A meta-language for typed
object-oriented languages

Giuseppe Castagna*

LIENS(CNRS)-DMI
45 rue d’Ulm, 75005 Paris. FRANCE

e-mail: castagna@dmi.ens.fr

Abstract. In [3] we defined the A&-calculus, a simple extension of the
typed A-calculus to model typed object-oriented languages. To develop
a formal study of type systems for object-oriented languages we define,
in this paper, a meta-language based on A& and we show by a practi-
cal example how to use it to prove properties of a language. To this
purpose we define a toy object-oriented language and its type-checking
algorithm; then we translate this toy language into our meta-language.
The translation gives the semantics of the toy language and a theorem
on the translation of well-typed programs proves the correction of the
type-checker of the toy language.

As an aside we also illustrate the expressivity of the A&-based model
by showing how to translate existing features like multiple inheritance
and multiple dispatch, but also by integrating in the toy language new
features directly suggested by the model, such as first-class messages, a
generalization of the use of super and the use of explicit coercions.

1 Introduction

In [3] we introduced the A&-calculus. Tt is a simple extension of the typed lambda
calculus to deal with overloaded functions, subtyping and dynamic binding. The
main motivation of its definition was to give a kernel calculus possessing the key
properties of object-oriented programming, in the line of some ideas of [6]. In
the same paper we showed how this calculus could be intuitively used to model
some features of object-oriented programming. It resulted that such a calculus
yields a model orthogonal to the ones proposed in the literature so far. Thus
we returned to object-oriented programming and we reviewed it in the light of
the model arising from the A&-calculus. The experiment was surprising since we
were able to deal with some features (such as multiple dispatch or the extension
of the set of methods of a certain class) and introduce new ones (as first class
messages or a generalization of “super”) the usual models could not.

However, A& is inadequate for a formal study of the properties of real object-
oriented languages, and it was not meant for this: it is a calculus not a meta-
language; thus, even if it possesses the key mechanisms to model object-oriented
features, it cannot be used to “reason about” (i.e. to prove properties of) an
object-oriented language.

For this reason in this paper we define a meta-language (i.e. a language

to reason about —object-oriented— languages)? that we call A_object. This

Y In 13th Conference on Foundations of Software Technology and Theoretical Computer
Sctence. Bombay, December 1993. LNCS to appear

* Supported by grant no. 203.01.56 of the Consiglio Nazionale delle Ricerche, Comitato
Nazionale delle Scienze Matematiche, Italy, to work at LIENS

2 In this case the prefix “meta” is used w.r.t. the object-oriented languages

language is still based on the key mechanisms of A& (essentially, overloading
and dynamic binding) but it is enriched by those features (like commands to
define new types, to work on their representations, to handle the subtyping
hierarchy, to change the type of a term or to modify the discipline of dispatching
etc.) that are necessary to reproduce the constructs of a programming language
and that A& lacks for.

We also show, by a practical example, how to use A_object to prove properties
of an object-oriented language. To this purpose we define a simple toy object-
oriented language (a mix of Objective-C and CLOS constructs) and an algorithm
to type-check its programs. We then translate the programs of the toy object-
oriented language into A_object. We prove that every well typed program of the
former is translated into a well typed program of the latter; since the latter enjoys
the subject-reduction property, it implies that the reduction of the translated
program never goes wrong on a type error; in particular this proves the correction
of the type-checker for the toy language.

The paper is organized as follows: section 2 gives an informal description of
the toy language and of its type discipline. In section 3 we briefly summarize the
A&-calculus. In section 4 we describe A_object: we give its operational semantics,
a type-checker and prove the subject reduction theorem. In section 5 we hint
the translation and we prove the correction of the type discipline for the toy
language. For space reasons we cannot give a detailed description of all the
systems. All the details and the precise connection between A& and A_object
will be included in the author’s PhD. thesis.

2 The toy language

2.1 Message passing

There exist many syntaxes for messages; in our toy language message-expressions
are enclosed in square brackets: [recetver messagel. There are two ways to
model message passing. One is to consider an object as a record of methods and
message passing as dot selection (e.g. in Eiffel; see [8]). The other is to consider
message passing as functional application where the message is the function and
the receiver is the argument (as in CLOS; see [7]). In this paper we choose this
second solution. Though the fact that a method belongs to a specific object
(more precisely to a specific class of objects) implies that message passing is
a mechanism different from the usual functional call (i.e. S-reduction). In our
approach the main characteristics that distinguish messages from functions are:

Querloading: Two objects may respond differently to the same message. For
instance, the code executed when sending a message inverse to an object rep-
resenting a matrix will be different from the one executed when the same message
is sent to an object representing a real number. But the same message behaves
uniformly on objects of the same kind (e.g. on all objects of class matrixg. This
feature is known as overloading since we overload the same operator (in this
case inverse) by different operations; the actual operation depends on the type
of the operands. Thus messages are identifiers of overloaded functions and in
message passing the receiver is the first argument of an overloaded function, i.e.
the one on whose type is based the selection of the code to be executed. Each
method constitutes a branch (i.e. a code or operation) of the overloaded function
referred by the message it is associated to.

Dynamic binding: The second crucial difference between function application
and message passing is that a function is bound to its meaning at compile time

while the meaning of a method can be decided only at run-time when the receiv-
ing object is known (fully evaluated). This feature is called dynamic binding.

Therefo?}"e in our model overloading and dynamic binding are the basic mecha-
nisms.

2.2 Classes and programs

The name of a class is used as the type of its objects and constitutes an “atomic
type” of our type system. We restrict our attention to a functional case of OOP;
thus the instance variables of an object are modified by an operation update
which returns a new object of the same type of the current object. We show the
syntax of class definition in our toy language by an example:

class 2DPoint

{

x:Int

y:Int
}

norm = gqrt(self.x"2 + self.y"2);

erase = (update{x = 0});

move = fn(dx:Int,dy:Int) => (update{x=self.x+dx; y=self.y+dy})
[L

norm: Real,

erasge: 2DPoint,

move: (Int x Int) -> 2DPoint
11

0;
0

Instances of a class are created by means of the command new. Since the
name of a class is used for the type of its instances then new(2DPoint) : 2DPoint.

A program in our toy language is a sequence of declarations of classes followed
by an expression (the body of the program) where objects of these classes are
created and interact by exchanging messages.

2.3 Refinement

It is possible to define new classes by refining existing ones. The refinement
induces on the atomic types two different hierarchies generated by two distinct
mechanisms: inheritance, which is the mechanism that allows to reuse code writ-
ten for other classes and which concerns the definition of the objects; subtyping,
which is the mechanism that allows to use one object instead of another of a dif-
ferent class and which concerns the computation of the objects. It is well-known
that these hierarchies are distinct (see [5]). In our toy language we take a simpler
approach, including in it only subtyping. Thus it is not possible to have “pure”
inheritance (i.e. code reuse without the substitutivety given by subtyping). We
use the keyword is in the class definition to define the subtype relation among
classes. A typical example of its use is:

® The use of dynamic binding automatically introduces a further distinction between
ordinary functional application and message passing: while the former can be dealt
with by either call-by-value or call-by-name, the latter can be performed only when
the run-time type of the argument is known, i.e. when the argument is fully evalu-
ated (closed and in normal form). In view of our analogy “messages as overloaded
functions” this (nearly) corresponds to say that message passing (i.e. overloaded
application) acts by call-by-value: see proposition 4.2 and corollary 5.

class 2DColorPoint is 2DPoint

{ x:Int = 0 ; y:Int = 0 ; c:String = "black"}

isWhite = (self.c == "white")

move = fn(dx:Int,dy:Int)=>(update{x=self.x+dx; y=self.y+dy; c="white"})

[[isWhite: Bool , move: (Int x Int) -> 2DColorPoint]]
The keyword is says that 2DColorPoint is a subtype of 2DPoint (denoted by
2DColorPoint < 2DPoint). It is possible to specify more then one superclass
after is, by separating the ancestors by commas (multiple inheritance).

To substitute values of some type by those of another type some requirements
must be satisfied. If the type at issue is a class then the following conditions
must hold:

1. state coherence: The set of the instance variables of a class must contain
those of all 1ts superclasses. Moreover common variables must appear with
the same type.

2. covariance: A method that overrides another method must specialize it, in
the sense that the type returned by the new method must be a subtype of
the type returned by the old method.

3. multiple inheritance: When a class is defined by multiple refinement, the
methods that are in common to more than one unrelated supertype must be
explicitly redefined

We have chosen not to use a class precedence list (as in CLOS) but rather
the explicit redefinition of common methods (as in Eiffel) which is less syntax
dependent and thus mathematically cleaner.

2.4 Extending classes

Refinement is not the only way to specialize classes. It is also possible to add
new methods to existing classes or to redefine the old ones (see for example
Objective-C or add-method in CLOS). In our toy language this can be done by
the following expression:
extend classname
methodDefinitions
interface
in exp
the newly defined methods are available inside the expression exp. The extension
of a class affects all its subtypes, in the sense that when you extend a class with
a method then that method is available to the objects of every subtype of that
class.

2.5 Super, self and the use of coercions

The use of the reserved keyword self is well-known: it denotes in a method
the receiver of the message that invoked the method. Though, in view of our
analogy of messages as identifiers of overloaded functions, self assumes also
another meaning. Indeed recall that the receiver of a message i1s the argument
of the overloaded function denoted by that message. Thus in the definition of a
method, self is the formal parameter of the overloaded function in which that
method appears as a branch.

Also the use of super is well-known: when we send a message to super,
the effect is the same as sending it to self but with the difference that the
selection s performed as if the recetver were an instance of a super-class. Here
we generalize this usual meaning of super in two ways: the selection does not

assume that the receiver is self, but takes as receiver the parameter of super;
and super does not necessary appears in the receiver position, but it is a first-
class value (i.e. it can appear in any context its type allows to). Finally, since we
use multiple inheritance without class precedence lists, we are obliged to specify
in the expression the supertype from which to start the search of the method?.
Thus the general syntax of super is super [A] (ezp). When a message is sent to
this expression then exp is considered the receiver but the search of the method
is started from the class A (which then must be a supertype of the class of exp).

Very close to the use of super is the use of the coercions. By a coercion we
change the class of an object to a supertype. The difference between them is
that super changes the class of an object only in the first message passing, while
a coercion changes it for the whole life of the object. The syntax is the same
as that of super: thus we write coerce[A] (M) to change to A the type of the
object M. In conclusion, coerce changes the class of its argument and super
changes the rule of selection of the method in message passing (it is a coercion

that is used only once and then disappears).5

2.6 Multiple dispatch

In this toy language it 1s possible to base the choice of the methods not only on
the class of the receiver of a message but also on the class of possible parameters
of the message. This feature is called multiple dispatch and the method at issue
is usually referred as a multi-method (see e.g. [7]). An example of multi-method
in our toy language is:
extend 2DPoint

compare = & fn(p:2DPoint) => ([self norm] == [p norm])

& fn(p:2DColorPoint) => [p isWhite];

[[compare:#{2DPoint -> Bool; 2DColorPoint ->Bool} 1]
in ...

If the parameter of compare i1s a 2DPoint then the first line is executed; the
second one if it is (a subtype of) a 2DColorPoint. Note that the type of a multi-
method appears in the interface as the set of the types of the possible choices
(the reason why we prefixed the type by # is explained in the next session).

The number of parameter on which the dispatch is performed may be different
in every branch. For this reason, when a message denoting a multi-method is
sent, we must single out those parameters the dispatching is performed on. This
is done by including them inside the brackets of the message-passing, after the
message. Thus the general syntax of message passing is: [receiver message
parameter, ..., parameter]. For example, consider a class C' with the following
interface: [[msg:#{Int -> (Int -> Bool), Int x Int -> Bool}ll;if M is
of class C then the expression [M msg 3 1 4 selects the first branch while
[M msg 3,4] selects the second one. We have to impose a restriction in our
system: super cannot work with multiple dispatching; when super selects a
multi-method, it works as coerce

2.7 Messages as first class values: adding overloading

Messages are identifiers of overloaded functions. But up to now overloaded
functions can be defined only through class definitions. Thus the next step is to

* This is what is done in Fibronacci, developed at the University of Pisa

5 It is interesting that with our generalization of super it is possible to predetermine
the life of a coercion: for example super[A] (super[A](M)) coerces M to A only
for the first two message passing.

introduce explicit definitions for overloaded functions and to render them (and
thus messages) first class values. The gain is evident: for example we can have
functions accepting or calculating messages (indeed overloaded functions) and
to write message passing of the form [receiver f(x)] (see [2] for an example).

We use the syntax of message passing for overloaded application; thus in
Lexpy exp expy,..., exp,] we have that exp is the overloaded function and
€xpy,eTP1,. . . €xp, are the arguments. We use the syntax of multi-methods to
define overloaded functions. Therefore we build an overloaded function by con-
catenating the various branches by &; the argument of each branch must have
an atomic type. The type of an overloaded function is the set of the types of its
branches. For example an overloaded “plus” working both on integers and reals
can be defined in the following way:

let plus = (& (fn(x:Real,y:Real) => x real_plus y)
& (fn(x:Int,y:Int) => x int_plus y))

which has type {Real x Real — Real, Int x Int — Int}. Thus the sum of two
numbers, z and y, using plus is written [x plus y].

Finally note that the use of # in the interfaces is necessary to distinguish
multi-methods from ordinary methods returning an overloaded function. °

2.8 Type checking of the toy language

In this section we describe the type system of our toy language. We define here
only the rules for the object-oriented part of the language, since the typing of
the functional part is quite standard.

Types

The types that can be used in a program of our toy-language are: Class-names
which are user-defined atomic types. Product types (1" x T"), for pairs. Arrow
types T'— T”, for ordinary functions. Sets of arrow types {4; — T1,..., 4, —
T, } called overloaded types and used for overloaded functions where we call
Ar... A, and TY... T, input and output types respectively. In an overloaded
type there cannot be two different arrow types with the same input type (input
type uniqueness).

Ru={t :Th;. .50, TR (record types)

T:=A | T—=T | (T'x ...xT) (raw types)
| {(Alx...XAml)%Tl,...,(All><...><A;nn)—>Tn} (mi>1)

Vio=T|#{(A1x .. . xAm,) =T, .. (Al x ... XA;nn) — Tn} (interface types)

In the following we use the meta-variables T, U and W to range over raw types.
If T denotes the type {U; — T;}i=1.n—1 then the notation T'U {U, — T,}
denotes the type {U; — T;}iz1.n if Uy — T, is different from all the arrow
types in 7', and it denotes 7" itself otherwise. In other terms U denotes the usual
set-theoretic union.

% Note that the use of the syntax of message passing also for overloaded application,
while providing a conceptual uniformity, has a major drawback: when the overloaded
function has more than one argument then the arguments have to be “split” around
the overloaded function. In case of binary infix overloaded operators, like the case
of plus, this turns out to be very readable. But, apart from these special cases, it
remains a problem and it may suggest us to consider a different syntax for message
passing where the message is the left argument, as done in CLOS (see [7]).

Rules for Subtyping

The subtyping relation is predefined by the system on the built-in atomic types;
the programmer defines it on the atomic types (i.e. the classes) he introduces,
by means of the construct is. This relation is automatically extended to arrow
types and product types by the usual rules (pairwise ordering for products and
contravariance in the left argument for the arrow constructor). To define the
subtyping relation on overloaded types, note that an overloaded function can
substitute another overloaded function iff for every branch of the latter there is
at least one in the former that can substitute it. Thus an overloaded type 1is
smaller than another if for every arrow type in the latter there is at least one
smaller arrow type in the former. Formally the subtyping relation on the atomic
types is stored in a type constraint system:

Definition1. @ is a type-constraint system. If C is a type-constraint system
and A;, Ay are atomic types then C'U (A; < Ag) is a type-constraint system.

And the subtyping rule for overloaded types is:

for all i € I, there exists j € J such that C'+ Dy < D} and C'+ U < U/
CF {D; — U]/'}jej <AD! = Ul'}ier

Using this subtyping relation we select among the raw types those which satisfy
the conditions of the good formation of class in section 2.3. In Earticular the
last two conditions, reformulated in terms of overloading, become*:

1. covariance: In an overloaded type, if an input type is a subtype of another
input type then their corresponding output types must be in the same rela-
tion

2. multiple inheritance: In an overloaded type if two unrelated input types have
a common subtype then for every maximal type of the set of their common
subtypes there must be one branch whose input type is that maximal type.

Rules for Terms

1. The type of an object is the name of its class.

2. The type of a coercion and of a super is the class specified in 1t, provided
that it is a supertype of the type of the argument.

3. The type of self is the name of the class whose definition self appears in.

4. The type of an overloaded function is the set of the types of its branches

5. The type of an overloaded application is the output type of the branch whose
input type “best approximates” the type of the argument. This branch is
selected among all the branches whose input type is a supertype of the type
of the argument and it is the one with the least input type.

These are all the typing rules we need to type the object-oriented part of the toy
language, since we said that messages are nothing but overloaded functions and
message passing reduces to overloading application. However to fully understand
message passing we must specify which overloaded function a message denotes.
Suppose that you are defining a class C' and remember that inside the body of
a method, the receiver is denoted by self. Then there are two cases:

7 The formal definition of the well formed types is the same as the one for A_object in
appendix A.1 but without the “S” indexes

1. The method msg=ezp is not a multi-method and returns (according to the
interface) the type 7. This corresponds to add to the overloaded function
denoted by msg the branch fn(self:(').exp whose type is C' — T.

2. We have the multi-method
msg = & fn(x;: A, ..,x:A4;) => expr..& Ty By, ...,y;:B;) => exp,
which returns the type #{(A; x ... x A;) —=1T1,...,(B1 x...x B;) —
T,}. This corresponds to add to the overloaded function denoted by msg
the n branches fn(self:C', xi: Ay, ..., x;: A;) => expry ... fn(self:C,
yi:Bi, ..., y;:8;) = expry of types (Cx Ay x... xA;) = T,...,(Cx
Bix...x Bj) =1,

The selection of the branch corresponds to the search of the least supertype of
the class of the receiver (a class is a supertype of itself) in which a method has
been defined for the message (this is the usual method look-up).

Formally, we define the relation C; S; ' F p: T, where (' i1s a type-constraint
system, p a program, T" a well-formed type and I" and S are partial functions be-
tween the following sets: I': (VarsU{self}) — Types and S: AtomicTypes —
RecordTypes. [records the types of the various identifiers. The function S
records the type of the internal states of the previously defined classes. In partic-
ular I'(self) is the current class and the domain of S (i.e. the values for which
S is defined) is the set containing the names of all the classes that have been
defined up to that point. We give here just the most significant type-checking
rules followed by a short comment:

[NEW] C;S; 1" new(A): A A € dom(5)
The type of a new object is the name of its class. A € dom(S) checks that the
class has been previously defined.

[READ] C;S; 1 self .l T S([(self)) = {..t:T...)
The expression self.f reads the value of an instance variable of an object. Thus
it must be contained inside the body of a method; then S(I'(self)) is the type
of the internal state of the current class.

WRITE] ;S I R

[C;S; ' (update r) : ['(self)
Also this expression must be contained in a method. S(I'(self)) < R check
that the fields specified in it are instances variables of the current class®.

C;S;I'EexpyTy ...CL S, T exp,: T,
[OvABsT] C; ST &exp&...& exp,:{Th,....,Th} T, TnJ€cTypes
The type of an overloaded function is the set of the types of its branches.

(OVAPPL] C; 8T F exp: {D; — T Vier C;S;I'E exp;t Ay (j=0.n)

C;S;I'E Lexpy exp expy,...,exp, 1:Th

Dy = minier{D; | CF Ay x A1 x ... x A, < D;}
When we pass a message or, more generally, we perform an overloaded ap-
plication we look at the type of the function, exp, and we select the branch
whose input type best approximates the type of the argument. The argu-
ment is (expy,expy,...,exp,) and the selected branch is the branch h such
that Dh = HlinZ'E]{DZ' | cr Ao X A1 X ... X An S Dz}

C;S;I'E exp: A
C:S;I't coerce[A'] (exp): A’
The construct coercel[A’] (ezp) says to consider exp (whose type is A) as if it
were of type A’. This is a type safe operation if and only if A < A’. A similar
rule can be used for super, too.

CtF S(I'(self)) < R

[COERCE]

CHA<A

8 We consider only field estension for record subtyping.

Finally let us consider the typing of a class definition. We have to open a short
parenthesis. A class definition is always of the form:
class A is A;,...,Ap m R my=exp ;...impm=ezp,, [[m: Vi, .. ,mp:Vip 11 in p

where we use the notation r: R to denote that the instance variables have type
R and initial values given by r. The whole program is well-typed if the class
definition is well-typed and the program p is well-typed under an environment
including the new definitions introduced by this class. To obtain this environ-
ment we have to update the type of the messages by adding the types of the
the new branches defined in the class. We have to distinguish the case of a
simple method from that of a multi-method. For every message m; in the inter-
face such that V; is a raw type we must update its current type I'(m;) in the
following way: I'(m;) := I'(m;) U{A — V;} (where we use the convention that
I'(m;) = {} if m;&dom(TI")). If the type of a message in the interface is preceded
by a #, then the associated method is a multi-method; recall that the type of
its argument is the cartesian product of the type of the current class with the
types the dispatch is performed on (see the rule [OvAPPL]). Thus for example
if in the interface m;:#{D — U, D' — T} then we have the following updating:
I'(m) = I'm) U{(Ax D) = U, (Ax D) = T}. More generally we define

_ {(AX DZ) _>Ui}iEI if VE#{DZ' —)UZ'}Z'E[

AV = { {A=V} otherwise

thus the updating of I' gets: I'(m;) := I'(m;) U {A ~ Vi}, (where the same

convention as before applies).

We are now able to write the rule [CLass]. In order to shorten it we use the

following abbreviations:

- 58" = S[A + R] the function S where to the class A is associated the type of
its internal state R.

- O =CU U2y oA < A;) the set C extended by the type constraints
generated by the deﬁnltlon

- I=[0m:W,.., : Vi 1] the interface of the class

- I"=Tm « F(mz) U {A ~ Vi}liz1.m the environment I" where the (over-
loaded) type of the messages is updated with the type of the new methods
(branches) added by the class-definition

C;S;I'krR C'; 8" IM[self <= Al F exp;: Vi (j=1.m) S8 MEp: T
C;S;I'Fclass A is Aq,...,An ' R my=expy;...;mpm=exp,, [in p: T

A g dom(S), CF R<S(A;) I'(mi) U{A~ Vi} €cv Types (5 =1.n,i =1..m)
Let us examine the single parts of this rule more in detail: first we control
that a class with this name does not already exist (A & dom(S)), we check
the type of the initial values of the instance variables (C;S;I" F r: R) and we
verify that the type of the internal state of the class is compatible (i.e. it is an
extension) with the states of its ancestors (C'+ R < S(A;) for ¢ = 1..n). Then we
check that the defined messages Possess well-formed overloaded types (I'(m;) U
{A ~ V;} €¢+ Types), i.e. that they satisfy the conditions of covariance,
multiple inheritance and input type uniqueness; we also check that the methods
have the type declared in the interface (emp‘7 V;), and this check is performed

in an environment where we have recorded in C’ the newly introduced type-
constraints, in S’ the type of the internal state of the current class and in I
the types of the new methods (since they can be mutually recursive). Finally we
type the rest of the program; in order to implement the protection mechanisms
we restore in the environment the old value for self.

The rule [EXTEND] can be seen as a special case of the rule [Crass] where
there are no type constraint and no instance variable to check; we just have
to verify that the class in the extend expression has already been defined (i.e.
A € dom(S)):

C; S; I'[self « Al F exp; 1 Vj (j=1.m) C:S;I"kexp:T
C;S; ' extend A my=expy;...;mm=ezp,, [[my:Vi,..,my V1] in exp: T
A € dom(S) and for 1 = 1.m I'(m;) U{A~+ V;} €c Types

3 The A&-calculus

In this section we briefly recall the main definitions of the A&-calculus, which has
been defined in [3] to model overloading and dynamic binding. For a detailed
discussion of its characteristics the reader may refer to the paper above and
to [4].

An overloaded function is formed by a set of ordinary functions (i.e. lambda-
abstractions), each one constituting a different branch. Overloaded functions
are built as it 18 customary with lists, starting by an empty overloaded function
denoted by ¢, and concatenating new branches by means of &; therefore an over-
loaded function with n branches M; is written as ((...((e&M1)&M7)..)&M,).
The type of an overloaded function is the set of the types of its branches.
Thus if M;:U; — T; then the overloaded function above has type {U; — T,
Uy = Ts,..., U, — T, }. The application of an overloaded function (i.e. the mes-
sage passing) is denoted by “”. If we apply the function above to an argument
N of type U then we select the branch whose U; “best approximates” the type
of the argument; i.e. we select the branch j s.t. U; = min{U;|U < U;}. And
thus

(E&Ml&...&Mn)ON >* Mj~N (*)
where >* means “reduces in zero or more steps to”.

Also, a set of arrow types 1s an overloaded type iff it satisfies these two
conditions:

it U; JU; then there exists a unique h € I such that U, = inf{U;,U;} (2)

where U; || U; means that U; and U; are downward compatible (have a common
lower bound).

These are (a stronger version of) the conditions in section 2.8; i.e. we select
those pretypes that satisfy the conditions of covariance, multiple inheritance and
input type uniqueness.

This models overloading: it remains to include dynamic-binding. This can
simply be done by requiring that a reduction as (*) can be performed only if N
is a closed normal form.

The formal description of the calculus is given by the following definitions:

PreTypes T:=A|T->T|{T} =17,...,7T, =T/}

Subtyping
We define a partial order on the pretypes. We start by a partial lattice® of

° A partial lattice is a (partially) ordered set such that for every pair of elements a

and b if a | b then Jinf{a, b} and if a { b then I sup{a, b}

atomic types and we extend this order to higher pretypes in the following way:

Uy <Uy T) < Ty Yiel,3jeJ U/ <Uland T, < T/
Up =T <Up =T (U} = TiYjes < AU/ = T{'}ier

The subtyping relation on Pretypes is given by the reflexive closure of the rules
above (in [3] it is proved that transitivity is not necessary).

Types

A pretype is also a type if all the overloaded types that occur in it satisfy the
conditions (1) and (2). We denote by Types the set of types. Types are equal
modulo the ordering of the arrows in the overloaded types.

Terms M:u=2T | Xl M | MM | e | M&TM | MeM
The type indexing the & is used for the selection of the branch in overloaded
application.

Type-checking Rules

The type checking rules are very close to those for the toy object-oriented lan-
guage. Indeed they are more general since any type can appear as input type of
and overloaded function. We do not need any type context I since the variables
are indexed by their type.

[Taut] «T:T [Taut.] e:{}
Int M:T Int M: Wi <{Ui = Ti}igno1) N:Wo SUn = Tn
[—> n I‘O])\,I,‘U.MZ U T [{} n I'O] (M&{Ul—)Tz}zSnN): {Uz — Tz}zfn
MU ST NW<U o MAU = Ti}ier N:U Uy = minge {Ui|U < U}
[—+Elim<] VN-T [{JElim] MeN:T;
Reduction

The reduction > is the compatible closure of the following notion of reduction
(for definitions see [1]):

B) AT .M)N > M[zT := N]
Bx) If N:U 1s closed and in normal form, and U; = min;=1 ,{U;|U < U;} then

MyeN for j < n

{U;=7Ti}iz1.n 1 J

(Ml& 1 MQ)QN D{MQN forj:n

For the A&-calculus we proved in [3] some fundamental theorems like the Church-
Rosser property, the theorem of subject reduction and the strong normalization
of some relevant sub-calculi.

4 MA_object

In the previous section we recalled the definition A&-calculus. It constitutes
the paradigmatic calculus from which we draw our model. Now we enter the
core of this paper by defining the meta-language A_object. We pass from a
calculus, which possesses an equational presentation, to a language, which thus
is associated to a reduction strategy and a set of values. It is like if we had the
A-calculus and we wanted to define the SECD machine. The analogy is quite

suggestive since, as in the case of the SECD machine, we do not want an exact
correspondence with the A-calculus (e.g. as the one between the SECD machine
and the Ay: see [9]); rather we aim to define a language that implements the
“general” behavior of the A&-calculus, and that constitutes a meta-language for
object-oriented languages. A meta-language is conceived to “speak about”, to
describe a language. Thus it must possess the syntactic structures to reproduce
the constructs of that language, structures that are not generally present in
a calculus. Thus to reproduce object-oriented languages we provide A_object
with constructs to define new atomic types, to define a subtyping hierarchy
on them, to work on the implementation of a value of atomic type, to define
recursive terms, to change the type of a term and to deal with super. We give
an operational semantics for the untyped terms, we define a notion of run-time
type error and a type-checking algorithm. Finally we prove the subject reduction
theorem (thus the correction of the type-checker) which plays a key role, being
A_object envisaged for typed object-oriented languages.

The main decision in the definition of A_object is how to represent objects.
This decision will drive the rest of the definition of the language. Running
languages usually implement objects by records formed by three kinds of fields:
fields containing the values of the instance variables, fields used by the system
(for example for garbage collection) and a special field containing a reference
to the class of the object. Obviously in this theoretical account we are not
interested in the fields for the system, hence an object in A_object will be formed
only by the values of its instance variables (the so-called internal state) and by
a tag indicating the class of the object. The tag of an object must univocally
determine the type of the object, for in our approach the selection of a method
1s based on the type of the object. There are two reasonable ways to do it, and
in both of them the name of the class is considered an atomic type:

(a) An object is a record whose fields are the instance variables plus a special
empty field whose type is the name of the class

(b) An object is a record whose fields are the instance variables and which is
given a tag, say A, by applying it to a special constructor in?. In other
terms, n’?Y is the constructor for the values of (atomic) type tag whose
internal representation is given by the record of the instance variables.

For A_object we choose to use the solution (b) for, even if it needs the intro-
duction of new operations and new typing rules, it has the advantage that, as
in our toy language, the type of an object 1s its class. Thus types will be con-
served during the translation from the toy language to A_object. Furthermore
the operational semantics of A_object will be simplified. Henceforth we will not
distinguish among the terms “tag”, “atomic type” and “class-name” since in
A_object they coincide.

To resume, in A_object objects are “tagged terms” of the form in® (M) where
A is the tag and M represents the internal state. When we have an overloaded
application MeN we first reduce M to a term (M;1&Ms) and N to a tagged
term, and then we perform the branch selection according to the obtained tag,
that is the name of the class of the object. The selected method must be able to
access to the instance variables of the object, i.e. to get inside the n construct.
To this purpose we use a function denoted out that composed with in gives the
identity.

Pretypes
We use A and B (possibly subscripted) to denote atomic types.

T:uo= A|TXxT|T—oT|{(A1x... XxAn,)—=>T,...,(B1 X... XxBm,) = Ty}

Terms
Terms are composed by an expression preceded by a (possibly empty) suite of
declarations. We use the metavariable M to range over expressions and P to
range over terms:
M:u=z" | X" M | MM | ¢ | M&M | MeM
| <M, M> | m(M) | m(M) | pa".M
| coerce*(M) | super®(M) | in*(M) | out*(M)

Pu=M | let A<A,..,A,in P | let A hide T in P
Declarations cope with atomic types: they can be used to define the subtyping
relation on atomic types and to declare a new atomic type by associating it to
a representation type (i.e. the type of the internal state). More precisely the
declaration let A hide T in P declares the atomic type A and associates it to
the type 1" used for its representation. This declaration automatically defines
two constructors in?:7"— A and out*:A — T which form a retraction pair from

T to A.

Tagged values

We have to be a little more precise about tagged values: a tagged value is

everything an overloaded function can perform its selection on. Thus it can be

an object of the form in? (M) but also the coercion of an object, the super of an

object and, since we have multiple dispatching, a tuple of objects. Thus a tag

is either an atomic type or a product of atomic types. We use the metavariable

D to range over tags; tagged values are ranged over by G” where D is the tag.
GP::= in®(M) | coerce? (M) | super®(M) | <G, G42,... Gin >

In the last production D = (A} x ... X A,)

Operational Semantics
We define the values of A_object, i.e. those terms which are considered as results;
values are ranged over by G.

G = x| (AT M) |e| (M & M) | <Gi,G2> | coerce” (M) | super® (M) | in® (M)

The operational semantics for A_object is given by the reduction =; this reduc-
tion includes a type constraint system'® C' that is built along the reduction by
the declarations (let A < A;... A, in P) and that is used in the rule(s) for the
selection of the branch. In the rules we use o to denote either -or o, I to denote

{D1 —-T1,...,D, — T} and D to denote the min;—, ,{D;|C' + D < D;}
Azioms
Cout™ (in*(M))) = (C, M)

, out*(coerce®2(M))) = (C, out* (M))

(¢

(¢)

(C, out*(super?2(M))) = (C, out**(M))

(C,ps.M) = (C, Mz := pz.M])

(C, (Ae.M)N) = (C, Mlz:=N])

(C, (Mi&'M2)eGP) = (O, MieGP) it D, 2D

(C, (Mi&'M2)eGP) = (C, M>-G") it D, =D and G" 2 super” (M)
(C, (Mi&'M2)eGP) = (C, Mz- M) if D, =D and G” = super” (M)

19 At this stage it would be more correct to call it a “tag constraint system”

(C,let ASA...A,in P) = (CU(AS A)U... U(A< A,), P)
(C, let Ahide T'in P) = (C, P)

Context Rules
(C, M)=(C, M) (C,M)=(C,M)
(C,MoN)=(C, M'oN) (C, (NMi&N2)eM)= (C, (N1&N2)eM')

(C,M)=(C, M)
(C, out*(M)) = (C, out*(M’))

The semantics for pairs is the standard one and thus it has been omitted. Three
axioms and a rule give the behavior of out and let it accede to the internal state
of an object. Functional application is implemented by call-by-name; anyway,
this 18 not a central point of our paper and the call-by-value would fit as well.

The three axioms and two rules for overloaded functions deserve more atten-
tion: in an overloaded application we first reduce the function to an &-term and
then its argument to a tagged value; then the reduction is performed according
to the index of the &-term. In a sense, we perform a “call-by-tagged-value”
(but for well typed programs this notion coincides with the usual call-by-value:
see corollary 5). Tt is worth noting that this selection does not use types: no
type checking is performed, only a match of tags and some constraints i1s done;
indeed, we still do not have any “type” here, but just some tags indexing the
terms. Note the difference when the tagged value is a super: in that case the ar-
gument of the super is passed to the selected branch instead of the whole tagged
value.

Finally, the declaration (let A < A;...A, in P) modifies the type con-
straints in which the body P is evaluated, while (let A hide T in P) serves
only to the type checker and thus, operationally, it is simply discarded.

Programs and type errors

The operational semantics above is given for untyped terms. Thus we define
which terms are the programs of A_object and when a reduction ends by a type
error.

Definition2. A program in A_object is a closed term P different from e.

We use the notation P = P’ to say that (C, P) = (C’, P') for some C' and "

and we denote by = the reflexive and transitive closure of =. Given a term M,
we say that it is in normal form iff it does not exist N such that M = N. Let
P be a closed term in normal form. If P is not a value then it is always possible
to use the context rules of the operational semantics to decompose P to find the
least subterm which is not a value and where the reduction is stuck. Let call this
subterm the critical subterm of P. For example consider the following term:
((Mi&Ms) o ((super®(M)) - (N))) - (M')

This term is in normal form. Indeed, since it is an application we first try to
reduce ((M;1&Ms) ¢ ((super?(M)) - (N))); then for the second context rule we
try to reduce (super?(M)) - (N); again, for the first context rule one tries to
reduce (super?(M)); but it is a value different from a A-abstraction and we
are stuck. Thus, in this case, the critical subterm is (super#(M)) - (N). Note
that the critical subterm (of a closed normal non-value term) always exists and
is unique, since it is found by an algorithm which is deterministic (since the
operational semantics is deterministic) and terminating (since the size of the
term at issue always decreases).

Definition 3 (type-error). Let P be a program. If P :*>P’, P’ is in normal
form and it is not a value then we say that P produces a type error. Furthermore
if the critical subterm of P’ is of the form ((M;&” M3)eGP) then we say that P
produces an “undefined method” type error.

The “undefined method” error is raised when we try to reduce an overloaded
application of a &-term to a tagged value, and D is not defined. This means that
it 18 not possible to select a branch for the object passed to the function. This
can be due either because the set {D;|D < D;, i = 1..n} is empty or because
it has no minimum. In object-oriented terms the former case means that the
wrong message has been sent to the object and in the latter that the condition
of multiple inheritance has not been respected.

4.1 The type system

We have defined programs and how to compute them; then we have singled out
those computation that produce a “type error”. Now we have to justify the use
of the adjective type in front of the word “error”. To this purpose we define a
type system for the raw terms, so that the well-typed programs will not produce
these errors.

Types

As in the case of A&-calculus and of our toy language we first define an order on
the pretypes and then we select those that satisfy the conditions for covariance,
multiple inheritance and input type uniqueness. The subtyping relation on pre-
types and the good formation for types are exactly the same as those defined
for our toy language in section 2.8, with the only modification that the set of
atomic types is relative to a program and it is formed by all the pretypes that
have been declared by a let ... hide definition (appendix A.1 contains the
formal definition).

Type checking rules

The type checking rules are summarized in Appendix A.2. They are parametric
in a type constraint system C' and a function .S from atomic types to types. These
are used respectively to store the type constraints and the implementation types
defined in the declarations in the rules [NEWTYPE] and [CONSTRAINT].

We want to interpret the construct extend; in A& we can only add a new
branch to an overloaded function but we cannot replace an existing branch by
another of the same type. To obtain it in A_object we use a weaker type system
where we modify the typing of overloaded functions. The rules [TauT], [—
INTRO], [ELiM(g)], [TauT.], [{}ELIM] are the same as in A& (with the
obvious modifications to consider C' and S). The only rule we have to change is
[{}INTRO]: in the new version of the rule we use the meta operator on overloaded
types U which, we recall, denotes the usual set theoretic union.

Compare the rule [{}INTRO] of appendix A.2 with the one of A& in section 3.
While the indexes are formed in the same way by simple juxtaposition, the type
is obtained by using the union operator. When you concatenate to an overloaded
function a branch whose type is different from the types of the branches already
present, then the rule behaves as usual. If on the contrary the type of the new
branch is already present in the type of the overloaded function then by U the
type of the function remains the same as before. However by the axioms of the
operational semantics if there are two branches with the same type at index
then the reduction always selects the rightmost of these branches, i.e. the latest

added. Furthermore, if you try to add to an overloaded type a branch whose
input type is the same as the input type of a branch already present, then the
type you obtain is well-formed if and only if the two branches have also the
same output type: indeed if the two branches have different output types, then
the (pre)type obtained by the union does not satisfy the condition (d) of well-
formation for types. Worth to be mentioned are also the rules [IN] and [OuT]:
note that the constructors of a type can be used only if that type has been
previously defined by a let_hide declaration (i.e. if it belongs to dom(S)).

4.2 Main results
Proposition4. Let P:T; if P is closed and in normal form then P is a value.

Corollary 5. If a program is in normal form and possesses a product of atomic
types then it is a tagged value.

Recall that it is not possible to reduce inside a A-abstraction. Therefore if in the
evaluation of a program we reduce a term of the form MeN, then in particular
N must be closed, To perform the selection of a branch N must also be a value;
thus, by the corollary above it must be a tagged value. Therefore in a well-typed
program overloaded application is implemented by the usual call-by-value, since
the only values allowed are tagged values.

Theorem 6 (Subject Reduction). Let P:T; ZfP:*>P/ then P": T and T'<T

Proposition7. If P = P’ and P is closed then also P’ is closed

Corollary 8. Let P be a well-typed program. IfP:*>P’ and P’ is in normal form
then P’ is a value

The last corollary states that well-typed programs stop only on values, and thus
do not produce type errors.

Encodings

We hint how to encode updatable records in A_object. For the definition of
updatable records see [10]. We have no space to explain the encoding in detail.
We just give its crude definition.

Let L1, La,... be an infinite list of atomic types. Assume that they are
isolated (i.e., for every type T, if L; < T or T < L;, then L; = T, and
introduce for each L; a constant €;: L;. Then set {¢1 : Th, ...,y : Tp) = {L1 —
Ty,...,L, = T,}; the empty record {) = ¢, the updating (r « ¢, = M) =

(r&Azli M) (where = ¢ FV(M)); the field selection r.¢; = ref;.

5 Translation

As we already said, we do not give a direct semantics to the toy language. Instead
we translate its programs into A-object. The formal translation is summarized
in appendix B. In this section we give only the intuitive rules of the translation,
which has the property to preserve the type; that 1s, a well-typed program of
the toy language is translated in a well-typed term of A_object of the same type
(see theorem 9). This property validates the algorithm of type-checking we have
defined for our object-oriented language since it assures that type-errors can
never occur when running well typed programs.

e A message is simply an identifier of an overloaded function; thus it 1s trans-
lated in a variable possessing a (raw) overloaded type; i.e. [m] = mi4rVilier
where {A4;|i € I'} is the set of the classes where the message m has been de-
fined, and the V;’s are the corresponding types appearing in the interfaces.

e Message passing is the application of an overloaded function: [Lexp, exp
expy, ..., exp, 1] = [exp]e[(expy, expy, . . ., exp,)]

e In the definition of a method, self represents the receiver of the message
which invoked the method. Thus we translate a method msg —exp into
Aselfd.[exp], where A is the current class. This will form a branch of the
overloaded function denoted by (the translation of) the message msg.

e new(A) defines a value of type A. It is translated into in?(r) where r is
the record value containing the initial values of the instance variables of the
class A.

e update unpacks self in its representation (record) type, modifies its value
(i.e. the internal state) and packs it again in its original type. Thus for
example [(update {x= 3})] = in? ((out? (selfA) +— = = 3)); again A is the
current class.

e super[A] (erp) and coerce[A] (exp) are translated into super?([erp]) and
coerce” ([erp]) respectively.

e The operation extend corresponds to add a branch to an overloaded func-
tion. It has the following intuitive translation: [extend A m = exp L[L
. 11 in exp’] = (let m = (m&Aself4 [exp]) in [erp']). For the case of
multi-methods see the next point.

e Finally we have the most complex construct: the class definition. By a class
definition we define a new atomic type, a set of type-constraints on this
atomic type and some branches of overloaded function. The intuitive inter-
pretation of say (class A is Ay, As {x:Int=3} msg = exp [[msg : T
11 in p), when exp is not a multi-method, is:

let A hide {# : Int) in
let A S Al,Az in
let msg = (msg&sel f4 [exp]) in [p]
If it 1s a multi-method then ezp must be of the form &...&. ... For example

erp may be:
pmes% = & fn(x1:C1; x2:€2) => expl

& fn(yl:C1; y2:C3) => exp2
& fn(z:C2) => exp3
Then, using some pattern-matching in lambda calculus, the multi-method is
translated into
let mesg = (mesg
&/\(selfA, xlcl, J:ZCQ).[[expl]]
&/\(selfA, ylc1 , yzc3).[[exp2]]
&A(self, 2€2) [exp3]
)

Of course the initial value 3 of must be recorded during the translation so
that this value can be used in the translation of new(A). Finally if there is
more then one method, then they can be mutually recursive; thus we need
to use a fixpoint operator in their definition.

More formally the interpretation function will be parameterized by an environ-
ment of the initial states, an environment of instance variables and by the type
of the current object (see appendix B). So that the theorem of correction of the
type system for the toy language is formulated as follows:

Theorem 9. For every type constraint C', type environment I' and for every
I € InitState and S : ClassNames —RecordTypes such that for any A
atomic I1(A): S(A), if C; 8, ' p: T then C; S & [pli 14 (setp): T

Acknowledgments

Many ideas of this work come from several discussions with Luca Cardelli, Giorgio
Ghelli, Giuseppe Longo, Eugenio Moggi and Benjamin Pierce. We are especially grate-
ful to Allyn Dimock, Maribel Ferndndez and Benjamin Pierce for their precise as well
as useful comments on an earlier version of this paper and to Jean-Christophe Filliatre
and Frangois Pottier who implemented with the author an interpreter for A_object.

References

1.

2.

10.

A

H.P. Barendregt. The Lambda Calculus Its Syntaz and Semantics. North-Holland,
1984. Revised edition.

G. Castagna. F¥ : integrating parametric and ”ad hoc” second order polymor-
phism. In Proc. of the 4th International Workshop on Database Programming
Languages, Workshops in Computing, New York City, September 1993. Springer-
Verlag.

G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with
subtyping, 1992. To appear in Information and Computation. An extended ab-
stract has appeared in the proceedings of the ACM Conference on LISP and Func-
tional Programming, pp.182-192; San Francisco, June 1992.

G. Castagna, G. Ghelli, and G. Longo. A semantics for A&-early: a calculus with
overloading and early binding. In M. Bezem and J.F. Groote, editors, International
Conference on Typed Lambda Calculi and Applications, number 664 in LNCS, pages
107-123, Utrecht, The Netherlands, March 1993. Springer-Verlag. TLCA’93.
W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. 17th Ann.
ACM Symp. on Principles of Programming Languages, January 1990.

G. Ghelli. A static type system for message passing. In Proc. of OOPSLA '91,
1991.

S.K. Keene. Object-Oriented Programming tn COMMON Lisp: A Programming
Guide to CLOS. Addison-Wesley, 1989.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall Interna-
tional Series, 1988.

G.D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Science, 1, 1975.

Mitchell Wand. Complete type inference for simple objects. In 2nd Ann. Symp.
on Logic in Computer Science, 1987.

Type system of A_object

A.1 Types

1.
2.
3.

A €c,s Types for each A € dom(S)

if 71,75 €c,s Types then Th — T €, s Types and 71 x 12 €c,s Types
ifforall 4,5 €1

(a) (D;,T; €c,s Types)

(b) if CF D; < D, then C + T, <T))

(c) for all maximal type D in LBc({D;, D;}) there exists hel s.t. Dy = D
(d) if i # j then D; # D,

then {D; — T;}ier €c,s Types

A.2 Typing rules
C,S[A« T|F P:U

NewT
[NewTyPe] C.SFlet Ahide Tin P:U
A & dom(S),T €c,s Types and T not atomic
[CONSTRAINT] Cu(A<A),SEPT
C.SFlet A< Ay, A, in P:T
CF S(A) < S(As) and A do not appear in C
[TAuT] C,SkaT.T
C,SFM:T
I _— T T
[= InTRO] T M T = 1 €c,s Types
C,SEM:U—-T N.W
[ErM o] CSFMNT CHFW<U
[TAUT,] C,SkeA}

C,SEM:W, <{U; = T:licnry C,SFN:Ws <U, =T,

INTRO
[{}] C,SF (M&W=Tihign Ny {Us = Ti}ic(nor) UUn = T
{Ul‘ — Ti}ig(n—l) UU, = 1, €c,s Types
[{}ELIM] G5k M: g,JlST—) YA}[};EIT? SEN:U U; =min;er {U;|C F U<U;}
[PAIR] C,SEM:Ty C,SEN:T,
C,SE<M , N>T xTz
C,SEM:Ty xTh -
[PrROJ] C.StmD) T, for 1 =1,2
C,SFM:B
COERCE ! CrFB<A, Accs Types
[] C,S F coerce*(M): A - @ 2YP
C,SFM:B
SUPER ! CrFB<A, Accs Types
[] C, St super®(M): A - @5 P
C,SEM:T
IN _ CHT<S(A), A€c,s Types
[1x] C, 5k in ' (M): A < 5(4), A €os Typ
C,SFM:B
Out ’ CEFB<A, A€c,s Types
[OvT] C,SF out™(M): 5(A) = @ 2YP
C,SEM:T
[FIX] W T EC,S Types

B Translation

Let Envs = Vars — RawTypes, InitState = ClassNames — RecordV alues
then we have the following definitions:

Definition10. 7[.]: £ — Vars — Types

1. Tlclass B is A;...A; r: R my=expr .. mp=eaxp, [[mi: Vi..mu: V11 in p(m) =
_ [TIpl(m;) U{B~ V;} for m = m;
— L TTpl(m) else

2. T[.]is the function which returns {} in all the other cases.

Definition11. Let p’ denote the program class B is A;,..., Ay R mi=exzp ...mp=exp, [[
m:Vi...m,: V11 in p then define:

7 (M) for m = m;

= MIPTx 1 a(m) = M[pls 1 a(m) else

Where I = I'lm; < I'(m;)U{B — T;}]i=1..n and M has the following definition:
MEu(mlT[pI](ml),.. TI[P]I(mn)) (M17~~~7Mn)
where for 7 € [1..n], M has the following definition:
1. If V; is a raw type then M; has the following form
((Ml]:p]]*’IA(mJ))&Tﬂp]](mj)@{BMVj}AselfB'g[[exp]]]*’[self(—B] I[B 7] B)
2. If j € [1.n] and V; = #{D; — T;}i=1..n, then exp; must be of the following
form:
& fn(x1:D1) => exp;,... & fnlxp: Drn) => eap;,
then M; is defined in the following way:
(- ((MIplir 1 a(my)
&T[[p]](mj)@{BXDv(l)_’Tv(l)})\(self (cr()l)) g[[expja(l)]]*’[self(—B] B B)

&(T[[P]](mj')U~~~U{B><Do(h_1)—>To(h 1) })@{BXDU(h)_)TU(h)}

(self U()h)) g[[expja(h)]]*’[self(—B] I[B«r] B)
where o is a permutation generated by any algorithm with the property that

if h <k then Dy £ Dy

— M([.]is the function which returns ¢ in all the other cases.

Definition12 (Translation).

= = =
I)

[
(e

O NN W

X]]* TA= l"*(m)

expr (exp2) Ju 14 = Sleapi [« 1 aS[ezp2]lw 14

[fn(x:T) => exp]s 14 =)\xT.S[[exp]]*[m(_T] A

let x:7 =exp in exp’Jla1a = ()\xT.S[[e:cp]]*[m(_T] 14)(Slezp’le14)

Cexpr, .. .eapn)]w 14 =< Slesp]s ra, ..., S[expnlc 14 >

fst(eap)Ju 14 = m1(Sexp]s 1 a)

snd (eap) Jx 14 = m2(S[expls 1 4)

new(B)]« 14 = in”(I(B))

Lexp, exp expr, ..., exp, 1]« 14 = S[exp]« r aeS[(exzp,expr,... expp)]ar1a
S[super[B1 (eap)] 1 4 = super® (S[exp], 1 4)

Q8 QREE Q) QL

. SlcoercelBl(exp) s 14 = COQI'CQB(Q[[@UP]]* 1a)

. Sself]sra = selft

. S[self . f]xra = (out*(self *)).L

. Sltupdate)]s ra = in®((out*(self *) « 1 = S[eap]s ra-.. & o = S[eapals 14))

where r = {{; = exp;;...; {n = exp, }

. Sllextend B mi=expi...;mp=expn [[mi:Vi;...;mp:V01] in expls 14 =

. ()\m’f(ml)U{BMVI}...Am*(m")U{BMV"} Slezplyrra) Mar... My,
where
(a) If Vj is a raw type then

M; = ((mj(mj)&*(mj)@{BMVj}AselfB%[[ef’?P]]]*'[self<—B] I[B 7] B)

(b) If y € [1.n] and V; = #{D; — T:}i=1.», then exp; must be of the following
form: & fn(x1:D1) => exp;,... & fn(xp: Dr) => exp;,
then M; is defined in the following way:
(- ((mr)
J
&*(mj)@{BXD”(l)_)T"(l)})\(Self U()l)) S[[6951@]0(1)]]*'[self<—B] 1[B«rB)

&(*(mj)U~~~U{B><Do(h_1)—>To(h 1)})@{B><Do(h)—>To(h)}

(self U(h)) g[[expjg(h)]]*’[self(—B] I[B«r] B)
where o has the usual property.

16. Let p =class B is A;..A, R mi=ezpr .. mp=expy[[mi: T .. .my: T]] in p’
then Slpl« r a4 =let B hide R in let B < A;...A4 in

g[[Pl]]* I[B+r] A[mﬁﬂpﬂ(m’)) = Mpls 1 a(mi)]i=1.n

This article was processed using the INTpX macro package with LLNCS style

