
A meta-language for typedobject-oriented languagesGiuseppe Castagna?LIENS(CNRS)-DMI45 rue d'Ulm, 75005 Paris. FRANCEe-mail: castagna@dmi.ens.frAbstract. In [3] we de�ned the �&-calculus, a simple extension of thetyped �-calculus to model typed object-oriented languages. To developa formal study of type systems for object-oriented languages we de�ne,in this paper, a meta-language based on �& and we show by a practi-cal example how to use it to prove properties of a language. To thispurpose we de�ne a toy object-oriented language and its type-checkingalgorithm; then we translate this toy language into our meta-language.The translation gives the semantics of the toy language and a theoremon the translation of well-typed programs proves the correction of thetype-checker of the toy language.As an aside we also illustrate the expressivity of the �&-based modelby showing how to translate existing features like multiple inheritanceand multiple dispatch, but also by integrating in the toy language newfeatures directly suggested by the model, such as �rst-class messages, ageneralization of the use of super and the use of explicit coercions.1 IntroductionIn [3] we introduced the �&-calculus. It is a simple extension of the typed lambdacalculus to deal with overloaded functions, subtyping and dynamic binding. Themain motivation of its de�nition was to give a kernel calculus possessing the keyproperties of object-oriented programming, in the line of some ideas of [6]. Inthe same paper we showed how this calculus could be intuitively used to modelsome features of object-oriented programming. It resulted that such a calculusyields a model orthogonal to the ones proposed in the literature so far. Thuswe returned to object-oriented programming and we reviewed it in the light ofthe model arising from the �&-calculus. The experiment was surprising since wewere able to deal with some features (such as multiple dispatch or the extensionof the set of methods of a certain class) and introduce new ones (as �rst classmessages or a generalization of \super") the usual models could not.However, �& is inadequate for a formal study of the properties of real object-oriented languages, and it was not meant for this: it is a calculus not a meta-language; thus, even if it possesses the key mechanisms to model object-orientedfeatures, it cannot be used to \reason about" (i.e. to prove properties of) anobject-oriented language.For this reason in this paper we de�ne a meta-language (i.e. a languageto reason about |object-oriented| languages)2 that we call � object. This1 In 13th Conference on Foundations of Software Technology and Theoretical ComputerScience. Bombay, December 1993. LNCS to appear? Supported by grant no. 203.01.56 of the Consiglio Nazionale delle Ricerche, ComitatoNazionale delle Scienze Matematiche, Italy, to work at LIENS2 In this case the pre�x \meta" is used w.r.t. the object-oriented languages

language is still based on the key mechanisms of �& (essentially, overloadingand dynamic binding) but it is enriched by those features (like commands tode�ne new types, to work on their representations, to handle the subtypinghierarchy, to change the type of a term or to modify the discipline of dispatchingetc.) that are necessary to reproduce the constructs of a programming languageand that �& lacks for.We also show, by a practical example, how to use � object to prove propertiesof an object-oriented language. To this purpose we de�ne a simple toy object-oriented language (a mix of Objective-C and CLOS constructs) and an algorithmto type-check its programs. We then translate the programs of the toy object-oriented language into � object. We prove that every well typed program of theformer is translated into a well typed program of the latter; since the latter enjoysthe subject-reduction property, it implies that the reduction of the translatedprogram never goes wrong on a type error; in particular this proves the correctionof the type-checker for the toy language.The paper is organized as follows: section 2 gives an informal description ofthe toy language and of its type discipline. In section 3 we brie
y summarize the�&-calculus. In section 4 we describe � object: we give its operational semantics,a type-checker and prove the subject reduction theorem. In section 5 we hintthe translation and we prove the correction of the type discipline for the toylanguage. For space reasons we cannot give a detailed description of all thesystems. All the details and the precise connection between �& and � objectwill be included in the author's PhD. thesis.2 The toy language2.1 Message passingThere exist many syntaxes for messages; in our toy languagemessage-expressionsare enclosed in square brackets: [receiver message]. There are two ways tomodel message passing. One is to consider an object as a record of methods andmessage passing as dot selection (e.g. in Ei�el; see [8]). The other is to considermessage passing as functional application where the message is the function andthe receiver is the argument (as in CLOS; see [7]). In this paper we choose thissecond solution. Though the fact that a method belongs to a speci�c object(more precisely to a speci�c class of objects) implies that message passing isa mechanism di�erent from the usual functional call (i.e. �-reduction). In ourapproach the main characteristics that distinguish messages from functions are:Overloading: Two objects may respond di�erently to the same message. Forinstance, the code executed when sending a message inverse to an object rep-resenting a matrix will be di�erent from the one executed when the same messageis sent to an object representing a real number. But the same message behavesuniformly on objects of the same kind (e.g. on all objects of class matrix). Thisfeature is known as overloading since we overload the same operator (in thiscase inverse) by di�erent operations; the actual operation depends on the typeof the operands. Thus messages are identi�ers of overloaded functions and inmessage passing the receiver is the �rst argument of an overloaded function, i.e.the one on whose type is based the selection of the code to be executed. Eachmethod constitutes a branch (i.e. a code or operation) of the overloaded functionreferred by the message it is associated to.Dynamic binding: The second crucial di�erence between function applicationand message passing is that a function is bound to its meaning at compile time

while the meaning of a method can be decided only at run-time when the receiv-ing object is known (fully evaluated). This feature is called dynamic binding.Therefore in our model overloading and dynamic binding are the basic mecha-nisms. 32.2 Classes and programsThe name of a class is used as the type of its objects and constitutes an \atomictype" of our type system. We restrict our attention to a functional case of OOP;thus the instance variables of an object are modi�ed by an operation updatewhich returns a new object of the same type of the current object. We show thesyntax of class de�nition in our toy language by an example:class 2DPoint{ x:Int = 0;y:Int = 0} norm = sqrt(self.x^2 + self.y^2);erase = (update{x = 0});move = fn(dx:Int,dy:Int) => (update{x=self.x+dx; y=self.y+dy})[[norm: Real,erase: 2DPoint,move: (Int x Int) -> 2DPoint]]Instances of a class are created by means of the command new. Since thename of a class is used for the type of its instances then new(2DPoint):2DPoint.A program in our toy language is a sequence of declarations of classes followedby an expression (the body of the program) where objects of these classes arecreated and interact by exchanging messages.2.3 Re�nementIt is possible to de�ne new classes by re�ning existing ones. The re�nementinduces on the atomic types two di�erent hierarchies generated by two distinctmechanisms: inheritance, which is the mechanism that allows to reuse code writ-ten for other classes and which concerns the de�nition of the objects; subtyping,which is the mechanism that allows to use one object instead of another of a dif-ferent class and which concerns the computation of the objects. It is well-knownthat these hierarchies are distinct (see [5]). In our toy language we take a simplerapproach, including in it only subtyping. Thus it is not possible to have \pure"inheritance (i.e. code reuse without the substitutivety given by subtyping). Weuse the keyword is in the class de�nition to de�ne the subtype relation amongclasses. A typical example of its use is:3 The use of dynamic binding automatically introduces a further distinction betweenordinary functional application and message passing: while the former can be dealtwith by either call-by-value or call-by-name, the latter can be performed only whenthe run-time type of the argument is known, i.e. when the argument is fully evalu-ated (closed and in normal form). In view of our analogy \messages as overloadedfunctions" this (nearly) corresponds to say that message passing (i.e. overloadedapplication) acts by call-by-value: see proposition 4.2 and corollary 5.

class 2DColorPoint is 2DPoint{ x:Int = 0 ; y:Int = 0 ; c:String = "black"}isWhite = (self.c == "white")move = fn(dx:Int,dy:Int)=>(update{x=self.x+dx; y=self.y+dy; c="white"})[[isWhite: Bool , move: (Int x Int) -> 2DColorPoint]]The keyword is says that 2DColorPoint is a subtype of 2DPoint (denoted by2DColorPoint � 2DPoint). It is possible to specify more then one superclassafter is, by separating the ancestors by commas (multiple inheritance).To substitute values of some type by those of another type some requirementsmust be satis�ed. If the type at issue is a class then the following conditionsmust hold:1. state coherence: The set of the instance variables of a class must containthose of all its superclasses. Moreover common variables must appear withthe same type.2. covariance: A method that overrides another method must specialize it, inthe sense that the type returned by the new method must be a subtype ofthe type returned by the old method.3. multiple inheritance: When a class is de�ned by multiple re�nement, themethods that are in common to more than one unrelated supertype must beexplicitly rede�nedWe have chosen not to use a class precedence list (as in CLOS) but ratherthe explicit rede�nition of common methods (as in Ei�el) which is less syntaxdependent and thus mathematically cleaner.2.4 Extending classesRe�nement is not the only way to specialize classes. It is also possible to addnew methods to existing classes or to rede�ne the old ones (see for exampleObjective-C or add-method in CLOS). In our toy language this can be done bythe following expression:extend classnamemethodDe�nitionsinterfacein expthe newly de�ned methods are available inside the expression exp. The extensionof a class a�ects all its subtypes, in the sense that when you extend a class witha method then that method is available to the objects of every subtype of thatclass.2.5 Super, self and the use of coercionsThe use of the reserved keyword self is well-known: it denotes in a methodthe receiver of the message that invoked the method. Though, in view of ouranalogy of messages as identi�ers of overloaded functions, self assumes alsoanother meaning. Indeed recall that the receiver of a message is the argumentof the overloaded function denoted by that message. Thus in the de�nition of amethod, self is the formal parameter of the overloaded function in which thatmethod appears as a branch.Also the use of super is well-known: when we send a message to super,the e�ect is the same as sending it to self but with the di�erence that theselection is performed as if the receiver were an instance of a super-class. Herewe generalize this usual meaning of super in two ways: the selection does not

assume that the receiver is self, but takes as receiver the parameter of super;and super does not necessary appears in the receiver position, but it is a �rst-class value (i.e. it can appear in any context its type allows to). Finally, since weuse multiple inheritance without class precedence lists, we are obliged to specifyin the expression the supertype from which to start the search of the method4.Thus the general syntax of super is super[A](exp). When a message is sent tothis expression then exp is considered the receiver but the search of the methodis started from the class A (which then must be a supertype of the class of exp).Very close to the use of super is the use of the coercions. By a coercion wechange the class of an object to a supertype. The di�erence between them isthat super changes the class of an object only in the �rst message passing, whilea coercion changes it for the whole life of the object. The syntax is the sameas that of super: thus we write coerce[A](M) to change to A the type of theobject M . In conclusion, coerce changes the class of its argument and superchanges the rule of selection of the method in message passing (it is a coercionthat is used only once and then disappears).52.6 Multiple dispatchIn this toy language it is possible to base the choice of the methods not only onthe class of the receiver of a message but also on the class of possible parametersof the message. This feature is called multiple dispatch and the method at issueis usually referred as a multi-method (see e.g. [7]). An example of multi-methodin our toy language is:extend 2DPointcompare = & fn(p:2DPoint) => ([self norm] == [p norm])& fn(p:2DColorPoint) => [p isWhite];[[compare:#{2DPoint -> Bool; 2DColorPoint ->Bool}]]in ...If the parameter of compare is a 2DPoint then the �rst line is executed; thesecond one if it is (a subtype of) a 2DColorPoint. Note that the type of a multi-method appears in the interface as the set of the types of the possible choices(the reason why we pre�xed the type by # is explained in the next session).The number of parameter on which the dispatch is performed may be di�erentin every branch. For this reason, when a message denoting a multi-method issent, we must single out those parameters the dispatching is performed on. Thisis done by including them inside the brackets of the message-passing, after themessage. Thus the general syntax of message passing is: [receiver messageparameter, ..., parameter]. For example, consider a class C with the followinginterface: [[msg:#fInt -> (Int -> Bool), Int x Int -> Boolg]]; if M isof class C then the expression [M msg 3] 4 selects the �rst branch while[M msg 3,4] selects the second one. We have to impose a restriction in oursystem: super cannot work with multiple dispatching; when super selects amulti-method, it works as coerce2.7 Messages as �rst class values: adding overloadingMessages are identi�ers of overloaded functions. But up to now overloadedfunctions can be de�ned only through class de�nitions. Thus the next step is to4 This is what is done in Fibronacci, developed at the University of Pisa5 It is interesting that with our generalization of super it is possible to predeterminethe life of a coercion: for example super[A](super[A](M)) coerces M to A onlyfor the �rst two message passing.

introduce explicit de�nitions for overloaded functions and to render them (andthus messages) �rst class values. The gain is evident: for example we can havefunctions accepting or calculating messages (indeed overloaded functions) andto write message passing of the form [receiver f(x)] (see [2] for an example).We use the syntax of message passing for overloaded application; thus in[exp0 exp exp1;: : : , expn] we have that exp is the overloaded function andexp0;exp1;: : : ,expn are the arguments. We use the syntax of multi-methods tode�ne overloaded functions. Therefore we build an overloaded function by con-catenating the various branches by &; the argument of each branch must havean atomic type. The type of an overloaded function is the set of the types of itsbranches. For example an overloaded \plus" working both on integers and realscan be de�ned in the following way:let plus = (& (fn(x:Real,y:Real) => x real_plus y)& (fn(x:Int,y:Int) => x int_plus y))which has type fReal � Real ! Real; Int � Int ! Intg. Thus the sum of twonumbers, x and y, using plus is written [x plus y].Finally note that the use of # in the interfaces is necessary to distinguishmulti-methods from ordinary methods returning an overloaded function. 62.8 Type checking of the toy languageIn this section we describe the type system of our toy language. We de�ne hereonly the rules for the object-oriented part of the language, since the typing ofthe functional part is quite standard.TypesThe types that can be used in a program of our toy-language are: Class-nameswhich are user-de�ned atomic types. Product types (T � T 0), for pairs. Arrowtypes T ! T 0, for ordinary functions. Sets of arrow types fA1 ! T1; : : : ; An !Tng called overloaded types and used for overloaded functions where we callA1: : : An and T1: : : Tn input and output types respectively. In an overloadedtype there cannot be two di�erent arrow types with the same input type (inputtype uniqueness).R ::= hh`1 : T1; : : : ; `n : Tnii (record types)T ::= A j T ! T j (T � : : :� T) (raw types)j f(A1x : : :xAm1)! T1; : : : ; (A01 � : : :�A0mn)! Tng (mi�1)V ::= T j #f(A1� : : :�Am1)! T1; : : : ; (A01� : : :�A0mn)! Tng (interface types)In the following we use the meta-variables T; U and W to range over raw types.If T denotes the type fUi ! Tigi=1::n�1 then the notation T [fUn ! Tngdenotes the type fUi ! Tigi=1::n if Un ! Tn is di�erent from all the arrowtypes in T , and it denotes T itself otherwise. In other terms [denotes the usualset-theoretic union.6 Note that the use of the syntax of message passing also for overloaded application,while providing a conceptual uniformity, has a major drawback: when the overloadedfunction has more than one argument then the arguments have to be \split" aroundthe overloaded function. In case of binary in�x overloaded operators, like the caseof plus, this turns out to be very readable. But, apart from these special cases, itremains a problem and it may suggest us to consider a di�erent syntax for messagepassing where the message is the left argument, as done in CLOS (see [7]).

Rules for SubtypingThe subtyping relation is prede�ned by the system on the built-in atomic types;the programmer de�nes it on the atomic types (i.e. the classes) he introduces,by means of the construct is. This relation is automatically extended to arrowtypes and product types by the usual rules (pairwise ordering for products andcontravariance in the left argument for the arrow constructor). To de�ne thesubtyping relation on overloaded types, note that an overloaded function cansubstitute another overloaded function i� for every branch of the latter there isat least one in the former that can substitute it. Thus an overloaded type issmaller than another if for every arrow type in the latter there is at least onesmaller arrow type in the former. Formally the subtyping relation on the atomictypes is stored in a type constraint system:De�nition1. � is a type-constraint system. If C is a type-constraint systemand A1; A2 are atomic types then C [(A1 � A2) is a type-constraint system.And the subtyping rule for overloaded types is:for all i 2 I, there exists j 2 J such that C ` D00i � D0j and C ` U 0j � U 00iC ` fD0j ! U 0jgj2J � fD00i ! U 00i gi2IUsing this subtyping relation we select among the raw types those which satisfythe conditions of the good formation of class in section 2.3. In particular thelast two conditions, reformulated in terms of overloading, become7:1. covariance: In an overloaded type, if an input type is a subtype of anotherinput type then their corresponding output types must be in the same rela-tion2. multiple inheritance: In an overloaded type if two unrelated input types havea common subtype then for every maximal type of the set of their commonsubtypes there must be one branch whose input type is that maximal type.Rules for Terms1. The type of an object is the name of its class.2. The type of a coercion and of a super is the class speci�ed in it, providedthat it is a supertype of the type of the argument.3. The type of self is the name of the class whose de�nition self appears in.4. The type of an overloaded function is the set of the types of its branches5. The type of an overloaded application is the output type of the branch whoseinput type \best approximates" the type of the argument. This branch isselected among all the branches whose input type is a supertype of the typeof the argument and it is the one with the least input type.These are all the typing rules we need to type the object-oriented part of the toylanguage, since we said that messages are nothing but overloaded functions andmessage passing reduces to overloading application. However to fully understandmessage passing we must specify which overloaded function a message denotes.Suppose that you are de�ning a class C and remember that inside the body ofa method, the receiver is denoted by self. Then there are two cases:7 The formal de�nition of the well formed types is the same as the one for � object inappendix A.1 but without the \S" indexes

1. The method msg=exp is not a multi-method and returns (according to theinterface) the type T. This corresponds to add to the overloaded functiondenoted by msg the branch fn(self:C).exp whose type is C ! T .2. We have the multi-methodmsg = & fn(x1:A1,:::,xi:Ai) => exp1:::& fn(y1:B1,:::,yj:Bj) => expnwhich returns the type #{(A1 � : : :� Ai) ! T1,: : :,(B1 � : : :� Bj) !Tn}. This corresponds to add to the overloaded function denoted by msgthe n branches fn(self:C, x1:A1; : : : ;xi:Ai) => expr1 : : : fn(self:C,y1:B1; : : :, yj:Bi) => exprn of types (C�A1� : : : �Ai) ! T1; : : : ;(C�B1 � : : :� Bj) ! TnThe selection of the branch corresponds to the search of the least supertype ofthe class of the receiver (a class is a supertype of itself) in which a method hasbeen de�ned for the message (this is the usual method look-up).Formally, we de�ne the relation C;S;� ` p:T , where C is a type-constraintsystem, p a program, T a well-formed type and � and S are partial functions be-tween the following sets: � : (V ars[fselfg)! Types and S:AtomicTypes!RecordTypes. � records the types of the various identi�ers. The function Srecords the type of the internal states of the previously de�ned classes. In partic-ular � (self) is the current class and the domain of S (i.e. the values for whichS is de�ned) is the set containing the names of all the classes that have beende�ned up to that point. We give here just the most signi�cant type-checkingrules followed by a short comment:[New] C;S;� ` new(A):A A 2 dom(S)The type of a new object is the name of its class. A 2 dom(S) checks that theclass has been previously de�ned.[Read] C;S;� ` self:`:T S(� (self)) = hh:::`:T:::iiThe expression self:` reads the value of an instance variable of an object. Thusit must be contained inside the body of a method; then S(� (self)) is the typeof the internal state of the current class.[Write] C;S;� ` r:RC;S;� ` (update r) : � (self) C ` S(� (self)) � RAlso this expression must be contained in a method. S(� (self)) � R checkthat the �elds speci�ed in it are instances variables of the current class8.[OvAbst] C;S;� ` exp1:T1 : : :C;S;� ` expn:TnC;S;� ` &exp1& : : :& expn:fT1,:::,Tng fT1,:::,Tng2CTypesThe type of an overloaded function is the set of the types of its branches.[OvAppl] C;S;� ` exp: fDi! Tigi2I C;S;� ` expj:Aj (j=0::n)C;S;� ` [exp0 exp exp1; : : : ; expn]:ThDh = mini2IfDi j C ` A0 �A1 � : : : �An � DigWhen we pass a message or, more generally, we perform an overloaded ap-plication we look at the type of the function, exp, and we select the branchwhose input type best approximates the type of the argument. The argu-ment is (exp0,exp1,: : :,expn) and the selected branch is the branch h suchthat Dh = mini2IfDi j C ` A0 � A1 � : : : � An � Dig.[Coerce] C;S;� ` exp:AC;S;� ` coerce[A0](exp):A0 C ` A � A0The construct coerce[A0](exp) says to consider exp (whose type is A) as if itwere of type A0. This is a type safe operation if and only if A � A0. A similarrule can be used for super, too.8 We consider only �eld extension for record subtyping.

Finally let us consider the typing of a class de�nition. We have to open a shortparenthesis. A class de�nition is always of the form:class A is A1,:::,An r: R m1=exp1;:::;mm=expm [[m1:V1,:::,mm:Vm]] in pwhere we use the notation r:R to denote that the instance variables have typeR and initial values given by r. The whole program is well-typed if the classde�nition is well-typed and the program p is well-typed under an environmentincluding the new de�nitions introduced by this class. To obtain this environ-ment we have to update the type of the messages by adding the types of thethe new branches de�ned in the class. We have to distinguish the case of asimple method from that of a multi-method. For every message mi in the inter-face such that Vi is a raw type we must update its current type � (mi) in thefollowing way: � (mi) := � (mi) [fA ! Vig (where we use the convention that� (mi) = fg if mi62dom(�)). If the type of a message in the interface is precededby a #, then the associated method is a multi-method; recall that the type ofits argument is the cartesian product of the type of the current class with thetypes the dispatch is performed on (see the rule [OvAppl]). Thus for exampleif in the interface mi:#fD ! U;D0 ! Tg then we have the following updating:� (mi) := � (mi) [f(A�D)! U; (A�D0)! Tg. More generally we de�neA; V = �f(A�Di)! Uigi2I if V�#fDi ! Uigi2IfA! V g otherwisethus the updating of � gets: � (mi) := � (mi) [fA ; Vig, (where the sameconvention as before applies).We are now able to write the rule [Class]. In order to shorten it we use thefollowing abbreviations:- S0 � S[A R] the function S where to the class A is associated the type ofits internal state R.- C 0 � C [(Si=1::nA � Ai) the set C extended by the type constraintsgenerated by the de�nition- I � [[m1 : V1,:::,mm : Vm]] the interface of the class- � 0 � � [mi � (mi) [fA ; Vig]i=1::m the environment � where the (over-loaded) type of the messages is updated with the type of the new methods(branches) added by the class-de�nitionC;S;� ` r:R C 0;S0;� 0[self A] ` expj :Vj (j=1::m) C 0;S0;� 0 ` p : TC;S;� ` class A is A1,:::,An r:R m1=exp1;:::;mm=expm I in p : TA 62 dom(S), C ` R � S(Aj) � (mi) [fA; Vig 2C0 Types (j = 1::n; i = 1::m)Let us examine the single parts of this rule more in detail: �rst we controlthat a class with this name does not already exist (A 62 dom(S)), we checkthe type of the initial values of the instance variables (C;S;� ` r:R) and weverify that the type of the internal state of the class is compatible (i.e. it is anextension) with the states of its ancestors (C ` R � S(Ai) for i = 1::n). Then wecheck that the de�ned messages possess well-formed overloaded types (� (mi) [fA ; Vig 2C0 Types), i.e. that they satisfy the conditions of covariance,multiple inheritance and input type uniqueness; we also check that the methodshave the type declared in the interface (expj : Vj), and this check is performedin an environment where we have recorded in C 0 the newly introduced type-constraints, in S0 the type of the internal state of the current class and in � 0the types of the new methods (since they can be mutually recursive). Finally wetype the rest of the program; in order to implement the protection mechanismswe restore in the environment the old value for self.

The rule [Extend] can be seen as a special case of the rule [Class] wherethere are no type constraint and no instance variable to check; we just haveto verify that the class in the extend expression has already been de�ned (i.e.A 2 dom(S)):C;S;� 0[self A] ` expj : Vj (j=1::m) C;S;� 0 ` exp : TC;S;� ` extend A m1=exp1;:::;mm=expm [[m1 : V1,:::,mm : Vm]] in exp : TA 2 dom(S) and for i = 1::m � (mi) [fA; Vig 2C Types3 The �&-calculusIn this section we brie
y recall the main de�nitions of the �&-calculus, which hasbeen de�ned in [3] to model overloading and dynamic binding. For a detaileddiscussion of its characteristics the reader may refer to the paper above andto [4].An overloaded function is formed by a set of ordinary functions (i.e. lambda-abstractions), each one constituting a di�erent branch. Overloaded functionsare built as it is customary with lists, starting by an empty overloaded functiondenoted by ", and concatenating new branches by means of &; therefore an over-loaded function with n branches Mi is written as ((...(("&M1)&M2)...)&Mn).The type of an overloaded function is the set of the types of its branches.Thus if Mi:Ui ! Ti then the overloaded function above has type fU1 ! T1,U2 ! T2,: : : ,Un ! Tng. The application of an overloaded function (i.e. the mes-sage passing) is denoted by \�". If we apply the function above to an argumentN of type U then we select the branch whose Ui \best approximates" the typeof the argument; i.e. we select the branch j s.t. Uj = minfUijU � Uig. Andthus ("&M1& : : :&Mn)�N >�Mj �N (*)where >� means \reduces in zero or more steps to".Also, a set of arrow types is an overloaded type i� it satis�es these twoconditions:if Ui � Uj then Ti � Tj (1)if Ui + Uj then there exists a unique h 2 I such that Uh = inffUi; Ujg (2)where Ui + Uj means that Ui and Uj are downward compatible (have a commonlower bound).These are (a stronger version of) the conditions in section 2.8; i.e. we selectthose pretypes that satisfy the conditions of covariance, multiple inheritance andinput type uniqueness.This models overloading: it remains to include dynamic-binding. This cansimply be done by requiring that a reduction as (*) can be performed only if Nis a closed normal form.The formal description of the calculus is given by the following de�nitions:PreTypes T :: = A jT ! T j fT 01 ! T 001 ; : : : ; T 0n! T 00n gSubtypingWe de�ne a partial order on the pretypes. We start by a partial lattice9 of9 A partial lattice is a (partially) ordered set such that for every pair of elements aand b if a + b then 9 inffa; bg and if a * b then 9 supfa; bg

atomic types and we extend this order to higher pretypes in the following way:U2 � U1 T1 � T2U1 ! T1 � U2 ! T2 8i 2 I; 9j 2 J U 00i � U 0j and T 0j � T 00ifU 0j ! T 0jgj2J � fU 00i ! T 00i gi2IThe subtyping relation on Pretypes is given by the re
exive closure of the rulesabove (in [3] it is proved that transitivity is not necessary).TypesA pretype is also a type if all the overloaded types that occur in it satisfy theconditions (1) and (2). We denote by Types the set of types. Types are equalmodulo the ordering of the arrows in the overloaded types.Terms M :: = xT j �xTM jM�M j " jM&TM jM�MThe type indexing the & is used for the selection of the branch in overloadedapplication.Type-checking RulesThe type checking rules are very close to those for the toy object-oriented lan-guage. Indeed they are more general since any type can appear as input type ofand overloaded function. We do not need any type context � since the variablesare indexed by their type.[Taut] xT :T [Taut"] ": fg[!Intro] M :T�xU:M :U ! T [fgIntro] M :W1 � fUi ! Tigi�(n�1) N :W2 � Un ! Tn(M&fUi!Tigi�nN): fUi ! Tigi�n[!Elim�] M :U ! T N :W � UM�N :T [fgElim] M : fUi ! Tigi2I N :U Uj = mini2IfUijU � UigM�N :TjReductionThe reduction > is the compatible closure of the following notion of reduction(for de�nitions see [1]):�) (�xT :M)N >M [xT := N]�&) If N :U is closed and in normal form, and Uj = mini=1::nfUijU � Uig then(M1&fUi!Tigi=1::nM2)�N >�M1�N for j < nM2�N for j = nFor the �&-calculus we proved in [3] some fundamental theorems like the Church-Rosser property, the theorem of subject reduction and the strong normalizationof some relevant sub-calculi.4 � objectIn the previous section we recalled the de�nition �&-calculus. It constitutesthe paradigmatic calculus from which we draw our model. Now we enter thecore of this paper by de�ning the meta-language � object. We pass from acalculus, which possesses an equational presentation, to a language, which thusis associated to a reduction strategy and a set of values. It is like if we had the�-calculus and we wanted to de�ne the SECD machine. The analogy is quite

suggestive since, as in the case of the SECD machine, we do not want an exactcorrespondence with the �-calculus (e.g. as the one between the SECD machineand the �V : see [9]); rather we aim to de�ne a language that implements the\general" behavior of the �&-calculus, and that constitutes a meta-language forobject-oriented languages. A meta-language is conceived to \speak about", todescribe a language. Thus it must possess the syntactic structures to reproducethe constructs of that language, structures that are not generally present ina calculus. Thus to reproduce object-oriented languages we provide � objectwith constructs to de�ne new atomic types, to de�ne a subtyping hierarchyon them, to work on the implementation of a value of atomic type, to de�nerecursive terms, to change the type of a term and to deal with super. We givean operational semantics for the untyped terms, we de�ne a notion of run-timetype error and a type-checking algorithm. Finally we prove the subject reductiontheorem (thus the correction of the type-checker) which plays a key role, being� object envisaged for typed object-oriented languages.The main decision in the de�nition of � object is how to represent objects.This decision will drive the rest of the de�nition of the language. Runninglanguages usually implement objects by records formed by three kinds of �elds:�elds containing the values of the instance variables, �elds used by the system(for example for garbage collection) and a special �eld containing a referenceto the class of the object. Obviously in this theoretical account we are notinterested in the �elds for the system, hence an object in � object will be formedonly by the values of its instance variables (the so-called internal state) and bya tag indicating the class of the object. The tag of an object must univocallydetermine the type of the object, for in our approach the selection of a methodis based on the type of the object. There are two reasonable ways to do it, andin both of them the name of the class is considered an atomic type:(a) An object is a record whose �elds are the instance variables plus a specialempty �eld whose type is the name of the class(b) An object is a record whose �elds are the instance variables and which isgiven a tag, say A, by applying it to a special constructor inA. In otherterms, intag is the constructor for the values of (atomic) type tag whoseinternal representation is given by the record of the instance variables.For � object we choose to use the solution (b) for, even if it needs the intro-duction of new operations and new typing rules, it has the advantage that, asin our toy language, the type of an object is its class. Thus types will be con-served during the translation from the toy language to � object. Furthermorethe operational semantics of � object will be simpli�ed. Henceforth we will notdistinguish among the terms \tag", \atomic type" and \class-name" since in� object they coincide.To resume, in � object objects are \tagged terms" of the form inA(M) whereA is the tag and M represents the internal state. When we have an overloadedapplication M�N we �rst reduce M to a term (M1&M2) and N to a taggedterm, and then we perform the branch selection according to the obtained tag,that is the name of the class of the object. The selected method must be able toaccess to the instance variables of the object, i.e. to get inside the in construct.To this purpose we use a function denoted out that composed with in gives theidentity.PretypesWe use A and B (possibly subscripted) to denote atomic types.

T ::= A j T�T j T! T j f(A1 � : : : �Am1)! T1; : : : ; (B1 � : : : � Bmn)! TngTermsTerms are composed by an expression preceded by a (possibly empty) suite ofdeclarations. We use the metavariable M to range over expressions and P torange over terms:M ::= xT j �xT:M j M�M j " j M&TM j M�Mj <M ;M > j �1(M) j �2(M) j �xT :Mj coerceA(M) j superA(M) j inA(M) j outA(M)P ::= M j let A � A1; ::: ;An in P j let A hide T in PDeclarations cope with atomic types: they can be used to de�ne the subtypingrelation on atomic types and to declare a new atomic type by associating it toa representation type (i.e. the type of the internal state). More precisely thedeclaration let A hide T in P declares the atomic type A and associates it tothe type T used for its representation. This declaration automatically de�nestwo constructors inA:T ! A and outA:A! T which form a retraction pair fromT to A.Tagged valuesWe have to be a little more precise about tagged values: a tagged value iseverything an overloaded function can perform its selection on. Thus it can bean object of the form inA(M) but also the coercion of an object, the super of anobject and, since we have multiple dispatching, a tuple of objects. Thus a tagis either an atomic type or a product of atomic types. We use the metavariableD to range over tags; tagged values are ranged over by GD where D is the tag.GD: := inD(M) j coerceD(M) j superD(M) j <GA11 ;GA22 ; : : : ;GAnn >In the last production D � (A1 � : : : �An)Operational SemanticsWe de�ne the values of � object, i.e. those terms which are considered as results;values are ranged over by G.G ::= x j (�xT :M) j " j (M1&TM2) j <G1 ;G2> j coerceA(M) j superA(M) j inA(M)The operational semantics for � object is given by the reduction); this reduc-tion includes a type constraint system10 C that is built along the reduction bythe declarations (let A � A1 : : :An in P) and that is used in the rule(s) for theselection of the branch. In the rules we use � to denote either � or �, I to denotefD1 ! T1; : : : ; Dn ! Tng and D to denote the mini=1::nfDijC ` D � DigAxioms(C ; outA1(inA2(M)))) (C ; M)(C ; outA1(coerceA2(M)))) (C ; outA1(M))(C ; outA1(superA2(M)))) (C ; outA1(M))(C ; �x:M)) (C ; M [x := �x:M])(C ; (�x:M)�N)) (C ; M [x := N])(C ; (M1&IM2)�GD)) (C ; M1�GD) if Dn 6= D(C ; (M1&IM2)�GD)) (C ; M2 �GD) if Dn = D and GD 6� superD(M)(C ; (M1&IM2)�GD)) (C ; M2 �M) if Dn = D and GD � superD(M)10 At this stage it would be more correct to call it a \tag constraint system"

(C ; let A � A1 : : :An in P)) (C [(A � A1) [: : : [(A � An) ; P)(C ; let A hide T in P)) (C ; P)Context Rules(C ; M)) (C ; M 0)(C ; M �N)) (C ; M 0 �N) (C ; M)) (C ; M 0)(C ; (N1&N2)�M)) (C ; (N1&N2)�M 0)(C ; M)) (C ; M 0)(C ; outA(M))) (C ; outA(M 0))The semantics for pairs is the standard one and thus it has been omitted. Threeaxioms and a rule give the behavior of out and let it accede to the internal stateof an object. Functional application is implemented by call-by-name; anyway,this is not a central point of our paper and the call-by-value would �t as well.The three axioms and two rules for overloaded functions deserve more atten-tion: in an overloaded application we �rst reduce the function to an &-term andthen its argument to a tagged value; then the reduction is performed accordingto the index of the &-term. In a sense, we perform a \call-by-tagged-value"(but for well typed programs this notion coincides with the usual call-by-value:see corollary 5). It is worth noting that this selection does not use types: notype checking is performed, only a match of tags and some constraints is done;indeed, we still do not have any \type" here, but just some tags indexing theterms. Note the di�erence when the tagged value is a super: in that case the ar-gument of the super is passed to the selected branch instead of the whole taggedvalue.Finally, the declaration (let A � A1 : : :An in P) modi�es the type con-straints in which the body P is evaluated, while (let A hide T in P) servesonly to the type checker and thus, operationally, it is simply discarded.Programs and type errorsThe operational semantics above is given for untyped terms. Thus we de�newhich terms are the programs of � object and when a reduction ends by a typeerror.De�nition2. A program in � object is a closed term P di�erent from ".We use the notation P) P 0 to say that (C;P)) (C 0; P 0) for some C and C 0and we denote by �)the re
exive and transitive closure of). Given a term M ,we say that it is in normal form i� it does not exist N such that M) N . LetP be a closed term in normal form. If P is not a value then it is always possibleto use the context rules of the operational semantics to decompose P to �nd theleast subterm which is not a value and where the reduction is stuck. Let call thissubterm the critical subterm of P . For example consider the following term:((M1&M2) � ((superA(M)) � (N))) � (M 0)This term is in normal form. Indeed, since it is an application we �rst try toreduce ((M1&M2) � ((superA(M)) � (N))); then for the second context rule wetry to reduce (superA(M)) � (N); again, for the �rst context rule one tries toreduce (superA(M)); but it is a value di�erent from a �-abstraction and weare stuck. Thus, in this case, the critical subterm is (superA(M)) � (N). Notethat the critical subterm (of a closed normal non-value term) always exists andis unique, since it is found by an algorithm which is deterministic (since theoperational semantics is deterministic) and terminating (since the size of theterm at issue always decreases).

De�nition3 (type-error). Let P be a program. If P �)P 0, P 0 is in normalform and it is not a value then we say that P produces a type error. Furthermoreif the critical subterm of P 0 is of the form ((M1&TM2)�GD) then we say that Pproduces an \unde�ned method" type error.The \unde�ned method" error is raised when we try to reduce an overloadedapplication of a &-term to a tagged value, and D is not de�ned. This means thatit is not possible to select a branch for the object passed to the function. Thiscan be due either because the set fDijD � Di ; i = 1::ng is empty or becauseit has no minimum. In object-oriented terms the former case means that thewrong message has been sent to the object and in the latter that the conditionof multiple inheritance has not been respected.4.1 The type systemWe have de�ned programs and how to compute them; then we have singled outthose computation that produce a \type error". Now we have to justify the useof the adjective type in front of the word \error". To this purpose we de�ne atype system for the raw terms, so that the well-typed programs will not producethese errors.TypesAs in the case of �&-calculus and of our toy language we �rst de�ne an order onthe pretypes and then we select those that satisfy the conditions for covariance,multiple inheritance and input type uniqueness. The subtyping relation on pre-types and the good formation for types are exactly the same as those de�nedfor our toy language in section 2.8, with the only modi�cation that the set ofatomic types is relative to a program and it is formed by all the pretypes thathave been declared by a let : : : hide de�nition (appendix A.1 contains theformal de�nition).Type checking rulesThe type checking rules are summarized in Appendix A.2. They are parametricin a type constraint system C and a function S from atomic types to types. Theseare used respectively to store the type constraints and the implementation typesde�ned in the declarations in the rules [NewType] and [Constraint].We want to interpret the construct extend; in �& we can only add a newbranch to an overloaded function but we cannot replace an existing branch byanother of the same type. To obtain it in � object we use a weaker type systemwhere we modify the typing of overloaded functions. The rules [Taut], [!Intro], [! Elim(�)], [Taut"], [fgElim] are the same as in �& (with theobvious modi�cations to consider C and S). The only rule we have to change is[fgIntro]: in the new version of the rule we use the meta operator on overloadedtypes [which, we recall, denotes the usual set theoretic union.Compare the rule [fgIntro] of appendix A.2 with the one of �& in section 3.While the indexes are formed in the same way by simple juxtaposition, the typeis obtained by using the union operator. When you concatenate to an overloadedfunction a branch whose type is di�erent from the types of the branches alreadypresent, then the rule behaves as usual. If on the contrary the type of the newbranch is already present in the type of the overloaded function then by [thetype of the function remains the same as before. However by the axioms of theoperational semantics if there are two branches with the same type at indexthen the reduction always selects the rightmost of these branches, i.e. the latest

added. Furthermore, if you try to add to an overloaded type a branch whoseinput type is the same as the input type of a branch already present, then thetype you obtain is well-formed if and only if the two branches have also thesame output type: indeed if the two branches have di�erent output types, thenthe (pre)type obtained by the union does not satisfy the condition (d) of well-formation for types. Worth to be mentioned are also the rules [In] and [Out]:note that the constructors of a type can be used only if that type has beenpreviously de�ned by a let hide declaration (i.e. if it belongs to dom(S)).4.2 Main resultsProposition4. Let P :T ; if P is closed and in normal form then P is a value.Corollary 5. If a program is in normal form and possesses a product of atomictypes then it is a tagged value.Recall that it is not possible to reduce inside a �-abstraction. Therefore if in theevaluation of a program we reduce a term of the form M�N , then in particularN must be closed, To perform the selection of a branch N must also be a value;thus, by the corollary above it must be a tagged value. Therefore in a well-typedprogram overloaded application is implemented by the usual call-by-value, sincethe only values allowed are tagged values.Theorem6 (Subject Reduction). Let P :T ; if P �)P 0 then P 0:T 0 and T 0�TProposition7. If P) P 0 and P is closed then also P 0 is closedCorollary 8. Let P be a well-typed program. If P �)P 0 and P 0 is in normal formthen P 0 is a valueThe last corollary states that well-typed programs stop only on values, and thusdo not produce type errors.EncodingsWe hint how to encode updatable records in � object. For the de�nition ofupdatable records see [10]. We have no space to explain the encoding in detail.We just give its crude de�nition.Let L1; L2; : : : be an in�nite list of atomic types. Assume that they areisolated (i.e., for every type T , if Li � T or T � Li, then Li = T), andintroduce for each Li a constant `i:Li. Then set hh`1 : T1; ::: ; `n : Tnii = fL1 !T1; ::: ; Ln ! Tng; the empty record h i = ", the updating hr `i = M i =(r&�xLi:M) (where x 62 FV (M)); the �eld selection r:`i = r�`i.5 TranslationAs we already said, we do not give a direct semantics to the toy language. Insteadwe translate its programs into �-object. The formal translation is summarizedin appendix B. In this section we give only the intuitive rules of the translation,which has the property to preserve the type; that is, a well-typed program ofthe toy language is translated in a well-typed term of � object of the same type(see theorem 9). This property validates the algorithm of type-checking we havede�ned for our object-oriented language since it assures that type-errors cannever occur when running well typed programs.

� A message is simply an identi�er of an overloaded function; thus it is trans-lated in a variable possessing a (raw) overloaded type; i.e. [[m]] = mfAi;Vigi2Iwhere fAiji 2 Ig is the set of the classes where the message m has been de-�ned, and the Vi's are the corresponding types appearing in the interfaces.� Message passing is the application of an overloaded function: [[[exp0 expexp1; : : : , expn]]] = [[exp]]�[[(exp0; exp1; : : : ; expn)]]� In the de�nition of a method, self represents the receiver of the messagewhich invoked the method. Thus we translate a method msg =exp into�selfA.[[exp]], where A is the current class. This will form a branch of theoverloaded function denoted by (the translation of) the message msg.� new(A) de�nes a value of type A. It is translated into inA(r) where r isthe record value containing the initial values of the instance variables of theclass A.� update unpacks self in its representation (record) type, modi�es its value(i.e. the internal state) and packs it again in its original type. Thus forexample [[(update {x= 3})]] = inA(houtA(selfA) x = 3i); again A is thecurrent class.� super[A](exp) and coerce[A](exp) are translated into superA([[exp]]) andcoerceA([[exp]]) respectively.� The operation extend corresponds to add a branch to an overloaded func-tion. It has the following intuitive translation: [[extend A m = exp [[...]] in exp0]] = (let m = (m&�selfA :[[exp]]) in [[exp0]]). For the case ofmulti-methods see the next point.� Finally we have the most complex construct: the class de�nition. By a classde�nition we de�ne a new atomic type, a set of type-constraints on thisatomic type and some branches of overloaded function. The intuitive inter-pretation of say (class A is A1,A2 fx:Int=3g msg = exp [[msg : T]] in p), when exp is not a multi-method, is:let A hide hhx : Intii inlet A � A1; A2 inlet msg = (msg&�selfA :[[exp]]) in [[p]]If it is a multi-method then exp must be of the form &: : :&: : : . For exampleexp may be:mesg = & fn(x1:C1; x2:C2) => exp1& fn(y1:C1; y2:C3) => exp2& fn(z:C2) => exp3Then, using some pattern-matching in lambda calculus, the multi-method istranslated intolet mesg = (mesg&�(selfA; xC11 ; xC22):[[exp1]]&�(selfA; yC11 ; yC32):[[exp2]]&�(selfA; zC2):[[exp3]])Of course the initial value 3 of x must be recorded during the translation sothat this value can be used in the translation of new(A). Finally if there ismore then one method, then they can be mutually recursive; thus we needto use a �xpoint operator in their de�nition.More formally the interpretation function will be parameterized by an environ-ment of the initial states, an environment of instance variables and by the typeof the current object (see appendix B). So that the theorem of correction of thetype system for the toy language is formulated as follows:

Theorem9. For every type constraint C, type environment � and for everyI 2 InitState and S : ClassNames !RecordTypes such that for any Aatomic I(A):S(A), if C;S;� ` p:T then C;S ` [[p]]� I � (self):TAcknowledgmentsMany ideas of this work come from several discussions with Luca Cardelli, GiorgioGhelli, Giuseppe Longo, Eugenio Moggi and Benjamin Pierce. We are especially grate-ful to Allyn Dimock, Maribel Fern�andez and Benjamin Pierce for their precise as wellas useful comments on an earlier version of this paper and to Jean-Christophe Filliatreand Fran�cois Pottier who implemented with the author an interpreter for � object.References1. H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics. North-Holland,1984. Revised edition.2. G. Castagna. F&� : integrating parametric and "ad hoc" second order polymor-phism. In Proc. of the 4th International Workshop on Database ProgrammingLanguages, Workshops in Computing, New York City, September 1993. Springer-Verlag.3. G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions withsubtyping, 1992. To appear in Information and Computation. An extended ab-stract has appeared in the proceedings of the ACM Conference on LISP and Func-tional Programming, pp.182-192; San Francisco, June 1992.4. G. Castagna, G. Ghelli, and G. Longo. A semantics for �&-early: a calculus withoverloading and early binding. In M. Bezem and J.F. Groote, editors, InternationalConference on Typed Lambda Calculi and Applications, number 664 in LNCS, pages107{123, Utrecht, The Netherlands, March 1993. Springer-Verlag. TLCA'93.5. W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. 17th Ann.ACM Symp. on Principles of Programming Languages, January 1990.6. G. Ghelli. A static type system for message passing. In Proc. of OOPSLA '91,1991.7. S.K. Keene. Object-Oriented Programming in Common Lisp: A ProgrammingGuide to CLOS. Addison-Wesley, 1989.8. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall Interna-tional Series, 1988.9. G.D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Com-puter Science, 1, 1975.10. Mitchell Wand. Complete type inference for simple objects. In 2nd Ann. Symp.on Logic in Computer Science, 1987.A Type system of � objectA.1 Types1. A 2C;S Types for each A 2 dom(S)2. if T1; T2 2C;S Types then T1 ! T2 2C;S Types and T1 � T2 2C;S Types3. if for all i; j 2 I(a) (Di; Ti 2C;S Types)(b) if C ` Di � Dj then C ` Ti � Tj)(c) for all maximal type D in LBC(fDi;Djg) there exists h2I s.t. Dh = D(d) if i 6= j then Dj 6= Djthen fDi ! Tigi2I 2C;S Types

A.2 Typing rules[NewType] C ; S[A T] ` P :UC;S ` let A hide T in P :UA 62 dom(S); T 2C;STypes and T not atomic[Constraint] C [(A � Ai); S ` P :TC;S ` let A � A1; ::: ;An in P :TC ` S(A) � S(Ai) and A do not appear in C[Taut] C;S ` xT :T[! Intro] C;S `M :T 0�xT:M :T ! T 0 T 2C;S Types[! Elim(�)] C;S `M :U ! T N :WC;S `M�N :T C ` W � U[Taut"] C;S ` ": fg[fgIntro]C;S `M :W1 � fUi ! Tigi�(n�1) C;S ` N :W2 � Un ! TnC;S ` (M&fUi!Tigi�nN): fUi ! Tigi�(n�1) [Un ! TnfUi ! Tigi�(n�1) [Un ! Tn 2C;S Types[fgElim] C;S `M : fUi ! Tigi2I C;S ` N :UC;S ` M�N :Tj Uj=mini2IfUijC ` U�Uig[Pair] C;S `M : T1 C;S ` N :T2C;S ` <M ;N>:T1 � T2[Proj] C;S `M :T1 � T2C;S ` �i(M):Ti for i = 1; 2[Coerce] C;S `M :BC;S ` coerceA(M):A C ` B � A, A 2C;S Types[Super] C;S `M :BC;S ` superA(M):A C ` B � A, A 2C;S Types[In] C;S `M : TC;S ` inA(M):A C ` T � S(A), A 2C;S Types[Out] C;S `M :BC;S ` outA(M):S(A) C ` B � A, A 2C;S Types[Fix] C;S `M : T�xT:M :T T 2C;S TypesB TranslationLet Envs = V ars ! RawTypes, InitState = ClassNames ! RecordV aluesthen we have the following de�nitions:De�nition10. T [[:]] : L ! V ars! Types1. T [[class B is A1...Aq r : R m1=exp1 : : :mn=expn[[m1:V1:::mn:Vn]] in p]](m) == nT [[p]](mj) [fB ; Vjg for m = mjT [[p]](m) else2. T [[:]] is the function which returns fg in all the other cases.De�nition11. Let p0 denote the program class B is A1,:::,Aq r:R m1=exp1 : : :mn=expn[[m1:V1 : : :mn : Vn]] in p then de�ne:

{ M[[p0]]� I A(m) = n�j(M) for m =mjM[[p]]� I A(m) elseWhere � 0 = � [mi � (mi)[fB ! Tig]i=1::n and M has the following de�nition:M � �(mT [[p0]](m1)1 ; : : : ;mT [[p0]](mn)n):(M1; : : : ;Mn)where for j 2 [1::n], Mj has the following de�nition:1. If Vj is a raw type then Mj has the following form((M[[p]]� 0 I A(mj))&T [[p]](mj)�fB;Vjg�selfB :=[[expj]]� 0[self B]I[B r]B)2. If j 2 [1::n] and Vj � #fDi ! Tigi=1::h , then expj must be of the followingform:& fn(x1:D1) => expj1 : : :& fn(xh:Dh) => expjhthen Mj is de�ned in the following way:(� � � ((M[[p]]� 0 I A(mj)&T [[p]](mj)�fB�D�(1)!T�(1)g�(selfB ; xD�(1)�(1)):=[[expj�(1)]]� 0[self B]I[B r]B)...&(T [[p]](mj)[:::[fB�D�(h�1)!T�(h�1)g)�fB�D�(h)!T�(h)g�(selfB; xD�(h)�(h)):=[[expj�(h)]]� 0[self B] I[B r]B)where � is a permutation generated by any algorithm with the property thatif h < k then Dk 6� Dh{ M[[:]] is the function which returns " in all the other cases.De�nition12 (Translation).1. =[[x]]� I A = x� (x)2. =[[exp1(exp2)]]� I A = =[[exp1]]� I A=[[exp2]]� I A3. =[[fn(x:T) => exp]]� I A = �xT:=[[exp]]� [x T] I A4. =[[let x:T =exp in exp']]� I A = (�xT:=[[exp]]� [x T] I A)(=[[exp']]� I A)5. =[[(exp1,...expn)]]� I A =< =[[exp1]]� I A; :::;=[[expn]]� I A >6. =[[fst(exp)]]� I A = �1(=[[exp]]� I A)7. =[[snd(exp)]]� I A = �2(=[[exp]]� I A)8. =[[new(B)]]� I A = inB(I(B))9. =[[[exp0 exp exp1; : : :, expn]]]� I A = =[[exp]]� I A�=[[(exp0,exp1,: : :,expn)]]� I A10. =[[super[B](exp)]]� I A = superB(=[[exp]]� I A)11. =[[coerce[B](exp)]]� I A = coerceB(=[[exp]]� I A)12. =[[self]]� I A = selfA13. =[[self.`]]� I A = (outA(self A)):`14. =[[(update r)]]� I A = inA(houtA(self A) `1 = =[[exp1]]� I A::: `n = =[[expn]]� I Ai)where r � f`1 = exp1; ::: ; `n = expng15. =[[extend B m1=exp1...;mn=expn [[m1:V1;...;mn:Vn]] in exp]]� I A =(�m� (m1)[fB;V1g1 :::�m� (mn)[fB;Vngn :=[[exp]]� 0 I A)M1 : : :Mnwhere(a) If Vj is a raw type thenMj � ((m� (mj)j &� (mj)�fB;Vj g�selfB:=[[expj]]� 0[self B] I[B r]B)(b) If j 2 [1::n] and Vj � #fDi ! Tigi=1::h , then expj must be of the followingform: & fn(x1:D1) => expj1 : : :& fn(xh:Dh) => expjhthen Mj is de�ned in the following way:(� � � ((m� (mj)j&� (mj)�fB�D�(1)!T�(1)g�(selfB; xD�(1)�(1)):=[[expj�(1)]]� 0[self B] I[B r]B)...&(� (mj)[:::[fB�D�(h�1)!T�(h�1)g)�fB�D�(h)!T�(h)g�(selfB; xD�(h)�(h)):=[[expj�(h)]]� 0[self B] I[B r]B)where � has the usual property.

16. Let p �class B is A1..Aq r:R m1=exp1 : : :mn=expn[[m1:T1 : : :mn:Tn]] in p0then =[[p]]� I A =let B hide R in let B � A1:::Aq in=[[p0]]� I[B r]A[m(T [[p]](mi))i :=M[[p]]� I A(mi)]i=1::n

This article was processed using the LaTEX macro package with LLNCS style

