
Subtyping and Matching for Mobile Objects ?Michele Bugliesi1, Giuseppe Castagna2, and Silvia Crafa1;21 Dipartimento di Informatica 2 D�epartement d'InformatiqueUniv. \Ca' Foscari", Venezia, Italy �Ecole Normale Sup�erieure, Paris, FranceAbstract. In [BCC00], we presented a general framework for extendingcalculi of mobile agents with object-oriented features, and we studieda typed instance of that model based on Cardelli and Gordon's MobileAmbients. Here, we re�ne our previous work and de�ne a new calculuswhich is based on Remote Procedure Call as the underlying protocol formethod invocation, and a di�erent technique to type method bodies. Thenew type system is equipped with both a subtyping and a matching re-lation. The combination of matching and subtyping provides new insightinto the relationship between ambient opening in the new calculus andmethod overriding in object-oriented calculi.

In ICTCS 2001, Lecture Notes in Computer Science, 2202:235{255, c
 Springer, 2001.

1 IntroductionCalculi of mobile agents are receiving increasing interest in the programminglanguage community as advances in computer communications and hardwareenhance the development of large-scale distributed programming. Agents aree�ective entities that perform computation and interact with other agents: theterm \mobile" implies that agents are bound to locations and that this bindingmay vary over time; agent interaction, in turn, is achieved using resources suchas communication channelsIndependently of the new trends in communication technology, object-orientedprogramming has established itself as the de-facto standard for a principled de-sign of complex software systems.Drawing on our preliminary work on the subject [BC00,BCC00], in this pa-per we study a formal calculus that integrates object-oriented constructs intocalculi of mobile agents. The resulting framework provides foundations for acomputation model for distributed applications, where conventional client-servertechnology |based on remote exchange of messages between static sites| andmobile agents coexist in a uniform way.The model results from extending the structure of named agents in the style ofMobile Ambients [CG98] with method de�nitions and primitives for dealing withmessage passing and self denotations. The extension has interesting payo�s, as itleads to a principled approach to structuring agents. In particular, introducingmethods and message passing as primitives, rather than encoding them on topof the underlying calculus of agents leads to a rich and precise notion of agentinterface and type. Furthermore, it opens the way to reusing the advances intype system of object-oriented programming and static analysis.? Work partially supported by MURST Project 9901403824 003, by CNRS Program Telecom-munications: \Collaborative, distributed, and secure programming for Internet", and byGalileo Action n. 02841UD

With respect to our previous work [BC00,BCC00] this paper brings two maincontributions: the introduction of a Remote Procedure Call (RPC)1 primitivefor message passing and method invocation and, foremost, a non trivial blend ofmatching and subtyping relations. Method invocation based on RPC �ts nicelythe design of a typed distributed calculus as it allows method bodies to betype checked locally, in the object where they are de�ned, independently ofthe caller. As a consequence, the choice of RPC as the underlying semanticsof method invocation yields a notion of interface type for our mobile objectsthat is substantially simpler and more tractable than the corresponding notionde�ned in [BC00,BCC00]. Matching is employed in the type system to ensuresound typing of ambient (or object) opening in the presence of methods residingwithin objects2. As it turns out, the combination of subtyping and matchingconveys new insight into the relationship between method overriding in object-oriented calculi and the open capability in our mobile objects.Plan of the paper In Section 2 we describe the calculus of mobile objects,named MA++ , based on the calculus of Mobile Ambients (henceforth MA)of [Car99,CG98]. Section 3 describes various examples of the expressive powerof the calculus. Speci�cally, we show that it is possible to encode primitives likemethod overriding distinctive of object calculi, various forms of process com-munication, as well as di�erent primitives of method execution3. In Section 4we study the type theory of our calculus, and state relevant properties. Possiblefurther extension are discussed in Section 5. The presentation of related work inSection 6, and �nal remarks in Section 7 conclude our presentation.2 MA++2.1 SyntaxThe syntax of MA++ is the same as that of mobile objects de�ned in [BC00,BCC00],and it results from generalizing the structure of ambients to include interfaces,as in a[[I ; P]] , where P is a process and I is a list of method de�nitions, de�nedby the following productions:Processes P ::= 0 inactivity
 P j P parallel composition
 a[[I ; P]] ambient
 (�x)P restriction
 M:P action1 Remote Proceduce Call is often referred to as Remote Method Invocation (RMI) in thiscontext.2 Note that under this aspect the type system in [BCC00] contained a
aw.3 Here, and throughout the paper, we use the terms \encode" and \encoding" in a somewhatloose sense: we should in fact use \simulate" and \simulation" as we don't claim theseencodings to be \atomic" |i.e. free of interferences| in all possible contexts.

Interfaces I ::= `(x) . &(z)P method
 I :: J sequence
 ? empty interfacePatterns x ::= x variable
 (x1; : : : ;xn) tuple (n > 1)The syntax of processes is a generalization of the combinatorial kernel of theAmbient Calculus: 0 denotes the inactive process, P j Q the parallel compositionof two processes P and Q, a[[I ; P]] denotes the object named a with interfaceI and enclosed process P , (�x)P restricts the name x to P , and �nally M:Pperforms the action described by the term M and then continues as P .Interfaces are lists of labels with associated processes: the syntactic form`(x) . &(z)P denotes a method labeled ` whose associated body is the processP where the &-bounded variable z represents the self parameter distinctive ofobject calculi, i.e. the method's host object. Finally, the pattern x is the tupleof input parameters for P .Terms M;N ::= a; b; : : : ; x; y : : : name/variable
 (M1; : : : ;Mn) tuple (n > 0)
 M:M path
 " empty path
 in a enter a
 out a exit a
 open a open a
 a send `hMi remote invocationTerms include the capabilities distinctive of Mobile Ambients. In addition, mo-bile objects are equipped with a capability for remote method invocation: a send `hMiinvokes the method labeled ` residing on the object denoted by a with argumentsM . In the following we use P;Q;R; : : : to range over processes, I; J to range over(possibly empty) interfaces, and lower case letters to range over generic names,preferring when possible a; b; : : : for agent names, and x; y; : : : for parameters.Method names, denoted ` range over a disjoint alphabet and have a di�erentstatus: they are �xed labels that may not be restricted, abstracted upon, norpassed as values (they are similar to �eld labels in record-based calculi). We omittrailing or isolated 0 processes and empty interfaces, usingM , a[[I]] , a[[P]] , anda[[]] as shorthands for, respectively, M:0, a[[I ; 0]] , a[[? ; P]] , and a[[? ; 0]] .2.2 Operational SemanticsWe de�ne the operational semantics of the calculus by means of a structuralcongruence and a reduction relation. As usual, the former is used to rearrangea term in order to apply the latter.

Structural Congruence Structural congruence for agents is de�ned in terms ofan equivalence relation �I over interfaces, given in Figure 1. This relation allowsmethod suites to be reordered without a�ecting the behavior of the enclosingagent: reordering of methods, in turn, is used to de�ne the reduction of methodinvocation.(Eq Meth Assoc) (I :: J) :: L �I I :: (J :: L)(Eq Meth Comm) I :: m(xm) . P ; `(y`) . Q �I I :: `(y`) . Q :: m(xm) . P ` 6= m(Eq Meth Over) I :: `(x) . P :: `(x) . Q :: I �I I :: `(x) . QFig. 1. Equivalence for MethodsDe�nitions for methods with di�erent name and/or arity maybe freely per-muted (Eq Meth Comm); instead, if the same method has multiple de�nitions,then the right-most de�nition overrides the remaining ones (Eq Meth Over).Similar notions of equivalence between method suites can be found in the liter-ature on objects: in fact, our de�nition is directly inspired by the bookkeepingrelation introduced in [FHM94].Structural congruence of processes is de�ned as the smallest congruence onprocesses that forms a commutative monoid with product j and unit 0, and isclosed under the rules in Figure 2, where the set fn of free names is de�ned bya standard extension of the de�nition in [Car99].(Struct Res Dead) (�x)0 � 0(Struct Res Res) (�x)(�y)P � (�y)(�x)P x 6= y(Struct Res Par) (�x)(P j Q) � P j (�x)Q x 62 fn(P)(Struct Res Agent) (�p)a[[I ; P]] � a[[I ; (�p)P]] p 62 fn(I) [fag(Struct Path Assoc) (M:M 0):P �M:M 0:P(Struct Empty Path) ":P � P(Struct Cong Agent Meth) I �I J) a[[I ; P]] � a[[J ; P]]Fig. 2. Structural Congruence for AgentsThe �rst block of clauses are standard (they are the rules of the �-calculus).The rule (Struct Path Assoc) is a structural equivalence rule for the AmbientCalculus, while the rule (Struct Res Agent) modi�es the rule for agents in theAmbient calculus to account for the presence of methods. Rule (Struct CongAgent Meth) establishes agent equivalence up to reordering of method suites.In addition, we identify processes up to renaming of bound names: (�p)P =(�q)Pfp := qg if q 62 fn(P).

Reduction Relation The reduction semantics of the calculus is given by thecontext rules in Figure 3, plus the notions of reduction collected in Figure 4,that we comment belowP 0 � P; P ➞ Q; Q � Q0) P 0 ➞ Q0 P ➞ Q) a[[I ; P]] ➞ a[[I ; Q]]P ➞ Q) (�x)P ➞ (�x)Q P ➞ Q) P j R ➞ Q j RFig. 3. Structural Rules for Reduction
(in) b[[I ; in a:P j Q]] j a[[J ; R]] ➞ a[[I ; R j b[[J ; P j Q]]]](out) a[[I ; b[[J ; out a:P j Q]] j R]] ➞ b[[J ; P j Q]] j a[[I ; R]](open) open a:P j a[[Q]] ➞ P j Q(update) b[[I ; open a:P j a[[J ; Q]] j R]] ➞ b[[I :: J ; P j Q j R]] for J 6= "(send) b[[I ; a send `hMi:P j Q]] j a[[J :: `(x) . &(z)R ; S]]

➞ b[[I ; P j Q]] j a[[J :: `(x) . &(z)R ; Rfz;x := a;Mg j S]]Fig. 4. MA++ reduction rulesThe �rst three rules are exactly the same as the corresponding rules forthe Mobile Ambients. Rule (update) is a direct generalization of the open rule tohandle the case when the opened ambient contains a non-empty interface. In thiscase, open amay only be reduced within an enclosing ambient. After the opening,the local process of a is unleashed within b and the interfaces of the openingand the opened ambients are merged. The �nal (send) rule handles the newsyntactic construct for method invocation, implementing the Remote ProcedureCall (more precisely, Remote Method Invocation) model. The notation Rfz;x :=a;Mg indicates simultaneous substitution in R of a for z and of M for x. Theresult of the ambient b sending message ` to its sibling a, is thus the activationof the corresponding method body on the receiver side where actual parametersare substituted for formal ones and the self parameter is dynamically bound tothe (name of the) receiver.3 Expressive powerIn this section, we discuss a number of protocols and constructs that can beexpressed within MA++ . Some of these examples have been already presentedin our previous work [BC00,BCC00] where, however, they were de�ned in termsof a di�erent semantics for method invocation based on Code On Demand.

3.1 Parent-child and Local communicationsHaving chosen Remote Procedure Call as our primitive protocol, it is interestingto try to encode other alternatives, and see how an object could send messagesto its parent or its children, as well as to invoke its own methods as shown inFigure 5. As it turns out, these alternative invocation modes can all be encoded.(downsend) a downsend `hMi:P j a[[I :: `(x) . &(z)Q ; R]]
➞ P j a[[I :: `(x) . &(z)Q ; R j Qfz := a;x :=Mg]](upsend) a[[I :: `(x) . &(z)Q ; R j b[[J ; a upsend `hMi:P]]]]
➞ a[[I :: `(x) . &(z)Q ; R j Qfz := a;x :=Mg j b[[J ; P]]]](local) a[[I :: `(x) . &(z)Q ; a local `hMi:P1 j P2]]
➞ a[[I :: `(x) . &(z)Q ; Qfz;x := M;ag j P1 j P2]]Fig. 5. Other Constructs for Method InvocationParent-to-child invocation. This form of method invocation can be de�ned asfollows:a downsend `hMi:P 4= (�p; q) (p[[a send `hMi:q[[out p]]]] j open q:open p:P)where (p; q =2 fn(M) [fn(P)). In words, we temporarily create a new ambient pthat becomes a sibling of the receiver in order to perform a RPC; we then use theambient q as a \lock", to guarantee that the ambient p is destroyed only afterthe receiver has served the invocation. It is a routine check to verify that thedesired e�ect of the invocation is achieved by a sequence of reduction steps. Toease the notation, we give the reduction steps in the simpli�ed case of a methodwhich does not have parameters and does not depend on self (the presence ofparameters and the dependency on self does not interfere with the protocol).a downsend `:P j a[[` . Q ; R]]� (�p; q)�p[[a send `hMi:q[[out p]]]] j open q:open p:P� j a[[` . Q ; R]]

➞ (�p; q) �p[[q[[out p]]]] j open q:open p:P � j a[[` . Q ; R j Q]]
➞ (�p; q) �p[[]] j q[[]] j open q:open p:P � j a[[` . Q ; R j Q]]
➞�P j a[[` . Q ; R j Q]]The coding could be simpli�ed by adding coactions, in the style of SA calcu-lus of [LS00]. Coactions help serialize the steps of the protocol by means ofthe capability-cocapability synchronization. The lock ambient q would then besubstituted by cocapability coopen p, enforcing the opening of p only after themessage has been sent.

Local and Self Invocation. Local method invocation within an ambient a is codedsimilarly to the previous case. Choosing p; q =2 fn(M) [fn(P), one de�nes:a local `hMi:P 4= (�p; q) (p[[out a:a send `hMi:in a:q[[out p]]]] j open q:open p:P)Relying upon this de�nition, it is then easy to de�ne self-invocation withinmethod bodies. To exemplify, consider the following process:a[[`1(x) . &(z)z local `2hxi :: `2(x) . P ; R]]Invoking the method `1 from outside the object a results in the execution of theprocess P in parallel with R within a.Child-to-parent. We conclude with a form of upward method invocation, wherebyan object invokes a method provided by that object's parent. A �rst way ofde�ning it might be:a upsend `hMi:P 4= out a:a send `hMi:in aBut this is not fully satisfactory because requires a move of the sender. Alter-natively, we can encode it by using some auxiliary ambient. Assume that theinvocation occurs within an object b enclosed within a:a upsend `hMi:P 4=(� p; q) (p[[out b:out a:a send `hMi:in a:in b:q[[out p]]]] j open q:open p:P)To understand the de�nition, simply look at the chain of capabilities inside theambient p, which corresponds to the steps in the protocol evolution. First, theambient p leaves its parent ambients b, then a (that contains the method tobe invoked), and performs the message send before being destroyed after theopening of the locking ambient q. One problem with the encoding is that it iscontext-dependent, since it uses the name b of the sender.3.2 ReplicationThe behavior of replication in concurrent calculi is typically de�ned by a struc-tural equivalence rule establishing that !P �!P j P . With ambients we can encodea similar construct relying upon the implicit form of recursion inherent in thereduction of method invocation. Let be p; q =2 fn(P)!P 4= (�p; q) (p downsend !hi:open q:P jp[[! . &(z)(q[[out z:z downsend !hi:open q:P]]) ;]])The reduction for the encoding of !P is then the following:!P 4= (�p; q)�p downsend !hi:open q:P j p[[! . &(z)(q[[� � �]]) ;]]�
➞ (�p; q) �open q:P j p[[! . &(z)(:::) ; q[[out p:p downsend !hi:open q:P]]]] �
➞ (�p; q) �open q:P j q[[p downsend !hi:open q:P]] j p[[! . &(z)(:::) ;]] �
➞ (�p; q) (P j p downsend !hi:open q:P j p[[! . &(z)(:::) ;]])� P j !P

Notice that at each reduction step only one capability is ready to be exercised.Furthermore, the process P is activated only after the opening of the ambient q,hence it does not interfere with the protocol. We have then that the describedprotocol is a \precise" encoding of the replication (free from interferences).3.3 Code on DemandEven if we adopted RPC as primitive protocol for remote method invocation, theCode on Demand protocol used in [BC00,BCC00] is useful in several situation.The behavior of code on demand (cod) can be described as follows. A client cinvokes a method ` on a server s; the server activates the method and then sendsit back to the client for the latter to execute it. Formally this correspond to thefollowing reduction rule:c[[J ; s send cod`hMi:R j S]] j s[[I :: `(x) . &(z)Q ; P]] ➞c[[J ; Qfz; x := s;Mg j R j S]] j s[[I :: `(x) . &(z)Q ; P]]The protocol can be encoded by translating the caller and the called ambientsas follows: server 4= s[[I :: `(u; v; x) . &(z)u[[out z:in v:Q]] ; P]]client 4= c[[J ; (�p)s send `hp; c;Mi:open p:R j S]]The protocol relies on the agreement between the server and the client uponthe name of the ambient that carries the activated process back to the client.This name is decided locally by the client which passes it as an argument forthe call together with its own name. Invoking `hp; c:Mi spawns a new processon the server that simply carries the ambient p out of the server and back intothe client c: once inside c, the transport ambient p is opened thus unleashing theprocess Q to be executed on the client.Note that, if the second argument passed to the method ` were a path,rather than the client's name, then by slightly modifying the server we couldhave a more general protocol, where the client can choose where to receive andto execute the requested method (e.g. , in one of its subambients).3.4 UpdatesFollowing the standard de�nition of method override [AC96,FHM94] in formalcalculi method updates for ambients can be formulated, informally, as follows:given the ambient a[[I :: `(x) . &(z)P ; Q]] we wish to replace the current de�ni-tion P of ` by the new de�nition P 0 to form the ambient a[[I :: `(x) . &(z)P 0 ; Q]]Updates can be coded using a distinguished ambient as \updater". The up-dater carries the new method body and enters the updatable ambient a: theupdatable ambient is coded as an ambient whose controlling process opens theupdater thus allowing updates on its own methods. The coding is de�ned pre-cisely below, in an asynchronous setting: a similar encoding can be de�ned forsynchronous updates. Moreover, we allow only local updates, that is, an ambient

may only override methods contained in subambients (of course other kind ofupdates can be encoded, too)Updates are denoted by a update `(x) . &(z)P , read \the ` method at a getsde�nition P ". We de�ne their behavior as follows: let �rsta update `(x) . &(z)P 4= upd[[`(x) . &(z)P ; in a]]Then de�ne an updatable ambient as followsa?[[I ; P]] 4= a[[I ; !(open upd) j P]]Now, if we form the composition a update `(x).&(z)P 0 j a?[[I :: `(x) . &(z)P ; Q]] ,the reduction for open enforces the expected behavior:a update `(x).&(z)P 0 j a?[[I :: `(x) . &(z)P ; Q]] ➞� a?[[I :: `(x) . &(z)P 0 ; Q]]Multiple updates for the same method may occur in parallel, in which case theirrelative order is established nondeterministically. The protocol, as de�ned, re-lies on the assumption that the name of the updater ambient carrying the newmethod body is globally known. A more realistic assumption is that updatedambient and the context agree on the name of the updater prior to start theprotocol. This can be accomplished with a di�erent de�nition of updatable am-bient, one that assumes that updatable ambients come with an ad-hoc methodthat sets the appropriate conditions for the actual update to take place. The updmethod below serves this purpose.a?[[I ; P]] 4= a[[I :: upd(u) . &(z)open u ; P]]Now, the updated protocol comprises two steps. First the updated ambient re-ceives the name of the updater, and only then does the update take place:a update `(x) . &(z)P 4= (�p) (a downsend updhpi:p[[`(x) . &(z)P ; in a]])3.5 Encoding the �-calculusA �nal example shows that synchronous and asynchronous communication primi-tives between processes can be encoded. We �rst give an encoding of synchronouscommunication. A similar model of (asynchronous) channel-based communica-tion is presented in [CG98] and it is based on the more primitive form of localand anonymous communication de�ned for the Ambient Calculus: here, instead,we rely on the ability, distinctive of our ambients, to exchange values betweenmethods.A channel n is modeled by an updatable ambient n, two locks ni, and no andan auxiliary ambient �n needed for the communication protocol based on RPC.The ambient n contains a method ch: a process willing to read from n installsitself as the body of this method, whereas a process willing to write on n invokes

ch passing along the argument of the communication.(ch n) 4= n?[[ch(x) . 0]] j ni [[]]n!hyi:Q 4= open no:n downsend ch(y):open �n:(ni [[]] j Q)n?(x):P 4= open ni: n update ch(x) . (�n[[out n:P]]) :no[[]]The communication is then the following: a process n!hyi:Q writing y on n �rstattempts to grab the output lock no, then sends the message ch(y) to n, andafter the end of the RPC protocol (i.e. after the opening of the carrier ambient�n), the process continues as Q releasing the input lock ni. At the start of theprotocol there are no output locks: hence the process writing on n blocks. Aprocess n?(x):P reading from n �rst grabs the input lock ni provided by thechannel, then installs itself as the body of the chmethod in n, and �nally releasesthe output lock. Now the writing process resumes its computation: it sends themessage thus unleashing P , and then releases the input lock and continues as Q.Asynchronous communications are obtained directly from the coding above,by a slight variation of the de�nition of n!hAi:Q. We simply need a di�erent wayof composing Q with the context:n!hyi:Q 4= (open no:n downsend ch(y):open �n:(ni [[]])) j QBased on the this technique, we can encode the synchronous (and similarly, theasynchronous) polyadic �-calculus in ways similar to what is done in [CG99].Each name n in the �-calculus becomes a quadruple of names in our calculus:the name n of the ambient dedicated to the communication, the names ni andno of the two locks, and the name �n of the auxiliary ambient. Therefore, com-munication of a �-calculus name becomes the communication of a quadruple ofambient names.hh (�n)P ii 4= (�n; �n; ni; no)(n i [[]] j n?[[ch(x; �x; xi; xo) . 0]] j hhP ii) �n; ni; no 62 fn(hhP ii)hhn!hyi:Q ii 4= open no:n downsend ch(y; �y; yi; yo):open �n:(n i [[]] j Q)hhn?(x):P ii 4= open ni:n update ch(x; �x; xi; xo) . (�n[[out n:P]]) :no [[]]hhP j Q ii 4= hhP ii j hhQ iihh !P ii 4= ! hhP iihh0 ii 4= 0 Fig. 6. Encoding of the synchronous �-calculusThe initialization of the chmethod in the ambient that encodes the channel ncould be safely omitted, without a�ecting the operational properties of encoding.However, as given, the de�nition scales smoothly to the case of a typed encoding,preserving well-typing.

A compositional encoding of the �-calculus channel-based communication interms of message sends, can be de�ned in a way similar to that in [LS00], addingto the calculus coactions and relying on their ability to control/synchronize anycomputational step. See Section 5 for a more detailed discussion.4 Types and Type SystemsThe typing of ambients inherits ideas from existing type systems for MobileAmbients; however, as we anticipated, the presence of methods enables a morestructured (and informative) characterization of their enclosing ambient's inter-faces. The grammar productions for types are:Signatures � ::= (`i(Vi))i2IAmbients A ::= Amb[�]Capabilities C ::= Cap[�]Processes P ::= Proc[�]Values V ::= A j CTypes T ::= X j A j C j PSignatures convey information about the interface of an ambient, by listingthe ambient's method names and input types. The intuitive reading of ambient,capability and process types is as follows: the type Amb[�] is the type of ambientswith methods declared in �; the type Cap[�] is the type of capabilities whoseenclosing ambient (if any) has a signature which contains at least the methodsincluded in �; the type Proc[�] is the type of processes whose enclosing ambient(if any) contains at least all the methods declared in �. The values, used asargument for method invocation, are ambient names and capabilities.The complete syntax of types contains type variables, that are used to dealwith the dependency of method bodies on the self parameter. In fact, due toambient opening, a method residing in an ambient a may be reinstalled inside anew ambient that opens a and that may have a richer interface; thus the typeof the self variable may be dynamically rebound to a di�erent ambient type. Asa consequence, to ensure sound typings of method invocations, method bodiesare typed in a context that assumes the so-called MyType [Bru94] typing forthe self variable, i.e. a match-bounded type variable representing the type ofall ambients where the method can be reinstalled, via opening. In particular,we use a restricted form of matching relation [Bru94], where a type variableX , representing a self type, may appear in the context only match-boundedby an ambient type (i.e. X<#A). Furthermore, we syntactically restrict oursignatures, and consequently our ambient, capability and process types, to notcontain type variables. As a consequence, the type system does not supportMyType method specialization [Bru94,FHM94], the OO-typing technique thatallows methods's types to be specialized when they are inherited (or, in ourcontext, when they are subsumed in an opening ambient). Instead, in our calculus

a method body has always the same type (that is, the one declared in �),independently of the dynamic binding of its self variable. This is not surprising,as our method bodies are processes with no return value, hence they are dealtwith essentially as methods with return type unit in imperative object calculi.4.1 Type SystemThe typed syntax of the calculus is described by the productions in Figure 7 :Interfaces I ::= `(x) . &(z)P j I :: I j "Processes P ::= 0 j P jP j a[[I ; P]] j (�x:A)P jM:PExpressions M ::= x j (M1; : : : ;Mn) j x send `hMi j in x j out x j open x j "Fig. 7. Typed syntax for ambientsAs we said in Section 2, we take method names to be �xed labels that maynot be passed as values, nor restricted. The �rst restriction is justi�ed by thefact that method names are part of the structure of ambient (capability andprocess) types; as a consequence, lifting this restriction would be possible but itwould make our types (�rst-order) dependent types. Instead, lifting the secondrestriction is possible, and in fact not di�cult, even though it complicates theformat of the typing rules . For this reason we will disregard this issue in whatfollows.The structure of contexts and judgments is de�ned by the productions below,where we assume W to range over the set fX;A ;C g of extended value types:Contexts � ::= ? j �; x : W j �;X<#AJudgements J ::= � `M : W j � ` X<#A j � ` P :P j � ` T j � ` �Fig. 8. Contexts and typing judgmentsThe complete set of typing rules is presented in Appendix A; below, wediscuss the most interesting ones.Method signatures, associated with ambient types, are traced by the typesCap, of capabilities, to allow an adequate typing of messages, mobility and open-ing. (open)� ` a : Amb[�]� ` open a : Cap[�]

The rule (open) for opening an ambient requires precise knowledge of the typeof the ambient being opened: consequently, the type of the ambient must be anambient type, not a type variable. An opening is now legal under the conditionthat the signature of the opening ambient be equal to (in fact, contain, given thepresence of subtyping) the signature of the ambient being opened. This conditionis necessary, as subject reduction would otherwise fail: as a consequence, openingan ambient may only update existing methods of the opening ambient, and theiroriginal typing must be preserved.(Message)� ` a : W � ` W <#Amb[`(V 0)] � `M 0 : V 0� ` a send `hM 0i : Cap[�]Rule (Message) says that an invocation for method ` on an expression a re-quires the type of a to match an ambient type containing the method `. Notethat the type of a may either be an ambient type matching (i.e. \longer" then)Amb[`(V 0)], or else an unknown type (i.e. a type variable) occurring match-bounded in the context � . Since the body of the invoked method is not executedin the same ambient that contains the send capability (due to the RPC seman-tics), no constraint is imposed on the type of the send capability. Of course, inorder for the expression to type check, the message argument and the methodparameters must have the same type. 4(Amb) (� = (`i(Vi))i2I)� ` a : Amb[�] �;Z<#Amb[�]; z:Z; xi:Vi ` Pi : Proc[�] � ` P : Proc[�]� ` a[(`i(xi) . &(z)Pi) i2I ; P] : Proc[�0]Rule (Amb) types ambients similarly to objects in the object calculi of [AC96]:each method is typed under the assumptions that (i) the self parameter has atype that matches the type of the enclosing ambient, (ii) method parametershave the declared type, and (iii) method bodies must be typable with a processtype that agrees with the type of the enclosing ambient and that is independenton the type of self (i.e. disallowing MyType method specialization). Moreover,the rule requires the local process to have a process type that agrees with the typeof the enclosing ambient. Finally, no constraint is imposed on the signature �0,associated with the process type in the conclusion of the rule, as that signatureis (a subset of) the signature of the ambient enclosing a (if any).Note that the match-binding for the type of the self variable ensures thatmethods local to ambient a are well-typed also within any other ambient thatmight eventually open a. Also the rule requires exact knowledge of the true typeof the ambient's name; a structural rule allowing the name of the ambient to betyped with a match-bounded type variable would break type soundness, sincewe would not have a precise control of the openings of that ambient (see rule(open)).4 In fact, since capability types can be subtyped, the type of the arguments can be subtypesof the type of the formal parameters.

(Match Amb) � ` �� ` Amb[(`i(Vi))i21::n+k]<#Amb[(`i(Vi))i21::n](Sub Cap)� � �0Cap[�] � Cap[�0] (Sub Proc)� � �0Proc[�] � Proc[�0]Non-trivial subtyping is de�ned for capability and process types: speci�cally,a capability (resp. process) type Cap[�] (resp. Proc[�]) is a subtype of any capa-bility (resp. process) type whose associated signature (set theoretically) contains�. The resulting notion of subtyping is reminiscent of the notion of subtypingin width distinctive of type systems for object and record calculi. Width sub-typing must be disallowed over ambient types to ensure sound uses of the opencapability: intuitively, when opening an enclosed ambient, one again needs exactknowledge of the contents of that ambient, (speci�cally, of its method suite) so asto ensure that all the overriding that takes place upon exercising the capability,be traced in the types. Nevertheless, we have matching relation between ambi-ent types, that ensures sound typing of methods even when they are merged, viaopening, in a \larger" ambient.The complete set of subtyping and matching rules includes the standard rulesfor re
exivity and transitivity (not shown). Also, as customary, the subtypingrelation is endowed in the type system via a subsumption rule.4.2 Subject Reduction and Type SoundnessWe conclude the description of the basic type system with a proof of subjectreduction. The proof is rather standard, and only sketched due to lack of space.Lemma 1 (Substitution).1. If �; x:W ` P :P and � `M : W , then � ` Pfx: =Mg :P.2. If �;Z<#A ; z:Z ` P :P and � ` a:A 0, � ` A 0<#A ,then � ` Pfz: = ag:P.Proof. By induction on the derivation of the �rst judgment in hypothesis.Proposition 1 (Subject Congruence).1. If � ` P : Proc[�] and P � Q then � ` Q : Proc[�].2. If � ` P : Proc[�] and Q � P then � ` Q : Proc[�].Proof. By simultaneous induction on the derivations of P � Q and Q � P .Lemma 2 (Bounded Weakening).1. If �; x : W ` P :P and � ` W 0 � W then �; x : W 0 ` P :P.2. If �;Z<#A ; z:Z ` P :P and � ` A 0<#A then �;Z<#A 0; z:Z ` P :P.

Proof. By induction on the derivation of the �rst judgment in hypothesis.Theorem 1 (Subject Reduction).If � ` P : Proc[�] and P➞Q then � ` Q : Proc[�].Proof. By induction on the derivation of P➞Q, and a case analysis on the lastapplied rule.Besides being interesting as a meta-theoretical property of the type system,subject reduction may be used to derive a soundness theorem ensuring the ab-sence of run-time (type) errors for well-typed programs. As we anticipated, theerrors we wish to statically detect are those of the kind \message not under-stood" which are distinctive of object calculi. With the current de�nition of thereduction relation such errors may not arise, as not-understood messages simplyblock: this is somewhat unrealistic, however, as the result of sending a messageto an object (a server) which does not contain a corresponding method shouldbe (and indeed is, in real systems) reported as an error. We thus introduce anew reduction to account for ita[[I ; P j b send `hMi:Q]] j b[[J ; R]] ➞ a[[I ; P j ERR]] j b[[J ; R]] (` 62 J)together with the rules that propagate errors in every context. The intuitivereading of the reduction is that a not-understood message causes a local error |for the sender of that message| rather than a global error for the entire system.The rule above is meaningful also in the presence of multiple ambients withequal name, as our type system (like those of [CG99,CGG99,LS00]) ensures thatambients with the same name have also the same type. Therefore if a message `is absent from a given ambient b, it will also be absent from all ambients namedb. If we assume that ERR is a distinguished process, with no type, it is easy toverify that no system containing an occurrence of ERR can be typed in our typesystem. Absence of run-time errors may now be stated follows:Theorem 2 (Soundness). For every � , P , if � ` P : T , then P ➞�6 ERR.5 Adding coaction: SA++In [LS00], Levi and Sangiorgi show that the calculus of Mobile Ambients can bere�ned in order to have a richer algebraic theory and prove useful properties.To that end, they de�ne the Safe Ambients calculus, where each MA's capabil-ity is combined with a dual cocapability, and where a computational reductionstep is the result of a capability-cocapability synchronization. Thus an interac-tion between two ambients only happens when both ambients agree on theirintentions.Following their work it is not di�cult to add cocapabilities to MA++ calculuswe presented here, obtaining what we call SA++ . In particular, the SA++calculus contains a cocapability listen a, that is the dual of the capability a send ,

and whose meaning is that the ambient a is ready to serve an invocation to oneof its methods.For reasons of space, we do not describe this extension in full details, butwe want nevertheless to point out its advantages by showing how it allow us toderive a simpler and compositional encoding of the �-calculus.hhn?(x):P ii 4= (�p)(n[[ch(x) . p[[out n:coopen p: hhP ii]] ; listen n:coout n]] j open p)hhn!hxi ii 4= n downsend chhxihh (�x)P ii 4= (�x) hhP iihhP j Q ii 4= hhP ii j hhQ iihh !P ii 4= ! hhP iihh0 ii 4= 0hhn ii 4= nhhCh(T) ii 4= Amb[ch(hhT ii)]Fig. 9. Encoding of the asynchronous �-calculusEvery input on a channel n generates a new ambient named n, waiting tosynchronize with an output on n. Having received input, the transport ambientp carries (the encoding of) P out of n. Once outside n, p is dissolved thusunleashing the continuation process P . It is instructive to notice that the ambientn is left without capabilities after having let the transport p out. As such, aftersynchronization, n is unavailable for interactions with the context, and thusbehaviorally equivalent to the null process and garbage collectable.Note also that, dealing only with the processes yielding from the encoding of�-calculi processes, the parent-to-child invocation protocol is guaranteed to beexecuted without interferences.6 Related workIn the literature on concurrent object oriented programming, papers can bedistinguished in two basic categories. The �rst class contains works that providesemantics to objects by encoding them into process calculi. Works in the secondclass study calculi where primitives for objects and for concurrent processescoexist.Systematic translations of objects into �-calculus can be found, for instance,in [Wal95,HK96,San98,KS98]. Works that belong to the second approach aremuch closer to what we do here. Among these it is worth to mention the ap-proaches of [Vas94,PT95,FMLR00] which, given a name-passing calculus, buildhigh-level constructors distinctive of object-oriented languages. A complemen-tary approach is followed by [GH98] and [DBF96] since they add primitives forconcurrency to the imperative object-oriented calculus of, respectively, [AC96]

and [FHM94]. Aspects of distribution are taken into account in [NHKM99,Jef00].We present next a detailed discussion on works most related to our.The conc& calculus. In [GH98] the authors present a concurrent object calcu-lus (conc&) that consists of Abadi and Cardelli's imperative object calculus ex-tended with primitives for parallel composition, restriction and synchronizationvia mutexes. They also show that existing type systems for the underlying objectcalculus can be smoothly and soundly extended to accommodate concurrency.The basic di�erence between this work and that we presented, is the factthat [GH98] does not deal with process mobility. In [GH98] distribution aspectsare absent, while in our framework objects may move through a hierarchy ofnested locations, and communication (method invocation) often requires mo-bility. Moreover, in our framework, due to the interplay between the dynamicnesting structure and the communication primitives, more method invocationstyles can be modeled.On the other hand, the semantics of method invocation in [GH98], as well asin our work, is based on the idea of self-substitution distinctive of [AC96]. As inthe work presented here, in [GH98] objects are explicitly named, thus what getssubstituted for the self variable is the name of the object rather then the objectitself.A distinctive feature of [GH98] is the fact that the syntax of conc& includes se-quential composition of expressions that return results. This contrasts with whathappens in most formalisms based on processes ([Vas94,PT95,Wal95,KS98]),where the operation of returning a result is translated into sending a messageon a result channel. Even though we did not explicitly address the problem ofreturning a result, it is easy to extend our framework by endowing agent inter-faces not only with methods, but also with �elds whose invocation returns anexpression.A distributed version of conc& is studied in [Jef00], where the syntax of thecalculus is enriched with a notion of location, and threads are allowed to migratebetween locations. Contrary to our framework, in [Jef00] the author considers avery simple, �xed
at set of locations, with no routing information, no dynamiclocation creation or hierarchy of locations. Moreover, in [Jef00] only a subsetof objects (serializable objects) can be sent across the network, and only theso-called located objects can be accessed via remote threads.The Ojeblik calculus. In [NHKM99] authors present Ojeblik, an object-based lan-guage that represents the concurrent core of Obliq ([Car95]), Cardelli's lexicallyscoped distributed programming language. In this setting, mobility of objects isrendered via a migration mechanism that is carried out by creating a copy ofthe object at the target site and then modifying the original (local) object suchthat it forwards future requests to the new (remote) object. Moreover, lexicalscoping of Obliq permits to safely ignore aspects of distribution. Migration isthen correct if the behavior of an object is transparent to whether the object hasmigrated or not.

Our approach is very di�erent since, in a way similar to that of AmbientCalculus, we assume that the process a[[I ; P]] is an abstraction for both anagent (client) and an object (server). This implies that in our framework mobileobjects move without the burden of future obligations at the source location. Aclient agent willing to invoke a method of a server object, in turn, must approachthe server in order to start the communication protocol.In addition, while the work on Ojeblik does not address typing issues, wedeveloped a rich type theory showing how advances in type system for object-oriented languages can be reused in the context of calculi of mobile agents.7 Future WorkMA++ is a core calculus on the top of which many other extensions, besides theone with coactions and single threaded types [LS00] can be de�ned.A �rst example is the addition of �elds. Unlike what happens in object calculi,where �elds can be obtained as parameter-less methods, here �elds cannot beencoded. Calling a method does not return a value, but instead spawns a process.The solution is to explicitly add new syntax for �elds, which operationally insteadof triggering a process returns terms.A di�erent possibility is to extend the calculus so that method names havenot a distinguished status but are dealt with as ordinary names. This would allowone to restrict them, thus obtaining private methods, and to communicate them,thus obtaining dynamic messages. This is a straightforward modi�cation in theuntyped calculus but it is quite problematic in the typed case since the possibilityof communicating method names would naturally give rise to dependent types.Finally we could imagine to de�ne security policies for MA++ and try toapply it to specify and verify real case examples.References[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.[BC00] M. Bugliesi and G. Castagna. Mobile objects. In 7th Workshop on Foundation ofObject-Oriented Languages, Boston, 2000. Electronic Proceedings.[BCC00] M. Bugliesi, G. Castagna, and S. Crafa. Typed mobile objects. In Proceedings ofCONCUR 2000 (11th. International Conference on Concurrency Theory), number1877 in Lecture Notes in Computer Science, pages 504{520. Springer, 2000.[Bru94] B. Bruce, K. A paradigmatic object-oriented programming language: Design, statictyping and semantics. Journal of Functional Programming, 1(4):127{206, 1994.[Car95] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27{59,1995.[Car99] L. Cardelli. Abstractions for mobile computations. In Secure Internet Program-ming, number 1603 in Lecture Notes in Computer Science, pages 51{94. Springer,1999.[CG98] L. Cardelli and A. Gordon. Mobile ambients. In Proceedings of POPL'98. ACMPress, 1998.[CG99] L. Cardelli and A. Gordon. Types for mobile ambients. In Proceedings of POPL'99,pages 79{92. ACM Press, 1999.[CGG99] L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambients. InProceedings of ICALP'99, number 1644 in Lecture Notes in Computer Science,pages 230{239. Springer, 1999.

[DBF96] P Di Blasio and K. Fisher. A calculus for concurrent objects. In CONCUR '96,number 1119 in Lecture Notes in Computer Science, pages 655{670. Springer, 1996.[FHM94] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects andMethod Specialization. Nordic Journal of Computing, 1(1):3{37, 1994.[FMLR00] C�edric Fournet, Luc Maranget, Cosimo Laneve, and Didier R�emy. Inheritance inthe Join Calculus. In Foundations of Software Technology and Theoretical Com-puter Science, volume 1974 of Lecture Notes in Computer Science. Springer, De-cember 2000.[GH98] A. Gordon and P. D Hankin. A concurrent object calculus: reduction and typ-ing. In Proceedings HLCL'98, Elsevier ENTC, 1998. Also Technical Report 457,University of Cambridge Computer Laboratory, February 1999.[HK96] H. Huttel and J. Kleist. Objects as mobile processes. Technical Report ResearchSeries RS-96-38, BRICS, 1996. Presented at MFPS '96.[Jef00] A. Je�rey. A distributed object calculus. In 7th Workshop on Foundation ofObject-Oriented Languages, Boston, 2000. Electronic Proceedings.[KS98] J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. In PRO-COMET '98 (IFIP Working Conference on Programming Concepts and Methods).North-Holland, 1998.[LS00] F. Levi and D. Sangiorgi. Controlling interference in Ambients. In POPL '00,pages 352{364. ACM Press, 2000.[NHKM99] U Nestmann, H. Huttel, J. Kleist, and M. Merro. Aliasing models for object migra-tion. In Proceedings of Euro-Par'99, number 1685 in Lecture Notes in ComputerScience, pages 1353{1368. Springer, 1999.[PT95] B.C. Pierce and D.N. Turner. Concurrent objects in a process calculus. In TakayasuIto and Akinori Yonezawa, editors, Theory and Practice of Parallel Programming,Sendai, Japan (Nov. 1994), number 907 in Lecture Notes in Computer Science,pages 187{215. Springer, April 1995.[San98] D. Sangiorgi. An interpretation of typed objects into typed �-calculus. IC,143(1):34{73, 1998.[Vas94] V.T. Vasconcelos. Typed concurrent objects. In M. Tokoro and R. Pareschi, editors,ECOOP '94, number 821 in Lecture Notes in Computer Science, pages 100{117.Springer, 1994.[Wal95] D.J Walker. Objects in the �-calculus. Information and Computation, 116(2):253{271, 1995.A Typing rulesContext formation(Env-empty)? ` � (Env-x)� ` W x =2 Dom(�)�; x : W ` � (Env-X)� ` � X =2 Dom(�)�;X<#A ` �Type formation(Type X)�;X<#A ; � 0 ` ��;X<#A ; � 0 ` X (Type Amb)� ` �� ` Amb[�] (Type Cap)� ` �� ` Cap[�] (Type Proc)� ` �� ` Proc[�]

Matching : Re
exivity, Transitivity and the following(Match X)�;X<#A ; � 0 ` ��;X<#A ; � 0 ` X<#A (Match Amb) � ` �� ` Amb[(`i(Vi))i21::n+k]<#Amb[(`i(Vi))i21::n]Subtyping and subsumption : Re
exivity, Transitivity and the following(Sub Cap)� � �0Cap[�] � Cap[�0] (Sub Proc)� � �0Proc[�] � Proc[�0] (Subsumption)� ` A : T T � T 0� ` A : T 0Expressions(name/var)� ` �� ` x : � (x) (") � ` �� ` " : Cap[�] (path)� `M1 : Cap[�] � `M2 : Cap[�]� `M1:M2 : Cap[�](open)� ` a : Amb[�]� ` open a : Cap[�] (inout)� `M : W � ` W <#Amb[�] (M 0 2 fin M; out Mg)� `M 0 : Cap[�0](Message)� ` a : W � ` W <#Amb[`(V 0)] � `M 0 : V 0� ` a send `hM 0i : Cap[�]Processes(pref)� `M : Cap[�] � ` P : Proc[�]� `M:P : Proc[�] (par)� ` P : Proc[�] � ` Q : Proc[�]� ` P j Q : Proc[�](restr)�; x:A ` P : Proc[�]� ` (�x:A)P : Proc[�] (dead)� ` �� ` 0 : Proc[�](Amb) (� = (`i(Vi))i2I)� ` a : Amb[�] �;Z<#Amb[�]; z:Z; xi:Vi ` Pi : Proc[�] � ` P : Proc[�]� ` a[(`i(xi) . &(z)Pi) i2I ; P] : Proc[�0]

