—Type structure; H.3l®f¢rmation Storage
and Retrievdt Online Information Services—Web-based services;
H.5.3 Information Interfaces and PresentatjoiGroup and Orga-
nization Interfaces—Theory and models, Web-based intierac

General Terms Languages, Standardization, Theory

Keywords Web services, contracts, concurrency theotgs,
must testing, type theory, subtyping, explicit coercions.

1. Introduction

Web services are distributed components that clients canest
to and communicate with by means of standard communication
protocols and platform-neutral message formats. Remarkaleb
services are equipped with machine-understandable gésas of
their interface. This aspect permits Web services to beodeed

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to postesmess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL'08, January 7-12, 2008, San Francisco, California, USA.
Copyright© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

according to the information encoded in their interface.ohy the
capabilities that can be used as search keys are the operatio-
vided by the service, the format echema(Fallside and Walm-
sley 2004) of the exchanged messages, anadiméract required
to interact successfully with the service. By contract weamthe
description of the external, observable behaviour of aiserv

The Web Service Description LanguagegpL) (Chinnici et al.
2007a,b) is a standard technology for describing the iaterfex-
posed by a service. WsDL, contracts are basically limited to one-
way (asynchronous) and request/response (synchronogsacn
tions. The Web Service Conversation Languages€L) (Baneriji
et al. 2002) extendsvsDL contracts by allowing the description
of arbitrary, possibly cyclic sequences of exchanged nyesshe-
tween communicating parties. Other languages, such as lbhe A
stract Web Service Business Execution Language (Alves .et al
2007), provide even more detailed descriptions of senbyetefin-
ing the subprocess structure and more specific detailsdigpthe
service’s internals. Such descriptions, which are exeeblsicon-
crete and verbose to directly serve as interfaces, can b@xpp
mated and compared in terms of contracts.

Standard technologies are also available for building s&pe
ries of Web services descriptions (Bellwood et al. 2005)kinmgit
possible to perform queries for services according to tbeitract.
Searching immediately calls for a notion of contract eqeinae
to perform service discovery in the same way as, say, typadso
phisms are used to perform library searches (Rittri 19932 &8mo
1995). Without a formal characterisation of contracts, &esv, one
is left with excessively demanding equivalences such asstioal
or structural equality. In fact, clients will be equally isfied to
interact with services that providaore capabilities than those ac-
tually required, so that it makes sense to relax the equicalénto
asubcontract preordefdenoted by< in this paper).

In this work we develop a formal theory of contracts that degin
a very general subcontract preorder. Along the lines of faiti
et al. 2006) we describe contracts by simples-like terms built
with just three operators: prefixing, denoted by a dot, arlitfix
choice operators- (external choice) aneb (internal choice). The
contracta.o describes a service that is capable of performing an
action «, and then continues as The contract + T describes
a service that lets the client decide whether to continue asas
7. The contraci @ 7 describes a service that internally decides
whether to continue as or 7. Following ccsnotation, actions are
either write or read actions, the former being topped by a doaa
one being theo-actionof the other. Actions can either represent
operationsor message type#s a matter of facts, contracts are
behavioural types of processes that do not manifest irteroges
and the parallel structure.

Contracts are then to be used to ensure that interactiongbpt
clients and services will always succeed. Intuitivelysth@appens if
whenever a service offers some set of actions, the cliemeegyn-

chronises with one of them (that is, it performs the corresiiay
co-action) or it terminates. The service contract will theiow us
to determine the set of clients thewmplywith it, that is that will
successfully terminate any session of interaction withstinwice.
Of course the client will probably be satisfied to interacthwi
services that offer more than what the searched contracifigse
Intuitively we want to define an order relation on contragtx =
such that every client complying with services implemegtirwill
also comply with services of contract In particular, we would like

already ensures that tldefield will never be used) or because they
are inserted by the compiler (as when converting an intederthe
corresponding float). In this case we speakroplicit coercions.
However some programming languages (e.g. OCaml) res@at-to
plicit coercions because they have a visible effect and, for instan
they cannot be inferred by the compiler.

Coercions for contracts have an observable effect, therefe
develop their meta-theory in terms of explicit coercionswéver,
coercions can be inferred so they can be kept implicit in #re |

the < preorder to enjoy some basic properties. The first one is that guage and automatically computed at static time. Coming bac

it should be safe to replace (the service exposing) a cdniiéic a
“more deterministic” one. For instance, we expech b.c < a,
since every client that terminates with a service that mdgrof
eithera or b.c will also terminate with a service that systematically
offers @. The second desirable property is that it should be safe
to replace (the service exposing) a contract with anothertbat
offers more capabilities. For instance, we expeet @+ b.d since

a client that terminates with services that implemenwill also
terminate with services that leave the client the choicaveen

a andb.d. If taken together, these two examples show the main
problem of this intuition: it is easy to see that a client tbatnplies
with @ @ b.c does not necessarily comply with+ b.d: if client

and service synchronise dn then the client will try to write on

c while the service expects to read frain Therefore, under this

interpretation< looks as not being transitive:
Taobc=<a A a=<a+bd == ad®bc=a+bd.
The problem can be solved by resorting to the theomaicit co-

ercions(Bruce and Longo 1990; Chen 2004; Soloviev et al. 1996).

our example, the embedding of a service of tgprto a® b.c is the
identity, since we do not have to mask/shield any action efeice
of the former type in order to use it in a context where a serat
the latter type is expected. On the contrary, to embed acenfi
typea + b.d into @ we have to mask (at least) ttheaction of the
service. In order to use it in a context that expect service we
apply to it afilter that will block allb messages. Transitivity being
alogical cut, the coercion from+b.d toa®b.c is the composition
of the two coercions, that is the filter that blodkenessages. So if
we have a client that complies with® b.c, then it can be used with
a service that implement + b.d by applying to this service the
filter that blocks itsh messages. This filter will make the previous
problematic synchronisation dnimpossible, so the client can do
nothing but terminate.

Filters thus reconcile two requirements that were hithénto
compatible: On the one hand we wish to replace an old seryice b
a new service that offers more choices (thatidgth subtypinge.g.

o > o+ 1) and/or longer interaction patterns (thatlispth subtyp-
ing, e.g.a > a.0) and/or is more deterministic (e.g.& T > o).

The flawed assumption of the approach described so far, which On the other hand we want clients of the old service to seafyles

is the one proposed in (Carpineti et al. 2006), is that sesvare
used carelessly “as they are”. Note indeed that what we drgydo
here is to use a service of “typ& + b.d where a service of type
@ @ b.c is expected. The knowledgeable reader will have recog-
nised that we are using as aninversesubtyping relation for ser-
vices? If we denote by:> the subtyping relation for services, then
@ ®bc > a4+ bdand so what we implicitly did is to apply
subsumption (Cardelli 1988) and consider that a servicehha
typea + b.d has also typ& @ b.c. The problem is not thak (or,
equivalently,:>) is not transitive. It rather resides in the use of sub-
sumption, since this corresponds to the uséngflicit coercions.
Coercions have many distinct characterisations in thealitee, but
they all share the same underlying intuition that coercemesfunc-
tions that embed objects of a smaller type into a larger typieh*
out adding new computation” (Chen 2004). For instance itel w
known that for record types one h@s:s} > {a:s; b:t}. Thisis so
because the coercion functien= Az{**** {4 = z.a} embeds
values of the smaller type into the larger dri@.order to use a term
of type{a:s; b:t} where one of typda:s} is expected we first have
to embed it in the right type by the coercion functioabove, which
erases (masks/shields) th&eld so that it cannot interfere with the
computation. Most programming languages do not requir@tbe
grammer to write coercions, either because they do not haye a
actual effect (as in the case of the functiosince the type system

1The inversion is due to the fact that we are considering thentchper-
spective: a contract can be interpreted as the set of clieat£omply with
services implementing the contract. We decided to keemtitation rather
than the inverse one for historical reasons, since it is éineessense as used
by De Nicola and Hennessy for the may and must preorders (Badand
Hennessy 1984). This inversion corresponds to the duadityden simula-
tion and subtyping, viz. between observers and observeavimgirs.

2n typed lambda calculus coercions are formally charasgeriby the fact
that their type erasure ig-equivalent to the identity function, but in general
coercions may be different from the identity function (CI2804).

work with the new one.

Two observations to conclude this brief overview. Firsg ftact
that we apply filters to services rather than to clients isgysesen-
tational convenience: the same effect can be obtained Hyiagp
client the filter that blocks the corresponding co-actidBscond,
filters must be more fine grained in blocking actions tharriegin
operators as defined facsor «. These are “permanent” blocks,
while filters are required to be able to modulate blocks altirey
computation. For instance the filter that embédsga + b)) + b.c
into a.b must blockb only at the first step of the interaction and
only at the second step of the interaction.

1.1 Outline of the presentation

We start by presenting the syntax of our contrag&sX), by show-
ing how to use them to expressspL and wscL descriptions
(§2.2), and by defining their semantid¢®(3). We then characterise
the set of all clients that are strongly compliant with a gathat
is, clients that successfully complete every direct intBoa ses-
sion with the service—and argue that subcontract relatidmsse
definitions are naively based on strong compliance are reftiee
strict or suffer the aforementioned problem of transiyivi§2.4).
We argue that subcontracting should not be defined on alliposs
ble interactions, but focus only on interactions based diors
that a client expects from the services: all the other ptessib-
tions should not interfere with the interaction. We forrsalithis
concept by giving a coinductive definition of a subcontratation
that focuses on this kind of actions, we study its propesias de-
scribe the relation with the must preord€B(1). This subcontract
relation induces a notion of weak compliance which suggibsts
non-interference of unexpected actions can be ensureddrgion
functions, which we dulffilters. By shielding the actions at issue, a
filter embeds a service into the “world” of its expected clierwe
prove that our subcontract relation can be expressed irstefifil-
ters and of the must preorder and we provide a sound and ctemple
deduction system for the subcontract relation where filpag the

role of “proofs” (§3.2). The subcontract relation is shown to be de-
cidable via the definition of a sound and complete algorithde-
duction systemg§3.3). Finally, we relate our contract language with
a suitably typed process language. The soundness of ouytbgo
contracts is proved by showing that a client that is weaklsnco
pliant with a service via a given filter will successfully teinate
every interaction with the service mediated by the fil§3.4). A
conclusion recaps our work and hints at possible tracks tofréu
research{4).

For example, in (Fournet et al. 2004)> 0 < 0, buta ® 0 £ a.
This essentially derives from the fact that stuck-free comiance

is defined without using an explicit action (denoted éyn this
work) expressing in an observationally visible way the ssstul
termination of a party, but instead by requiring that thetyparust
eventually reduce to the idle procedsDoing so prevents the spec-
ification of clients of the forme + @.e, which attemptto do an
action, but that can succeed even if the action is not availdthe
lack of the explicit actiore has overall important consequences on

Proofs of lemmas and theorems have been omitted because otthe precongruence properties€f A more important point is that

space limits. They can be found in the full version of the pape
available at the authors’ web pages.

1.2 Related work

The contracts used in this presentation draw their ingpimetom
De Nicola and Hennessy's seminal workcs without T's” (De
Nicola and Hennessy 1987), as well as from acceptance tiess (
nessy 1985, 1988) of which they can be considered an aliegnat
representation. The works that are most closely relatedits are
by Carpineti et al. (2006) and those session typesspecially the
one by Gay and Hole (2005). In (Carpineti et al. 2006) the sobc
tract relation exhibits all of the desirable propertiesstrated in the
introduction, but subcontracting essentially stoppedhatgroblem
of transitivity. In that work compliance was a syntacticioatand
contracts lacked a semantic characterisation.

Session types were introduced in the context ofthealculus
(Honda 1993; Takeuchi et al. 1994; Honda et al. 1998). These

protocol. Such a session channel can be seen as a cliefgeserv
connection, and the session type is the analogous of ourambnt
as it describes which actions the processes may perfornughro
this channel. However, session types have the importaimiatésn,

if compared with contracts, that only one part has the flooa at
given time: whenever a process performs an internal choibas

to indicate explicitly which path of interaction it has clkeosand the
other process has to be waiting for this indication. Thuseeno
way of mixing internal and external choices, and two proessige
a-+banda+ b do not interact successfully (because nobody has the
floor, so no communication can happen). Subtyping for theiges
types has been studied by Gay and Hole (2005), but becaule of t
aforementioned restriction, the transitivity problem wageess in
this paper does not exist for them: internal and externaiogisacan
never be related, henee® b < a + b doesnot hold. However,
this looks like a reasonable relation, inasmuchuas b models a
scenario where exactly one of two resoureeandb is available
(and the client does not knowhich one), which can be safely
related with (and replaced by) a scenario where hodndb are
available and the client can choose whether toauseb.

Carbone et al. (2007a,b) describe choreographies of Web ser
vices by means of a global calculus, and descriptions ofiddli
ual processes are obtained as projections of the globatipgsn.
Both the global description and the projections are basedesn
sion types. In our approach, the typical application isc@ag for
a service compatible with a given protodadm the client point of
view. in particular, we want depth subtyping (a service thasttie
pursue the interaction after that the client has succdgstedmi-
nated is compatible with this client), which does not holddes-
sion types. We believe that our theory is more basic thantbery
of session types and that it can be fruitfully used to entiehlatter.

Fournet et al. (2004) definecenformancepreorder orccspro-
cesses with the property that a processtigk-freg(i.e., it success-
fully terminates) in every context in which smaller processre
stuck-free. Theconformancerelation of Fournet et al. (2004) re-
sembles our subcontract relation, with some importaneckffices.

the conformance relation of Fournet et al. is not completd va-
spect to stuck-freedom, in the sense that there are precésae
are stuck-free exactly in the same contexts but are notectlby
conformance: for instance, (b @ ¢) anda.b + a.c are stuck-free
equivalent but are not conformance equivalent. In our théloe
two processes above are equivalent and, more generall\gutnar
contracting providesmutatis mutandigcf. actions for successful
termination), a complete characterisation of stuck-fagedFinally,
stuck-freedom does not allow either width or depth subtypin

Bravetti and Zavattaro (2007) propose a contract language
equipped with a refinement relation. The language is canstia
so that output actions can only occur in the context of arrrate
choice. This restriction somehow resembles the designcehoi
session types and, not surprisingly, the refinement reldtiothis
language allows width extensions of contracts without antgri
vening filtering. However, the refinement relation is detieed in
a symmetric way for all the participants of a system, whei@as
notion of compliance is asymmetric (in favour of the cliefithis
makes the refinement relation more demanding than oursriicpa
IEjlar, all the participants must successfully terminateanieg that
depth extensions are not entailed by refinement.

A preliminary version of this work was presented atAR -

X 2007 workshop (Castagna et al. 2007). Although the work-
shop has just informal proceedings, these are availableewéb.
Therefore it seems worth discussing the differences withnNR X
version. While the overall presentation and structure dfilveorks

is the same, this paper improves over thenR-X one in several
points. Here we consider a slightly different version obaty com-
pliance relation which now coincides with the must testimg-p
order, while in RAN-X strong compliance differed from must test-
ing for some (uninteresting) pathological cases that weelthe
empty contract. The deduction system has been reworkedauifa
of elegance and simplicity. The resulting algebraic thegdrfjlters

is also cleaner. We present better results for languageatieytFi-
nally, an important part of this work is devoted to the stuflyhe
algorithmic version of the deduction system, of its logiceérpre-
tation, and of the decidability of the containment relatialhtopics
that were completely absent from theAX -X version.

Starting from the PAN-X work the third author and Cosimo
Laneve have recently proposed a simplification where cotgra
are “statically” filtered (Laneve and Padovani 2007): eamhtiact
is associated with atatic interface(in the sense that it does not
change over the time) declaring the only visible actions haf t
contract and blocks all the other ones whenever they hapfen.
stated in (Laneve and Padovani 2007), the resulting applisdess
general than ours and consequently it yields a stricterantbact
relation. For instance, the relatianb < (a.(a + b)) + b.c, which
we commentated in the previous page just befiitel, does not
hold in the interface approach (for a practical example Gitren
that does not hold for interfaces see the contra@sado’ in §2.2.2
and the explanation given at the ends8f2.1). On the other hand,
interfaces allow for simpler algorithmic treatment.

Several works on the testing framework and (Laneve and
Padovani 2007) itself have shown that the subcontractioelas
not affected in its essence by recursion: the desirablegpties we

mentioned in the introduction and formalised later in thdudgion

systems still hold. For the sake of brevity, in this paper wéyo
consider finite contracts without recursion, but the extamof

our contracts and filters to the non-finite case, althoughviblves

significant technicalities, is conceptually straightfard.

2. Contracts
2.1 Syntax

Let .4/ be a set of names, we defideto be the set of contracts
generated by the following grammar.

« a€ N

g

ala
Olaoc| o®o|o+o

where0 is the contract of services that do not perform any action
(the other constructions were already explained in theodhtc-
tion). We follow the standard convention of omitting tragio’s.

2.2 Examples

In this section we relate our contract language to existahmnolo-
gies for specifying service protocols.

2.2.1 Message exchange patterns insSpL

The Web Service Description Language (Chinnici et al. 208)7a
permits to describe and publish abstract and concreteigésos

of Web services. Such descriptions include the schema cSages
exchanged between client and server, the name and typeeod-
tionsthat the service exposes, as well as the locatiors §) where
the service can be contacted. In addition, it defines interapat-
terns (calledmessage exchange pattersvEPs in version 2.0 of
wsDL) determining the order and direction of the exchanged mes-
sages. In particulamvsbL 2.0 predefines four message exchange
patterns for describing services where the interactioniteied by
clients. Let us shortly discuss how the informal plain Esiglse-
mantics of these patterns can be formally defined in our eohtr
language. When th®EP is inOnly Or robustInOnly, commu-
nication is basicallyasynchronousthe client can only send am
message containing the request. If the pattetismistInOnly the
service may optionally send backrault message indicating that
an error has occurred. When thep is inOut or inOptQOut, com-
munication is basicallygynchronousthe client sends abn mes-
sage containing the request and the service sends back aithe
Out message containing the response @aalt message. If the
pattern isinOptOut, then theDut message is optional. These four
patterns can be encoded in our contract language as follows:

inOnly = 1In
robustInOnly = In.(0 @ Fault)
inOut = In.(Out @ Fault)
inOptOut = In.(0 @ Out ¢ Fault)

It is worth noticing that, intuitively, a client that is capa of
invoking a service Whos®IEP is robustInOnly will also interact
successfully with a service whoseep is inOnly (depth subtyp-
ing). Indeed, such client must be able to handle both a commu-
nication that terminateand a Fault message. Similarly, a client
that is capable of invoking a service whog&P inOptOut will
also interact successfully with services wheger is eitherin0Out,
or robustInOnly (since they are more deterministic), or even
inOnly. On the other hand, a client that interacts with a service
whoseMEP is inOut will not (always) interact successfully with
a service whos®IEP is inOptOut. The client assumes that it will
always receive either abut or aFault message, buinOptOut
does not give this guarantee.

in:
out:
out:

Logi n
Val i dLogi n
I nval i dLogi n

[I nval i dLogi n]

[Val i dLogi n]

in: Query
' out: Catal og
I
|
o\ Vo___
| in: Buy | in: Add@i
| I
R L "
I e S)
3 I
I
! [in: Buy H in: Logout }
I
4
in. COeditCard in: BankTransfer
out: Valid out: Valid
out: Invalid out: Invalid
[Valid] [Valid]
[1nvalid] [Invalid]

‘@)
&)

Figure 1. Contract of an e-commerce service agsCL diagram.

2.2.2 Conversations irwscL

The wsbL message exchange patterns cover only the simplest
forms of interaction between a client and a service. Morelved
forms of interactions, in particular stateful interacomrannot be
captured if not as informal annotations within twspL interface.
The Web service conversation languagecL (Baneriji et al. 2002)
provides a more general specification language for desgyitdm-
plex conversationdbetween two communicating parties, by means
of an activity diagram. The diagram is basically madentérac-
tionswhich are connected with each other by meansadfsitions
An interaction is a basic one-way or two-way communicatien b
tween the client and the server. Two-way communicationfuastey
shorthand for two sequential one-way interactions. Eatdraction
has anameand a list ofdocument typethat can be exchanged dur-
ing its execution. A transition connectssaurceinteraction with a
destinationinteraction. A transition may blabelledby a document
type if it is active only when a message of that specific docume
type was exchanged during the previous interaction.

Below we encode the contraet of a simplified e-commerce
service (Figure 1) where the client is required to login befibcan
issue a query and thus receive a catalog. Then, the cliergtdzhan
item from the catalog into the shopping cart and subsequént}
the item using one of two payment methods, either with crezid
or with a bank transfer. At any time, the client can choosegout
and leave the store. In case of purchase, the service rephatts
the purchase was either valid or not. We can represent thieambn
of Figure 1 (without the dashed part, which represent amsita
discussed later), as the following term:

def

o Login.(InvalidLogin ¢ ValidLogin.Query.
Catalog.(Logout + AddToCart.(Logout + Buy.(
Logout + CreditCard.(Valid @ Invalid)

+ BankTransfer.(Valid @ Invalid)))))

Notice that unlabelled transitions in Figure 1 correspoad t
external choices i, whereas labelled transitions correspond to
internal choices.

Let us recast in this setting the three forms of subtyping we
described in the introduction. First, it is clear that cteerom-
pliant with the service above will always be happy with more
deterministic servers that, for instance, never deny theese
(InvalidLogin @ ValidLogin = ValidLogin) as well as with
servers that offer longer interactions, such as the factabgsing
an invoice after the payment4lid < Valid.Invoice). Now
assume that the service is extended (by width subtypingh wit
“1-click ordering” capability, so that after looking at tteatalog
the client may buy an item without adding it to the shopping ca
(dashed part in Figure 1). The contract of the service woh&hge
to o’ as follows:

’ def
R

...Logout + Buy.op + AddToCart.(...)

It would be desirable for clients that are compliant with tbemer
service to be compliant with this service as well. After tile ex-
tended service offensmorethan the old one. However, the transitiv-
ity problem we pointed out in the introduction might arisedéed,
assume to have a client that does actually account Baryames-
sage right after receiving a catalog from the service antigheh

a client is compliant with the former service for the simpéason
that, since the former service did not provide a “1-click enidg”
capability, whatever contragtgs the client provided after thBuy
action was irrelevant to establish compliance. In the edéerser-
vice this is no longer the case and, since glaemay be incompati-
ble witho s, the client can safely interact with the extended service
only if the newBuy action is filtered out (se§3.2.1).

2.3 Semantics

Contracts describe the behaviour of the processes thaemepit

them. This behaviour is defined by describing the actionsdtea

offered by a process and the way in which they are offereds Ehi
formally stated by the two definitions given below.

DEFINITION 2.1 (TRANSITION). Leto - be the least relation
such that:

00—
B.0 > ifa #£
OB T if o —— andr ——

o+ T if o > and T

Thetransition relatiorof contracts, noteé—, is the least relation
satisfying the rules:

«
&0 —— 0

@ / o ’
o0 T T

@ ’ !
o+TH——0 ©T

e ’ [eY /
g0 T b T

«@ «
cPhT——o o1 cPTH 0o

and closed under mirror cases for the external and interhalices.
We writeo — if there existsr’ such thatr —— o”.

The relation—= is different from standard transition relations for
ccsprocesses (Milner 1982). For example, there is always at mos
one contract’ such that —— ¢’, while this is not the case iocs
(the processi.b + a.c has two differentu-successor statesg:and

¢). This mismatch is due to the fact that contract transitidefne

the evolution of conversation protocdi®m the perspective of an

external communicating partffhusa.b + a.c — b & ¢ because,
once the actiom has been performed, the communicating party is
not aware of which branch has been chosen. On the contasy,
transitions define the evolution of procesfesn the perspective of
the process itself

NOTATION 2.2. We writeo(«) for the unique continuation of
after o, that is, the contract’ such thatr —— ¢”.

The labelled transition system above describes the actifiesed
by (a service implementing) a contract, but does not show
these actions are offered. In particular the actions offdng an
external choice are all available at once while the actidfesed by
different components of an internal choice are mutuallylesice.
Such a description is given by theady setshat are observable for
a given contract:

DEFINITION 2.3 (OBSERVABLE READY SETY. LetZ; (A UN)
be the set of finite parts o# U_#/, calledready setsLet alsoo |} R
be the least relation between contraetsn > and ready set® in
P (N UA) such that:

0y

a.o) {a}

(c+7)JRUS ifol Randr | s
(c@7)IR if eithero J ROr 7 R

NOTATION 2.4. We use the convention that the bar operation is
an involution,a = a, and for a given ready set we define its
complementary ready set as(R) = {a | a € R}.

2.4 The problem

We now possess all the technical instruments to formallie stee
problem we described in the introduction and recalled atete
of §2.2. This first requires the precise definition @mpliance
Recall that, intuitively, the behaviour of a client comgliwith the
behaviour of a service if for every set of actions that thesiser
may offer, the client either synchronises with one of themito
terminates successfully. The behaviour of clients, as agthe one
of services, is described by contracts. Therefore we neeéfioe
when a contracp describing the behaviour of a client complies
with a contracto describing the behaviour of a service. For this
we reserve a special actien(for “end”) that can occur in client
contracts and that represents the ability of the client twassfully
terminate. Then we require that, whenever no further ictéoa is
possible between the client and the service, the client laesitate
where this action is available.

DEFINITION 2.5 (STRONG COMPLIANCH. % is astrong compli-
ance relationf (p, o) € ¢ implies that:

1. p Rando | simplies eithere € R or co(R) N's # 0, and
2. pr= p'ando v o’ implies(p’, ') € %.
We use- to denote the largest strong compliance relation.

In words the definition above states that a client of contract
is compliant with a service of contraetif (1) for every possible
combinations and R of the independent choices of the service
and the client, either there is an action in the client chafe
can synchronise with an action among those offered by thecser
(co(R) N's #) or the client terminates successfully € R),
and (2) whenever a synchronisation happens, the contaruafi
the client after it is compliant with the continuation of thervice
((p',0") €F).

Once we have such a definition it is natural to define the subcon
tract relation in terms of compliance. Intuitively, (cligrtontracts
are seen as “tests” for comparing (service) contracts. Beovs{ce)

contracts are related if so are the sets of (client) corgremmpliant
with them (De Nicola and Hennessy 1984).

DEFINITION 2.6 (STRONG SUBCONTRACY). The contracts is a
strong subcontraatf the contractr, writteno C 7, if and only if
for all p we havep 4 o impliesp 4 7. We writeo ~ 7if 0 C 7
and7r C o.

This definition corresponds to giving a set theoretic semarb
service contracts which are thus interpreted as the seteaf th
compliant clients. Thug is interpreted as set-theoretic inclusion.

As usual with testing semantics, it is hard to establish a-rel
tionship between two contracts because the set of clieatsatie
strongly compliant is infinite. A direct definition of the mneler is
therefore preferred:

DEFINITION 2.7. . is a coinductive strong subcontract relation
if (o, 7) € . implies that

1. 7 | rRimplies that there exists C R such thats |} s, and
2.7+ 7' impliese % ¢’ and(o’,7’) € 7.

THEOREM2.8. C is the largest coinductive strong subcontract
relation.

It turns out that the relatioc is the must testing preorder
as defined by De Nicola and Hennessy (1984) (a proof can be
found in (Laneve and Padovani 2007), where a different tlbei
equivalent notion of strong compliance is used). This retats
well studied and it enjoys interesting properties, in maftr it
is a precongruence with respect to prefixing, internal artdreal
choices, and als@®b C a, which is one of the desirable properties
for <, holds. HowevelC is stronger than< since, for example,

a Z a+b. Indeeda.e +b - abuta.e + b A @+ b. In general,
the must preorder allows neither width nor depth extensioins
contracts.

In previous work (Carpineti et al. 2006) an attempt was made
to directly relate two contracts andr depending on their form,
rather than on the sets of their clients. ldtal(o) denote the
dual contract ofo which, roughly, is obtained by replacing in
every action by its coactiorQ by e, every internal choice by an
external one, and viceversa (the formal definition is slightore
involved and requires first to transforminto the normal form of
Definition 3.10 and then apply the transformation descriieale;
see (Carpineti et al. 2006) for details). Intuitivelyal (o) denotes
the contract of a “canonical” client complying with services.
Then one can define a new relation on service contracts as:

1)

In words, a contract is a subcontract of- if and only if its
canonical client complies with.

This relation isnearly what we are looking for. For instance
now we haver @ b.c X a anda x a + b.d, sincedual (a @ b.c) =
G.e + b.¢.e 4 aanddual(a) = a.e 4 a + b.d.

Unfortunately, x is not a preorder since transitivity does not
hold: @.e + b.c.e A a + b.d implies thata ® b.c ¥ a + b.d.
The reason for such a failure is essentially due to the faattith
establishinga @ b.c x a anda x a + b.d we are restricting
compliance to conversations in which no synchronisatiorthen
nameb happens. While contracts account for non-determinism that
is internal to each process—being it a client or a serviceheyt
cannot handle the “system” non-determinism that springsnfr
process synchronisation. In the example above, the faikselts
from the interaction of two external choic@se +b.¢.e anda+b.d,
which yields non-determinism at system level and which duoxs
preventa priori a synchronisation on thHename. By preventing the

ox T <& dual(o) -7

synchronisation on the nanbethe clienta.e + b.¢.e can terminate
successfully.

In summary, the strong subcontract relation implementsa sa
substitutability relation for services thate compatible, but is ex-
cessively demanding because it takes into account evesibjpes
synchronisation. Our theory of contracts will define a saflessi-
tutability relation for services thatan be madeompatible.

3. Atheory of contracts

At the end of the previous section we said that we wanted a sub-
contract relatiorv < 7 such that a service with contractcan be
madecompatible with a service with contraet The keypoint of
the discussion is the “can be made”.

Of course we do not want to consider arbitrary transfornmetio
of the service, e.g. transformations that alter the seroaumt the
service. In fact, we cannot hope to affect in any way the igker
non-determinism of a service as the service is typicallysabered
as an unmodifiable black box. Instead we look for transfoionat
that embed & service in a world ot clients so that such clients
will perceive their interaction as being carried over a gzrwvith
contracto (or possibly a more deterministic one). Roughly speak-
ing we want to filter out all behaviours of thecontract that do not
belong to the possible behavioursofvorld, and leave the others
unchanged. This is, precisely, the characterisation okplhidit co-
ercion fromr to o (recall that the subcontract relation is the inverse
of a service subtyping relationf. Footnote 1): an embedding func-
tion that maps possible behavioursrofto the same behaviours of
o (thus, it does not add new computation).

3.1 Weak subcontract relation

The idea is that < 7 if there exists some (possibly empty) set of
actions belonging to the world of that, if shielded, can makeza
service appear asaservice. This is formalised by the following
definition:

DEFINITION 3.1 (WEAK SUBCONTRACT). # is aweak subcon-
tract relationif (o, 7) € # implies that ifr | R, then there exists
Sk € R such that (1) | sk and (2) for allaa € sk we have
(o(), 7(a)) € 7.

We denote by the largest weak subcontract relation.

The basic intuition about the weak subcontract relatiorég t
a client that interacts successfully with a service withtcact o
must be able to complete whatever ready set is chosen drolin
we want to replace the service with another one whose cdngrac
T, We require that whatever ready seis chosen fromr there is
a smaller oness C R in o such that all of the continuations with
respect to the actions is: are in the weak subcontract relation.
However, in order to avoid interferences we might need terfiut
the actions irrR \ Sk.

First of all notice that the weak subcontract relation ines the
strong one (condition (1) is essentially the same and cimmd{®)
is weaker), so that, for example,® b.c < a holds. Additionally,
we also haver < a + b.d since a service with contraat+ b.d can
be made to behave as a service with contualoy filtering out the
b action. On the other hand, A a & b.c since there is no way to
makea @ b.c behave as by simply filtering out actions (filtering
out theb action froma @ b.c yieldsa @ 0, nota). Finally, we also
havea ® b.c < a + b.d, again by filtering out thé action. In this
case, the filtered services 4 b.d) is not made equivalent to the
smaller serviced @ b.c) but rather to one of its more deterministic
behaviours ¢).

3.1.1 Weak compliance

In contrast with the “strong” case, for the weak subcontralettion
it was more intuitive to provide its coinductive characsation

first. We now face the problem of understanding which notibn o
compliance induces the weak subcontract relation. As wiesed,
this is an essential intermediate step as it provides thessacy
insight for devising the practical solution to the probletescribed

in §2.4.

DEFINITION 3.2 (WEAK COMPLIANCE). Z is aweak compliance
relationif (p, o) € 2 implies that there exists a finite set of actions
A C 4 U .4 such that:

1. p Rando | simpliese € Ror co(R) NANS# B, and
2.a €A p p ando - o implies(p’,0') € 2.
We denote byt the largest weak compliance relation.

Note how the existence of the sein the above definition must be
independenof the ready sets of the client and of the service. This
reflects the fact that the internal non-determinism of therarcting
parties cannot be affected.

The following theorem proves that is the compliance relation
inducing=.

THEOREM3.3. o < rifand onlyif forallp, p + o impliesp 4 7.

3.1.2 Comparison with other relations

In §2.4 we said that the relation defined by equation (1) was
nearly what we sought for, but for the lack of transitivitywas
not a preorder. The following theorem shows thabbviates this
problem.

THEOREM3.4. The subcontract relatiorx is the transitive clo-
sure ofix.

For what concerns the inclusion of the strong relation in the
weak one note that if we compare Definition 3.1 with Defini-
tion 2.7, we see that they differ on the setd$ considered in con-
dition (2). The latter requires that whatever interacticayrhappen
between a client and a server, the relation must be satisfi¢ieb
continuations. The former instead requires this to happey for
interactions on actions that are expected for the smalletract.
This means that with the weak subcontract relation all thmas
that are not expected by the smaller contracist nottake part in
the client-server interaction. If we want to replace a sebyea dif-
ferent server with a (weak) super-contract, then we mustrertbat
the client is shielded from these unexpected actions. Té¢tenteal
instrument to ensure it are tlfidlers we define next.

3.2 Filters

A filter is the specification of a set of actions that are alldves
a certain time, along with the continuation filters that appleed
after an action has occurred:

f n= HaEA (l.fa
By convention we use for denoting theempty filter that is the
filter that allows no actionA = (). Filters have a simple transition
relation, as follows:

ochfa s fs fBeA

As usual we writef = if there is nof’ such thatf —— f’.
The application of a filteff to a contract, written f (o), produces
another contract where only the allowed actions are visible

f(0) 0
f(a.o) 0 if o
flao) = a.fa(o) if f = fa
flo+7) = [flo)+ f(r)
flear) = flo)® f(7)

Filter application is monotone with respect to the strong-su
contract preorder. This property, which is fundamental ioving
most of the results that follow, guarantees that equivatentracts
remain equivalent if filtered in the same way.

PROPOSITION3.5. o C 7 impliesf(o) C f(7).

Filters allow us to express the weak subcontract relatioerims
of the strong one:

THEOREM3.6. o < 7 if and only if there exists a filtef such that

o C f(7).
3.2.1 Examples of filters

Let us consider again our example®fp b.c anda + b.d. These
contracts are not related by the strong subcontract relaiat any
client complying with the first one has to be ready to readaon
and then terminate. Then, we see that the seconadamnée made
compliant with any such client, because it is ready to writez0
S0 we are sure that synchronisation @is possible, and that if it
occurs the client will terminate. The point is then to enghed this
synchronisation will indeed occur and that the charinelill not
be selected instead, which would lead to deadlock. Thisng diy
applying toa + b.d the filter f = @, which lets the sole actiof
pass. Formally, we have thg{@ + b.d) = @, anda @ b.c C @
holds.

We have already hinted in the introduction that to prove an
inclusion such asi.b < (a.(a + b)) + b.c filters must be able
to selectively block along the computation, asnust be blocked
only at the first step of the interaction andnly at the second step
of the interaction. In this case the sought behaviour isinbthby
the single-threaded filtef = «.b which applied to the contract on
the right yields the one on the left. It is worth noticing ttsaich
fine-grainedness of filters is useful also in practice. Gigrsagain
the last example 0f2.2.2, where we extended the service by a “1-
click ordering” capability. We said that backward compditiypcan
be obtained by filtering out the newly addedy action. But if we
slightly expand the resulting contraet

...Catalog.(Logout+Buy.ocp+AddToCart.(Logout+Buy.(...)))

we notice that there is alsoBay action afterAddToCart. In order

to make a service of contraet implement the contract defined

in §2.2.2, one must block thBuy action offered right after the
Catalog action, but allow the ol@uy action in the continuation of
AddToCart to pass through. This is performed by the filter obtained
from o by replacing] | for every sum (either internal or external)
occurring in it.

3.2.2 Deduction system for<

Filters can also be used as proofs (in the sense of the Clowakd
isomorphism) for the weak subcontract relation. More Sipeadly,
the idea is to devise a deduction system within which a deléva
judgement of the forny : ¢ < 7 implies thatc < 7, and f is
a filter that embeds services with contracinto the world ofo-
compliant clients.

The definition of such deduction system requires a few aaxili
notions. First we have to define the “identity” filter, thatl® one
that proves isomorphic (with respect to an interpretatibfilers
as morphisms) contracts.

DEFINITION 3.7. Theidentity filter for a contracto, denoted by
1, is defined as

def
I, = Hg&)g, o,

Itis easy to see thdt, (o) = o.
Next, we define two basic operations for combining filters.
Intuitively, given a derivation tree for the judgemefit: o < 7,

oct+to=o0

oc+T=7T+0
U+(U,+O'//):(U+O'/)+O'//

o+ (" dd")y=(c+0)®(0c+0")

ocdo=o0

ocbT=TDOo
U@(U,@O’N):(O’@O’/)@O’N

o® (' +o")y=(cdd)+ (cdd")

c+0=0 a.oc+ar=a(c®T) a.cParT=a(cdT)
(WEAKENING) (TRANSITIVITY)
(MusT) (DEPTHEXT) f o<t gAI < f f o <o g: o <o
I VI :o0bT<o0 0:0<¢o — — —
fVg:o<Tt fAg:o<o”
(PREFIX) (INTCHOICE) (EXTCHOICE)
fro<T fio<o f:7<7 fio<o f:r<7

a.f:aoc < ar

fioor<o @7

fio+7<o +7

Table 1. Deduction system for the weak subcontract relation.

such operations allow us to show how the filfeis built step-by-
step, according to the structure of the derivation.

DEFINITION 3.8. Let f and g denote the filterd [, ., a.fo and
I1.cs @-ga respectively. Then theonjunctionand disjunctionof
f andg are respectively defined as follows:

def
f/\g = HaeAﬁB a'(ffl /\ga)
e faVga, a€ANB
fvg = HaEAUBa' Jas a€A\B
Ja, a€B\A

Finally, we need a way for comparing filters. Filters can beeo
pared according to the actions that they let pass. In thedtietu
system the need for comparing filters arises naturally innbeak-
ening rule, where we want to replace a filter with a “largeréda
filter that allows more actions). This can be done safely d@frtlye
larger filter does not thwart the functionality of the origlilter by
re-introducing actions that must be kept hidden. The filtergrder
will also be fundamental i§3.3, in order to define the “best” filter
that provesr < .

DEFINITION 3.9. The ordering relation on filterg < g is the least
relation such thaf [., a.fo < [[zc, 8.9 impliesa C B and
foreverya € A, fo < ga-

Filters can be seen asary trees with edges labelled by actions,
each node having at most one outgoing edge labelled by a goren
tion. The ordering we just introduced is nothing but tredusion
where we consider that all trees share the same root. It faluse
notice that the syntactical “conjunction” and “disjunctidn Def-
inition 3.8 can be alternatively defined in a natural way gsime
ordering: the conjunction of two filters is the largest partrenon
to both trees, that is, their greatest lower bound:

fizgandfa>g <= (finfo) 2>y (2

Similarly, the disjunction of two filters is the tree obtathdy
merging the two initial trees, that is their least upper mhun

Hi<gandfa<g <= (fiV/fo) <y)

A further interpretation of filters is as prefix-closed regullan-
guages of strings of actions. Then, filter conjunction arsjudic-
tion correspond to language intersection and union, resedc
whereas the filter ordering is set inclusion (notice thatititersec-
tion and the union of prefix-closed sets is again prefix-apse

Table 1 defines the deduction system farin the table we use
a single axionr = 7 as a shorthand for two axionls : ¢ < 7
andI; : 7 < o. The equalities and rule (MsT) are well known
since they fully characterise the strong compliance retativhich
coincides with the must preorder (see (De Nicola and Henness
1984; Hennessy 1988)). Notice that in the ruley®f) no action
needs to be filtered out. In fact, this is the only axiom forefaf
enlarging a contract without the intervention of any filteth{ch is
expected since this axiom characterises strong compliaricere
filters are not needed). Rule @D THEXT) formalisesdepthexten-
sion of contracts, where a contract can be prolonged if nmmct
is made visible from the continuation. Rule BAKENING) shows
how to safely enlarge a filtef to f Vv g: the premisggy A I < f
states thayy may allow actions not allowed by, provided that
such actions are not those that have been hidden for the ggspo
of proving f : o < 7. Rule (TRANSITIVITY) is standard and
the resulting filter is the composition filter. Three forms (6i-
ited) pre-congruence follow. Rule §&Fix) is standard and poses
no constraints. Rules §irCHoICE) and (ExTCHOICE) state the
limited precongruence property for internal and exterraices,
respectively. The fundamental constraint is that two @i com-
bined by means of> or + can be enlarged, provided that they can
be filtered in the same way. This requirement has an intuéke
planation: the filter that mediates the interaction of artligith a
service is unaware of the internal choices that have beamthi
the parties at a branching point. So, it must be possible edhes
samefilter that works equally well in all branches in order for the
branches to be enlarged.

By combining the rules (BPTHEXT), (WEAKENING), and
(EXTCHOICE) it is easy to derive a further rule, which formalises
width extension of contracts:

(WIDTHEXT)
I, NI, <0
Is:0<o+T1
Basically (WMDTHEXT) states that a service can be extended so
that it provides more capabilities, provided that such bdpes
are disjoint from those that were available before the esitan
3.2.3 Properties

The deduction system we devised in the previous sectionuisdso
and complete with respect tg and the set of filters, in the sense

that it proves all and only the pairs of contracts that aratesl
according to Definition 3.1, and for any such pair it dedudearad
only the filters that validate the pair according to Theoref 3

proves the weak compliance (Corollary 3.13 (5)) will be ssstul
(the client terminates). This will be formally stated§B.4.

While the soundness of the deduction system can be easily3.3 Algorithmic deduction system

established, its completeness is less immediate, but thef pf
this fact follows a standard pattern: completeness is mpfdoe a
restricted class of contracts which are said to be in somealor
form and then it is shown that it is always possible to trarmsfan
arbitrary contract to an equivalent one which is in normahfdy
using the axioms. Although in this version of the paper treofs
of theorems are omitted, we nevertheless introduce heneaimeal
form of contracts. The same normal form will be necessaryayy
in §3.3 for defining the algorithmic version of the deductionteys.
As regards the actual definition of the normal form, we can

notice that it is always possible to add new ready sets to engiv
contracto without altering its semantics (according4g, so long

as I, does not change and the new ready sets contain older ones

for examplec @ 7 ~ 0 ® 7 @ (0 + 7). Now we can see that,
if we saturate the set of ready sets of a contract by adding to i
every possible ready set meeting the conditions above, wbul
a unique (up to commutativity and associativity) normahidior
each equivalence class. This normal form is defined as fetlow

DEFINITION 3.10 (NORMAL FORM (HENNESSY1988)). For any
contracto, we define its saturated set of ready sets:

#(0) € {RC U, 55| 35,0 L SASCR}

The normal form ofr is then defined up to associativity and
commutativity of the choices by the following recursivaesgion:

£ (0) = Bre (o) Donen @0E(0(0)

the empty external choice being defined&# is not necessary to
define the empty internal choice, because any contract hizsast
one ready set).

We introduced a device, filters, that allows us to transforweak
subcontract or compliance relation into a strong one bylding
the incompatible actions. The next step is to infer filtegosath-
mically, so that the weak relations can be used in practice.

As usual the process of finding a decision algorithm for a con-
tainment relation corresponds to a cut-elimination predése cut
here being the (RANSITIVITY) rule in Table 1), which amounts to
finding a canonical proof for each provable relation. In otieems,
we have to associate every provable weak subcontractiatjael
with a canonical filter that represents all other possibleofs. In
order to choose a canonical filter, we have to solve two piatent
problems. First, there usually are several filters that waith a
given relation. For example, to show thatb b < a + b, we can

. either let pass only, only b, or both. The best solution here is to let

pass both, because we do not want to shield out actions thadta
cause any harm. This example suggests the definition of amoti
of “better filter”, that is, of a partial order on filters tha¢tgrmines
which filter is better to use, and such partial order is eyaetl
(Definition 3.9). The second problem is that in the examptevala
filter that letsa, b, and, sayg¢ pass will work as well. The intuition
here is that the filter that lefast a andb pass is better since allow-
ing any action besides andb to pass is useless. This suggests the
definitions of a notion of “filter relevance”, to single outdits that
do not contain useless actions.

The subcontracting algorithm will pick up, among all the gies
ble filters for a given relation, the “best relevant” filtelattproves
it.

3.3.1 Filter relevance
In order to determine the property of “relevance” we havedtidr

Normal forms can be used as the canonical representations ofunderstand the role played by the identity filters. It may beed

classes of the equivalence relation
PROPOSITION3.11. 0 ~ nf(0).

The normal form enjoys also the following important projest
(1) In a given mix of internal and external choices (eithetogt-
level or under a given sequence of prefixes), a prefis always
followed by the exact same continuation. (2)oifand r are two
normal form contracts such that T 7, condition (1) of the
strong subcontract relation holds if and only if every readt
of 7 is also a ready set of. These two properties lead to the
fact that two equivalent normal forms are syntactically aqup
to commutativity and associativity of the choice operators

We now possess all the technical tools to prove that the deduc
tion system shown in Table 1 is sound and completef@nd the
sets of filters that prove it.

THEOREM3.12. f : o < 7 ifand only ifo T f(7).

As we did for the weak subcontract relation, the weak com-
pliance relation can be decomposed in terms of filters amahgtr
relation:

COROLLARY 3.13.

—
—

pHo IrLo,pAT 4)

3f,p A f(o))
Finally filters have an operational meaning, since theywvallo
us to state the soundness of our type system. This can belyough

expressed as the fact that given a service and a weakly camhpli
client, every interaction between them mediated by therfiliat

that the identity filter of a given contract is exactly theetref

all possible sequences of actions that the contract can fiwebe
reducing to0, without distinguishing between internal and external
choices. This is embodied by the operator on filters which is a
unique choice operator representing both kinds of choisehea
following relation shows:

Iowr = Ioyr = I,V I, (6)

Note that ifc andr share common actions in their outermost pre-
fixes, the continuations of both filters after this action eserectly
merged by the disjunction operator.

The tree of an identity filter accurately represents the idea
mentioned in the introduction of a contract’s “world”: thets of
actions the contract knows of at each step of an interaction.
filter f : o < 7 embedsr services into the “world” ofs: then
the intuition is that to be relevant must be defined (only) on the
“world” of 7, world that is represented k. Indeed, applying te
the filter f or the filter f A I give the same result, thus the partfof
thatis notinf A I is irrelevant (and this is why there is no greatest
filter corresponding to a given relation in the absolute)ug ke
will say that a filterf is relevantwith respect to a relatios < 7 if
itis smaller than/ .

Now if we restrict ourselves to relevant filters we can have
another interesting upper bound: if we look at condition ¢2)
the strong subcontract relation, we see that, at each stepy e
action available to the greater contract has to be availalsie to
the smaller one. This exactly means that the greater cdritesca
smaller tree, and thus we have (by noticing that,) = f A I,,):

if o C f(r)andf < I thenf < I, @)

Thus relevant filters that prove a relation have to be sméfian
the identity filters ofboth contracts.

We now would like to find the greatest relevant filter that gev
a given relation. Note that projecting oh. A I, itself is not
necessarily enough to make the relation work, because ofyrea
sets: it might be necessary to project on something smatler t
prevent a wrong branch to be taken, for example ib.(a +b) <
a + b.(a ® b), the initial b has to be filtered out even if the trees
are the same, because its continuation in the right contrast
incompatible ready sets. However, the following importaatéation
holds:

if o € f(r) ando T g(7) theno C (f V g)() ®)

meaning that if we can make the relation work either by s&igct
some branches or by selecting some other branches, thell it wi
still work if we take all these branches at once. This shows, tifi

o = 7 holds, there will be a greatestibtreeof = that makes the
relation work: even if there is no greatest filter in the abssl we
can take the disjunction of all filters less thanthat work (there
are a finitely many). This filter, which is the least upper badofiall
relevant filters that prove < 7, is the one we choose as canonical.

3.3.2 Algorithm

The last step is to define an algorithm for building the cacani
filter of a relation. The monotonicity of filters (Proposii8.5) and

the soundness and completeness of the deduction systero-(The
rem 3.12) ensure that filters prove subcontracting moduloves
lence, that isiff : ¢ < 7,thenf : ¢/ < 7/, foranyo’ ~ o,

7' ~ 7. Since a contract is equivalent to its normal form (Propo-
sition 3.11), then the set of filters that prove< 7 is the same as
the set of those that provet (o) < nf(7). Therefore in order to
choose in this set a canonical filter for< 7, it suffices to choose it
for their normal forms. Hence, we define the following algjom:

DEFINITION 3.14. We define the ternary relatiofi : o < 7
between a filter and two contracts in normal form by the infese

rule

A={a € (Urer R) N (User) | 3o, for 00 L 7}
o ={N CA|Vse S, sNA €} o #0
V I afa: @ X aocad @ > ara
A e aen’ REZ aER s€S a€S

We then extend the relation to arbitrary contracts by théofet
ing definition:

f:odr &L f:nf(o) <nf(r).

Although it is not immediate, the definition above descrilags
algorithm to check whether two contracts are in relatiorst fihe
two contracts are put in normal form; then for every actiothat
can be immediately emitted by both normal forms, the alganits
recursively called on the two continuations of the actione Beta
represents the largest set of actions leading to contimstivhich
are in the relation and the recursion basis occurs when(). The
set.e/ contains the subsets C A such that, by restricting each
ready set of the larger contract to the actiong\inthis is a ready
set of the smaller contract (recall that for any two consacandr

in normal form such that C 7, every ready set of is also a ready
set ofo). If there is at least one suel set of actions¢ #), then

o and T can be related. The filter defined in the conclusion is the
disjunction of the filters corresponding to all these setaaifons:

it uses Equation (8) to compute the greatest relevant filter.

3.3.3 Properties

The algorithm described in Definition 3.14 enjoys fundaraént
properties, namely) it proves only (soundness) and all (complete-

ness) weak subcontract relatioris;) in case of success it returns
the largest relevant filter that proves the relation &iid) it always
terminates, which implies the decidability of the weak saricact
relation.

LEMMA 3.15 EILTER RELEVANCE). If f : 0 < 7, thenf < I,.
THEOREM3.16 (SOUNDNESY. If f: o < Ttheno C (7).

THEOREM3.17 (COMPLETENESS. If o C g(7), then there exists
afilter f suchthatf : o < r,andf > g A I-.

COROLLARY 3.18.If 0 and 7 are two contracts, there exists at
most one filterf such thatf : o < 7. Furthermore, iff : o < T,
then

f=max{g<I; o Cg(r)} =max{g < I |g:0 <7}

The corollary above describes the logical interpretatibthe al-
gorithm as the result of a cut-elimination process. The™guthe
system of Table 1 is given by the rule RANSITIVITY). This rule
intersects filters, that is it minimises the proofs: therefm order

to eliminate cuts we have to find a proof with a maximum filter.
However we have also to avoid useless applications of theAky
ENING) rule, which instead maximises proofs: therefore we have to
set an upper bound to filter maximisation, upper bound engabdi
by the definition of relevance (therefore it would be morecjze

to speak of a cut-weakening-elimination process).

PROPOSITION3.19 DECIDABILITY). Given two contracts and
7, we can decide whether there exists a filfesuch thatf : o < 7
and compute this filter.

3.4 Language

The final step of our investigation is to relate contracts i¢ivh
are behavioural types) with processes that implement tsliand
services. We do not consider any particular process larguagy
do we require that clients and services be implemented ubieg
same language. We just require that the observable behlraviou
such language(s) be described by a labelled transitiorsyand
abstracted by a static type system, so that we can reasohtabou
programs. More precisely we assume that a process langsage i
equipped with a labelled transition system so that

PP
describes the evolution of a processthat performs gu action
thus becoming the proces?’. Here, i can either be a visible
action of the forma or @, which is meant to synchronise with
the corresponding co-action in the proce3ds interacting with,
or it can be an internal, invisible action (not to be confused
with 7 that we used to range over contracts) that the prodess
executes autonomously. It is understood that the relation is
not necessarily deterministic. As usual, wedetange over visible
actions and we writd> - if P - P’ for some proces#”.

DEFINITION 3.20 (STRONG PROCESS COMPLIANCE Let
P||Q — P'|| Q' be the least relation defined by the rules:

P-= P Q= qQ
Ple —PllQ PIQ—P|Q
P5P Q-5Q

PllQ — P

We write—> for the reflexive, transitive closure ef—; we write
P|Q —if P||Q — P'||Q’ for someP’ and Q’; we write
P||@Q ——ifnotP | Q —.

The clientP is strongly compliantith the serviceQ, written PROPOSITION3.23. A consistent and informative type system en-
P —Q,ifwheneverP || Q = P’ || Q" — we haveP’ -, riched with rule(TYPEFILTER) results in another consistent and

N . o . informative type system.
The intuition of this definition is thaP || Q represents a client

P and a servic&) interacting with each other. Wheh 4 @ every The following result summarises the contribution of our kor
interaction betweer® and(terminates withP being able to emit the adoption of filters enlarges the number of possible sesihat
e, denoting the successful completion/®% task. can be used to let a client terminate.

We also assume that a type system is given to check that a
processP implementsthe contracto. This is expressed by the ~ COROLLARY 3.24.1f = P : p, = Q : o,andp H f(o), then
judgement P flQ].
FP:o
While we do not give details on the particular typing rulee w 4. Conclusion and Future Work
require typing and the reduction relation to satisfy someida Thig paper provides a foundation for behavioural typing afBn

properties: essentially, contracts must describe theratenal services and it promotes service reuse and/or redefinitjoth®
behaviour of processes and the reduction must decrease NoNiniroduction of a subcontract relation.

determinism (entropy must always increase). In this respec Our approach reconciles two hitherto apparently inconbeti
makes sense to be able to apply the strong subcontractorelati - oqjirements. On the one hand a subcontract relation miast al

to client contracts too, where the actiens treated like any other a service to be replaced or upgraded by offering more opersiti
action (recall that, according to Theorem 2.8, the relafiocan be (width subtyping), longer interaction patterns (depth tgping)

defined without any notion of “successful actios). and/or more deterministic ones. On the other hand this mest b
DEFINITION 3.21. The type system isonsistentf, whenever + done without disrupting the behaviour of clients.)
P:oandP - P/ then - P’ : o’ and (1) ifu = , then Filters provide the technical device that makes it possiBle

though we initially defined filters essentially as technicecha-
nism to couple clients and services, filters turn out to havela
egant logical justification: they are explicit coerciongvioeen re-

o Co’;(2)if p = o, theno v ando(a) C o’. The type system
is informativeif, whenever P : o ando ——, thenP —%.

Condition (1) states that a process performing interndbast lated contracts. Following the Curry-Howard isomorphisitefs _
can only make its contract more deterministic. Conditionstates can be interpreted as proofs of a sound and complete deductio
that if a process performs a visible actianthen its contract must ~ System for the subcontract relation. Such deduction systeral-
account for that action and the contract of the resultingcese taneously refines and extends Hennessy’s classical axsatian
P’ is (more deterministic than) the contrasta)), which accounts of the must testing preorder. Its _algorlthmlc counterpsudhitained
for all the possible behaviours @ after . An informative type as a cut elimination process, which proves the coherenagbobs-

system does not deduce capabilities that a process doeaveot h tracting as a logical system. The canonical proof, the ondyred
The soundness of a consistent and informative type system is by the algorithmic deduction system, is characterisedrimseof an

ensured by the following result, stating that if the contsaaf two order relation on filters, and the algorithmic presentatiiows us
processes comply, the corresponding processes comply las we 0 show the decidability both of the subcontracting refamd of
guaranteeing termination on the client side. filter inference. o

The theory of subcontracting is independent of the language
THEOREM3.22.1f F P:pand - Q:oandp - othenP 4 Q. used to implement services and clients. We do not rely on a par

ticular language nor on a particular paradigm (objectscess al-
gebrae, functions, .. .). By defining some minimal requirete@n
the language (in a nut-shell, the observable behavioursgbrib-
grams must be faithfully captured by contracts), we estaktihe
soundness of our contract system: clients always termintgeac-
tions with any, possibly filtered, compliant service.

fIP] Filters thus play the double role of a proof tool and of pro-

that applies a filterf to a processP, the idea being that the filter ~ 9r@mming glue between clients and services. As an a5|_de_1|d:e5.
constraints the set of visible actions Bf that is its capabilities to to notice that filters can encodecs and w-calculus restrictions:
interact with the environment, still not altering its belaw. The (va)P = fap[P] where

labelled transition system of the language is consequentlizched fap =
with the following two inference rules:

Notice that the soundness theorem holds when the client's co
tract and the service’s contract are strongly compliantb&able
to use a service for which we only have a weakly complianntlie
we need to shield potentially dangerous service actions égns
of a filter. Thus, we enrich the process language with an opera

Hae(fn(P)uCoan(p))\{aﬁ} a.fap .
Even ifin this presentation we applied filters to servicegrac-

(FLTER1) (FLTERZ) tice it is the client’s responsibility to apply them. A cliesearching
PSP sy P P for a service with a given contract will receive as answetgqjuery
a the reference of a service together with a filter that alldvesdlient

fIP) = [P f1P) == f1P'] :

to use the service. Thus the filter must be computed by theyquer
The introduction of filters into the process language haseon engine, which is why the algorithmic inference of filters iadal
quences on the type system as well. Since our discussionds pa for a practical application.
metric in the process language and in the type system, weneelg Actually, it is more realistic to imagine that a query will be
to show that the typing rule answered with several different contracts requiring fitehat
may be unrelated one to each other. Therefore a second use of
filters could be that of refining the search space, by spexifyi
FP:o in a query a minimum acceptable filter. In this way the client
- f[P] : f(o) _could spe_cify which of the possible behaviours of its “ca_cnon
ical” service are considered mandatory and not to be filtered
does not jeopardise the type system. out. For instance when searching for services implemerttireg

(TYPEFILTER)

behavior described in Figure 1 we can specify, along with the

query, the filtelLogin.ValidLogin.Query.Catalog.AddToCart.
Buy.(CreditCard.Valid | [BankTransfer.Valid) thus obtain-
ing only services that may complete a sale, avoiding useless
vices such as those with contrdetgin.InvalidLogin.

Several future research directions stem from this work. The

following is a non-exhaustive list:

Recursion and higher-order: The contracts and filters we dis-

cussed in this work are finite. The next step of this reseasch i

the introduction of recursion both in contracts and, consedjy,
in filters. Actually, most of the proofs (which are availalihethe
full version) use coinduction and they can be applied witimaoni
changes to the recursive case. Also, for the time being sgnéh
sation does not carry any information. Thus a further nastep is
the introduction of higher order channéida 7-calculus.

Asymmetric choices:The choice operators are commutative. We
could try to relax this property in order to give the summands

different priorities, which is impossible with the curretgfinitions.
For instance, there is no way for a client that has to use dcgerv
with contract(a + b) @ a to specify that it wants to connect with
b if this action is available, and with otherwise (in order to be
compliant it must accept a possible synchronisation wijthit is
unclear to which extent such constructs would affectthgreorder
over contracts.

Contract isomorphisms: The only morphisms between contracts
we have considered are filters. Since filters are coercities, by
definition they essentially do not alter the semantics oécig. One
could try to consider more expressive morphisms (e.g. rémgm
and/or reordering of actions) and to completely charastethe
isomorphisms of contracts. This would allow us to perfornviee
discovery modulo isomorphisms: when searching for sesvafea
given contract a client could be returned a service and tvmvee
sion functions, one to call the service, the other to conrestilts
(see (Rittri 1993; Di Cosmo 1995)).

This could later be extended to richer query/discovery lan-

guages obtained by adding union, intersection and negati®es
on the basis of the set-theoretic interpretation presehézd and
of the work on semantic subtyping (Castagna and Frisch 2005)

Relation with other formalisms: Finally, connection with other
formalisms such as linear logic, session types, and gamarsem
tics must surely be deeply investigated. In particularegsrds the
semantic aspects, it is interesting to notice that clientsservices
introduce a notion of orthogonality which suggests thatdisabil-
ity semantics for contracts is worth to be explored.

References

A. Alves, A. Arkin, S. Askary, C. Barreto, et al. Web Services Busi-
ness Process Execution Language Version, 2fril 2007. OA-
SIS Standard, http://docs.oasis-open.org/wsbpel/2.0/0S/
wsbpel-v2.0-0S.html.

A. Banerji, C. Bartolini, D. Beringer, V. Chopella, et alWeb Services
Conversation LanguagersctL) 1.0, March 2002. W3C Notehttp:
//www.w3.org/TR/2002/NOTE-wsc110-20020314.

T. Bellwood, S. Capell, L. Clement, J. Colgrave, et dUDDI Version
3.0.2 2005. OASIS Standartittp://uddi.org/pubs/uddi-v3.0.
2-20041019.htm.

M. Bravetti and G. Zavattaro. Towards a unifying theory fooceography
conformance and contract compliance. Aroc. of the 6th Intl. Sympo-
sium on Software CompositioBpringer, 2007.

K. Bruce and G. Longo. A modest model of records, inheritaand
bounded quantification. Information and Computatign87(1/2):196—
240, 1990.

M. Carbone, K. Honda, and N. Yoshida. A calculus of globatrattion
based on session typesElectronic Notes in Theoretical Computer
Science171(3):127-151, 2007a.

M. Carbone, K. Honda, and N. Yoshida. Structured commuicicatentred
programming for web services. ESOP '07, 16th European Symposium
on ProgrammingLNCS 4421. Springer, 2007b.

L. Cardelli. A semantics of multiple inheritancénformation and Compu-
tation, 76:138-164, 1988.

S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. Agbaccount of
contracts for Web Services. Brd Int. Workshop on Web Services and
Formal MethodsLNCS 4184. Springer, 2006.

G. Castagna and A. Frisch. A gentle introduction to semastfatyping.
In PPDP '05ACM Press (full version) andCALP '05, LNCS 3580,
Springer (summary), 2005. Joint ICALP-PPDP keynote talk.

G. Castagna, N. Gesbert, and L. Padovani. A theory of castfac web
services. INPLAN-X '07, 5th ACM-SIGPLAN Workshop on Program-
ming Language Technologies for X\M2007.

G. Chen. Soundness of coercion in the calculus of constn&tiJournal
of Logic and Computatigrl4(3):405-427, 2004.

R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawaraieb Services
Description Languagev{spL) Version 2.0 Part 1: Core Languagéune
2007b. W3C Recommendatiomttp: //www.w3.org/TR/wsd120/.

R. Chinnici, H. Haas, A.-A. Lewis, J.-J. Moreau, et alWeb Ser-
vices Description LanguagewspL) Version 2.0 Part 2: Adjuncts
June 2007a. W3C Recommendationttp://www.w3.org/TR/
wsd1l20-adjuncts/.

R. De Nicola and M. Hennessy. CCS withats. In TAPSOFT/CAAP’87
LNCS 249, pages 138-152. Springer, 1987.

R. De Nicola and M. Hennessy. Testing equivalences for gseseTheo-
retical Computer Scien¢c&4:83-133, 1984.

R. Di Cosmo.lsomorphisms of Types: from Lambda Calculus to Informa-
tion Retrieval and Language DesigBirkhauser, 1995.

D. C. Fallside and P. WalmsleyXML Schema Part O: Primer Second
Edition, October 2004. W3C Recommendatiantp: //www.w3.org/
TR/xmlschema-0/.

C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof.
conformance. IlCAV’04, LNCS 3114. Springer, 2004.

S. Gay and M. Hole. Subtyping for session types in#healculus. Acta
Informatica 42(2-3):191-225, 2005.

M. Hennessy.Algebraic Theory of Processe&oundation of Computing.
MIT Press, 1988.

M. Hennessy. Acceptance tredsurnal of the ACM32(4):896-928, 1985.

K. Honda. Types for dyadic interaction. GCONCUR '93 LNCS 715, pages
509-523. Springer, 1993.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primstiand
type discipline for structured communication-based paogmning. In
European Symposium on Programmib§CS 1381. Springer, 1998.

C. Laneve and L. Padovani. Theustpreorder revisited — An algebraic
theory for web services contracts. 18th International Conference on
Concurrency TheoryLNCS 4703, Springer, 2007.

R. Milner. A Calculus of Communicating SystenSpringer, 1982.

M. Rittri. Retrieving library functions by unifying types odulo linear
isomorphism.RAIRO Theoretical Informatics and ApplicatiQrz7(6):
523-540, 1993.

S. Soloviev, A. Jones, and Z. Luo. Some Algorithmic and Ribioéoretical
Aspects of Coercive Subtyping. MYPES'96 LNCS 1512, 173-196,
Springer, 1996.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-basedjlaage and
its typing system. InParallel Architectures and Languages Eurgpe
pages 398-413, 1994.

Sheek

This work was partially supported by the French ACI projeEtensforma-
tion Languages for XML: Logics and Applications” (TraLaLA)

