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Abstract. In this paper, we present an explicitly typed version of the Lambda Calculus
of Objects of [7], which is a development of the object-calculi defined in [10, 2]. This
calculus supports object extension in presence of object subsumption. Extension is the
ability of modify the behavior of an object by adding new methods (and inheriting the
existing ones). Object subsumption allows to use objects with a bigger interface in a
context expecting another object with a smaller interface. This calculus has a sound and
decidable type system, “width” subtyping, and it allows for first-class method bodies.

1 Introduction
λo, the Lambda Calculus of Objects of [7], is an untyped3 kernel calculus defined to
give a foundation to object-based languages. This calculus essentially is an untyped
λ -calculus enriched with object primitives. Objects are built up from an empty object
by adding new methods or overriding existing ones. A primitive to call the methods
of the objects is provided. The calculus supports a simple inheritance mechanism,
a straightforward mytype method specialization, and dynamic lookup of methods. Its
operational semantics is very simple and allows to treat the special symbol self of object-
oriented languages directly by lambda abstraction. This calculus, however, lacks one
of the most important features of object-oriented programming, namely the subtyping
mechanism. Unfortunately, in λo it is not possible to use an object with some methods
where an object with less methods is expected (this kind of relation is called “width”
subtyping).

In [2], an extension, called λ�o , of this calculus was presented, by introducing
a subtyping relation compatible with method extension. Subtyping is subject to the
restriction that a method can be forgotten only if the remaining methods in the object
do not refer to it. This is obtained by “labeling” the type of a method n by the names of
the methods of the object that n uses.

However, we conjecture that the type systems of [7, 2] are undecidable. More pre-
cisely, recall that those type systems are defined for an untyped calculus. Therefore, in
order to use those type systems in practice, it is necessary to have a type assignment
algorithm that returns the principal type (supposing that a notion of principality can be
defined) of every typable untyped term. Hitherto, no such an algorithm exists. Further-
more, by our experience, we believe that this algorithm cannot exist, the reason being
the impossibility of assigning the right type to self , whose semantics, as clearly stated
in [11], is context dependent.

For these reasons in this paper we define an explicitly typed version of λ�o , that we
call λ�t

o . We define a type system for λ�t
o , we prove that it statically ensures type safety of

3 By untyped we intend that the terms of the calculus are not annotated by types. This does not
mean that there is no type system at all.



well-typed programs and we define a type-checking algorithm that is sound and complete
with respect to the type system, and terminating (which implies the decidability of the
type system). What we obtain, then, is the first known-to-be decidable type system for
an object calculus that supports object extension. The introduction of explicit universal
quantification (in contrast with the implicit universal quantification of [7, 2]) allows to
write first-order method bodies that can be passed as function arguments. This increase
the expressiveness of the language, since it allows to write “portable methods”.

Then we study the relation between λ�o and λ�t
o : we show that λ�t

o is at least as
expressive as λ�o (since there exists a type erasing function from typed to untyped
terms, such that every untyped expression typeable in λ�o is the erasure of some typed
expression typeable in λ�t

o ) and that λ�o can be used as a target language to compile λ�t
o

(since the computation of the type-erasure of a term e of λ�t
o , returns the erasure of a

reductum of e).

From a pragmatic point of view the situation can be described as follows. If the
programmer writes an untyped program in λ�o , then we cannot define a type-checking
algorithm that can statically ensure type safety of the program. Therefore, we ask the
programmer to add some “type annotations” to his program. Thanks to these annotations
it is possible to type check the program by using the algorithm we describe in this paper.
Once that the safety of the program is statically ensured, type annotations can be erased
and the execution can be computed on the untyped term: a theorem ensures that each
step of the untyped computation is the erasure of the typed computation.

The work we present here has however some deeper motivations. The calculus
described here stems from the research done by the authors on the addition of multi-
methods to object-based languages. Multi-methods are methods whose code is selected
according not only to the class of the receiver but also to the class of possible further
arguments. In [3], one of the authors showed that multi-methods can be used to overcome
the longstanding problem of specializing binary methods. According to [3] this can be
obtained by adding special overloaded functions that use a late binding discipline. An
overloaded function is a function that selects some code according to the type of its
argument. Therefore, in order to execute an overloaded function one needs to compute
the type of its argument. Since this was not possible in λ�o , we defined λ�t

o , the calculus
we describe in this paper. The extension of λ�t

o with multi-methods is described in a
companion paper [6].

This paper is organized as follows. In Section 2, we present λ�t
o , its operational

semantics and type system. Some examples, showing the expressivity of this calculus,
are provided in Section 3. Section 4 illustrates the main properties of the system, namely
the subject reduction, the type-soundness theorems, and some theorems that relate λ�t

o
with λ�o . In Section 5, an algorithmic presentation of our type system enjoying the
minimum type property is described (although, formally, it should have been presented
first). A section devoted to related work close this paper.

2 The Typed Calculus of Objects

In this section, we present the language λ�t
o , its operational semantics and type system.



2.1 Types, Rows, Kinds and Expressions

The set of types, rows, kinds and expressions are mutually defined by the following
grammar:

Types τ ::= ι j t j τ!τ j 8r:κ :τ j class t:R Labels ∆ ::= fg j ∆ [ fng
Rows R ::= r j hhii j hhR j n:τ∆ii j λ t:T:R j Rτ Kinds κ ::= T j [n] j T ! κ

Expressions e ::= x j c j λx:τ:e j e1e2 j λ r:κ :e j eR j (higher-order typed λ -calc.)hi j he1 � n=e2i j he1 n=e2i j e( n j (object expressions)

e  �R
n j err (auxiliary expressions).

For object expressions we have the following intuitive meaning: hi is the empty object;he1 � n=e2i extends e1 with a method n of body e2; he1 n=e2i replaces the body of
method n in e1 by e2 (provided that n is present in e1); e ( n sends message n to the
object e; e  �R

n searches the body of method n into the object e under the row-context
R, and err is the error object. The last two (auxiliary) expressions are mainly used to
define the operational semantics, and in practice, must not be avalaible to the program-
mer (because of encapsulation motivations). More precisely, the expression e  �R

n
searches the body of method n into an object e which can be a proper sub-object of
(say) e0, whose class-type contains also the methods described into the row-abstraction
R. So, the  � operator is a destructive operator which go “throught” the object until
it finds the searched method, but which keeps track of the (type of) the methods it skips
by using the annotation R (see the operational semantics): as such, the type information
R is needed in order to keep safe the self-application semantics.

Let us describe the types. Expressions of the higher-order typed lambda calculus are
typed by type-constants (denoted by ι), type-arrows and higher-order types, as usual.
Objects are typed by rows of methods. However, the recursive nature of self construction
makes their type to be recursive. Thus, the type of an object is class t:R, where R is the
row of the methods that compose the object, while t represent the (recursive) type of self
(i.e. mytype). Note, however, that rows are composed by labeled-types, that is types that
are indexed by a set of method names. Indeed, for every method n we record in rows
not only the type of n, but also the names of those methods used directly by n. Thus the
label of a method n fingers those methods that cannot be forgotten if the method n is
present. This may be better illustrated using the well-known example of objects points.
Such objects have x, y, and mv methods. If points have integer coordinates, then the
functionality of a point object may be represented in [7] by the following class-type:class t:hhx:int; y:int; mv:int!int!tii.
2.2 Untyped Terms

In λo, the Untyped Lambda Calculus of Objects, an example of such objects is:

point
4= hx=λ self :0; y=λ self :0; mv=λ self :λdx:λdy:hhself x=λ s:(self ( x) + dxi y=λ s:(self ( y) + dyii;

where hn1=e1; : : : ; nk=eki is an abbreviation of hh: : : hhi � n1=e1i : : :i  � nk=eki.
A significant aspect of the type system is that if we perform a method addition of

a method col to build a colored point object from point, then the type (int!int!t) of



method mv does not change syntactically. Instead, the meaning of this type changes,
since before the col addition the bound variable t referred to an object of the same type as
point, whereas after the addition t refers to an object of the same type as colored point.

A more complex form of method specialization occurs when a method is overridden.
Suppose, for the sake of the example, we want to to build a diag point from the previous
point, where x and y coordinates are equal. First we override the mv method so that it
modifies the x and y coordinates only when the displacements dx and dy are equal:

dp
4= hpoint mv=λ self :λdx:λdy: if dx 6= dy then self elsehhself x=λ s:(self ( x) + dxi y=λ s:(self ( y) + dyii:

Then, we redefine the y method with a new body that performs a lookup on the x
component:

diag point
4= hdp y = λ self :self ( xi.

Now, since the mv method is implemented by using y, it follows that when we send a
mv message to diag point, the inherited mv will invoke the more specialized y method.

So, method extension and method override are operations that can modify dependen-
cies inside objects. In the previous examples, the dependencies of point and diag point
are “mv uses x and y”, and “mv uses x and y, and y uses x”, respectively. These depen-
dencies can be codified by using labeled-types. For example, in our system, the object
point has the following class-type:class t:hhx:int; y:int; mv:(int!int!t)x;yii,
(where int stands for intfg and τx;y for τfxg[fyg) while the object diag point has the
following class-type: class t:hhx:int; y:intx; mv:(int!int!t)x;yii.
We can forget, by subtyping, those methods that are not used by other methods in the
object, i.e. a method is forgettable if and only it does not appear in the labels of the types
of the remaining methods.

Kinds are used to “type” rows. In particular we said that extension of an object e
by a method n is allowed only if a method n is not already present in (the type of) e.
Thus, in order to type object extensions, negative information is needed, namely we
must know that a row does not contain a given method. For this reason in [7] the kind[n] has been introduced. Intuitively, the elements of kind [n] are rows that do not include
method names n. More details on labeled-types can be found in [2].

2.3 Typed Terms

In the introduction, we said that we conjecture the undecidability of type inference in λo

and that to make it decidable we require the programmer to annote the terms by some
types, obtaining a term of λ�t

o , the calculus defined right above. For instance, the object
point at the very beginning of Section 2.2, can be type-annotated and written in λ�t

o as
shown below, where T[n] is an abbreviation for T![n].
point

4= h x=λ r1:T[x]:λ self 1:hhr1t j x:intii:0; y=λ r2:T[y]:λ self 2:hhr2t j y:intii:0;
mv=λ r3:T[x;y;mv]:λ self 3:hhr3t j x:int; y:int; mv:(int!int!t)x;yii:λdx:int:λdy:int:hhself 3 x=(λ r4:T[x]:λ self 4:hhr4t j x:intii:(self 3 ( x) + dx)i y=(λ r5:T[y]:λ self 5:hhr5t j y:intii:(self 3 ( y) + dy)ii:



Note in particular that the type of self is composed by a fixed part, where the method
being defined plus those necessary to type the body are specified, and a variable part
(denoted by ri t), that contains “all the remaining methods of the object”. These remaining
methods will be passed by the system to the (polymorphic) body at the moment of its
selection. For example, when selecting the method x of point, the system will pass to the
body the term λ t: T:hhy:int; mv:(int!int!t)x;yii. Note that this part must be left variable
since it must take into account also the methods that are defined after the method at
issue. This machinery is handled by a suitable typed operational semantics we describe
next.

2.4 Operational Semantics

In order to define the operational semantics we should first define the typing system.
However, for pedagogical reasons we prefer to follow the reverse order. Let α stands
for τ∆, and let m:α , be the abbreviation of m1:α1; : : : ; mk:αk, with k � 0.

Definition 1. Let m:α2R if and only if R � hhR0 j m:αii for some R0, and define the
restriction of a row R according to a label ∆ and its negation, denoted by R∆ , and R�∆ , as
follows: R∆

4=fm:α 2 R j m 2 ∆g, R�∆ 4=fm:α 2 R j m 62 ∆g.
The λ�t

o calculus presents two main challenges. The first is to ensure the conditions
of application of extension and overriding: this is ensured by the type system described
later on. The second is to give the right type to self , which is context dependent: this is
done by a suitable typed operational semantics. Here the word “typed” means that some
evaluation steps are constrained (i.e. driven) by suitable typing derivations.

Sending message n to the object e is implemented by (i) finding the correct body
of method n into the object e, say en, (ii) instantiating (i.e. applying) en to the higher-
order row-abstraction Rn obtained by inspecting (via   � operator) the object e and(iii) applying the instantiated method body of n to the object itself. One of the subtle
points of the operational semantics is that the row-abstraction Rn at point (ii), cannot
be determinated at the moment of the message sending (i.e. e ( n), but must be built
during the search, while   � passes through the various methods. In other words, if
we had adopted the following semantics ( � denotes either � or ):(() e( n

ev! (e  �n)(λ t:T:R�∆ )e if `A e : class t:hhR j n:τ∆ii(succ) he1 � n=e2i  �n
ev! e2(next) he1 � m=e2i  �n
ev! e1  �n;

then we would not have obtained a correct behavior since this semantics does not take
into account methods that are necessary to n but have been added after it (e.g. in case of
mutually recursive methods). In particular, subject reduction does not hold4. Therefore,
we propose the following operational semantic for λ�t

o :

4 Consider pt
4=hhx=λ r:T[x]λ self :hhrtjx:intyii:3i � y= : : : i of type class t:hhx:inty; y:intii and

verify that the reduction of pt( x by the rules above would not preserve the type.



(() e( n
ev! (e λ t:R�∆  � n)e where `A e : class t:hhR j n:τ∆ii(next1) he1 � m=e2i λ t:R  � n
ev! e1

λ t0:R0  � n

(
where `A he1 � m=e2i :class t0:hhR00 j n:τ∆ii and
m:α 2 R00∆ with R0 � hh[t0=t]R j m:αii(next2) he1 � m=e2i R  � n

ev! e1

R  � n if (next1) does not apply(succ) he1 � n=e2i R  � n
ev! e2R(β) (λa:A:B)C ev! [C=a]B

where we omit the kind of t in the row-index of  �. The rules for error propagation
are shown in the Appendix.

We briefly discuss the most important rules, namely the rules ((), (next1) and(next2) of the operational semantics. The (call) rule says that sending message n to the
object e reduces to apply the search of the method n in question to an higher-order row-
abstraction and to the object itself. The row-abstraction passed to the search operator
represents all the methods that are introduced after the addition of n but not annotated in
the labeled-type of n. The (next1) rule says that when we are looking for a method body
n and we find an object whose outermost method is m and that m is in the labeled-type
of n, then we can go “throught” that object but we must record, in the row-index of the
search operator, the type of m. Finally, the (next2) rule apply when the method m we are
skipping is not in the labeled-type of n.

As such, the row-abstraction R that is to be passed to the body of n, along the method
search will keeps track in its index of those methods used by the body of n and defined
after it (rule (next1)) and skips the others (rule (next2)). It follows that the final row
R, built during the search of n, contains the types of all the (new) methods which are
introduced after the addition of n, together with methods which are not used by n at all
(these are put in the index by the rule (()). To deduce this type we use an algorithmic
typing system denoted by `A , whose formal presentation is postponed until Section 5.

2.5 Subtyping

The subtyping relation is based on the information given by the labeled-types of methods
in rows. We discuss the most important rule, namely the rule which forgets methods
in class-types. The full set of rules can be found in the Appendix. We first need the
following definition which associates to a set of labeled-types the union of all labels.

Definition 2. The set L(α) of methods which occur in the labels of α is inductively
defined as follows: L(ε) = fg; L(β ; τ∆) = L(β) [ ∆.

The (width�) rule says that a class-type is a subtype of another class-type if the forgotten
methods (i.e. the methods not occurring) in the latter are not in the union of the sets
of labels of the remaining methods. The condition n 62 L(α) formally ensures that
the remaining methods do not use the methods n. Clearly, we can forget groups of
mutually recursive methods with this rule. Observe that subtyping is formally forbidden
on “open” class-types of the shape, class t:hh: : : r : : :ii. If we would allow subtyping on



class-types of that shape, then we would loose the subject reduction property. In fact,
our subtyping relation would no longer be closed under substitution of row-variables in
class-types.

2.6 Typing Rules

In this subsection we describe only the most interesting typing rules. The full set of
rules is described in the Appendix.

The subtyping relation in the previous section is used to type programs through the
usual subsumption rule which implies that if σ � τ, then an expression e of type σ
can be used in any context where an expression of type τ is required. If we use the
subsumption rule, then we can obtain judgments of the shape Γ ` e : class t:R, where
Γ; t:T ` R : [n] even if n is a method that composes e. In this case we say that this rule
forgets the method n. It is important to remark that, when a method is forgotten in the
type of an object, it is like it was never added to the object.

The rule (obj�ext) types a method addition producing the new object he1 � n=e2i.
It always adds the method to the syntactic object in case the method is not present or
it is present in the object but it was previously forgotten in the type by (sub�). The
condition R∆ = fm:αg ensures that the m methods, needed to type e2, are present in e1.
But ∆ can contain also methods which will be useful to type future bodies of n.

In the (obj�over) rule we require that the new method body must have the same
type and label as the old one. In the (obj�ext) and the (obj�over) rules, the method n
uses some of the methods belonging to the label ∆ associated with the labeled-type of n.
A difference between the extending and overriding rules in λ�t

o and those of λ�o , is that
the higher-order row-variable r is explicit in the body of the method we are defining.
Having explicit higher-order polymorphism increase the expressiveness of the language,
since we can consider method bodies as first-class, and so we can type expression such
as (λx:τ:he � n=xi)e0 (see Example 2). This is not possible in λ�o .

The (search) rule asserts that the type of the extracted method body of n is a function
that accept as input argument an object, which will contains the methods m; n, together
with those methods annotated in the the row-index of the search operator.

The (send) rule is a sort of unfolding rule; in fact the class-type is a sort of recursive-
type.

3 Examples
Example 1 (A Geometric Object). Consider an object draw that responds to two mes-
sages: belongs, that checks whether two integer coordinates superpose to a figure F and
plot, that, given a point, colors it black or white, depending on the position of the point
with respect to the figure F. The method plot of draw accepts as input both points and
colored points (a colored point is a point with an extra field col of type color). Such a
definition is impossible in λo, where the only solution would be to write two different
draw objects, one for colored points the other for points, each one providing a different
body for the method plot. In fact, for colored points an override instead of an extension
should be used:
draw

4= hbelongs=λ r1:T[belongs]:λ self 1:class t:hhr1t j belongs:int!int!boolii:
λx:int:λy:int:(x; y) 2 F; plot=λ r2:T[belongs;plot]:f i;



where f , the body of plot, is:

f
4= λ self 2:class t:hhr2t j belongs:int!int!bool; plot:(P!CP)belongsii:

λp:P:if (self 2 ( belongs)(p( x)(p( y) then hp � col = λ r3:T[col]:set blacki
else hp � col = λ r4:T[col]:set whitei;

with set black and set white denoting respectively, λ self 3:class t:hhr3t j col:colorii:black
and λ self 4:class t:hhr4t j col:colorii:white, P � class t:hhx:int; y:int; mv:(int!int!t)x;yii, and
CP � class t:hhx:int; y:int; mv:(int!int!t)x;y; col:colorii. Then we can derive:

ε ` draw : class t:hhbelongs:int!int!bool; plot:(P!CP)belongsii.
Example 2 (First-Class Methods). Let point be a geometric point, and consider the
program (λx:(8r:T[col]:σ!color):hpoint � col=xi)(λ r:T[col]:λ self :σ:black), where σ �class t:hhrt j col:colorii. This program is parametric in the body of the col method to
be added to the object point. It is easy to verify that type-erasure of this program, i.e.(λx:hpoint � col=xi)(λ self :black), cannot be typed in λ�o .

Excursus. The terms above may appear too complicated, especially in their type anno-
tations, for a realistic use. However, from a pragmatic point of view, it is not diffucult
to build an equivalent functional language, where objects can be easily manipulated
and type-checked and where much less type decoration is required. Indeed, the type
information contained in a row-abstraction can be inferred by the fixed part of the my-
type decoration. For example, in such a kernel language, the object point of Section 2.3
might be written as follows:<x = fun(self with x:int) is 0,y = fun(self with y:int) is 0,mv = fun(self with (x:int,y:int,mv:int->int->Mytype),dx:int,dy:int) is<<self <- x = fun(self1 with x:int) self.x+dx><- y = fun(self1 with y:int) self.y+dy>>,
where Mytype denotes the type of self. It is easy too see that the “program” above
contains all the type information needed to check its type safety.

4 Properties of the Type System
In this section, we show the properties satisfied by our calculus. Because of lack of
space, all proofs and technical lemmas are omitted.

To prove subject reduction, we need a series of preliminary results that help isolate
some interesting properties of the type system. Throughout the rest of the paper, we
will also appeal to a notion of normal form for our type derivations that allows us to
simplify proofs of theorems and lemmas. We refer the reader to [7] for the definition of
such normal form and to [2] for its adaptation to the case of labeled-types. The notion
of normal form is well defined for our system. The only difference here is that, since
types occur in expressions, a derivation is in normal form only if all type-decorations
are also in β-normal form.

The theorem of subject reduction assures that well-typed expressions reduce only
to well-typed expressions. Since err is not typable, then this theorem ensures that static
type-checking avoid run-time type errors.



Theorem 3 (Subject Reduction and Type Soundness).
1. If Γ ` e : τ and e!ev!e0, then Γ ` e0 : τ.
2. If ε ` e : τ, then the evaluation of e cannot produce err, i.e. e 6!ev!err.

The introduction of explicit universal quantification increase the expressivity of
our typed lambda calculus of objects. More precisely, the first result that we prove is
that there exists an erasing function E from typed to untyped terms, such that every
expression derivable in λ�o can be derivable as the erasure of some typed expression in
λ�t

o . This result shows that λ�t
o is at least as expressive as λ�o . The erasing function E ,

whose definition can be found in the Appendix, simply erases the type annotations on
the abstracted variables, and eliminates the expression-row applications.

Lemma 4 (Erasing). Let
ev!t be the reduction for λ�t

o , and
ev!u the reduction for λ�o .

1. E([B=b]A) � [E(B)=b]E(A).
2. If A

ev!t B, then either E(A) ev!u E(B), or E(A) � E(B).
Theorem 5 (Completeness of λ�t

o w.r.t. λ�o ). Let Γ ` e : τ in λ�o . Then:
1. There exists a typed (legal) context Γt, a typed expression et, and a typed type τt,

satisfying E(Γt) � Γ, E(et) � e and E(τt) � τ, such that Γt `t et : τt in λ�t
o .

2. For every typed (legal) context Γt and typed type τt, satisfying E(Γt) � Γ andE(τt) � τ, there exists a typed expression et, such that Γt `t et : τt in λ�t
o , andE(et) � e.

Lemma 6. Let Γ ` e : τ in λ�t
o . If E(e) ev!! u e0 then there exists e00 such that e0 � E(e00)

and e
ev!! t e00.

The last lemma ensures that the computation of an expression of the typed calculus
can be performed on its erasure, since the result will be the same (modulo erasures):
in other words, after static type-checking, the expressions can be compiled into their
erasures.

Corollary 7 (Untyped Soundness). If ε ` e : τ, then the untyped evaluation of E(e)
cannot produce err, i.e. E(e) 6 ev!! u err.

5 Algorithmic Version of the Calculus
The typing rules of λ�t

o do not specify a deterministic typing algorithm. A set of rules
specify a deterministic typing algorithm if they are syntax-directed, and, moreover,
if every rule satisfies the subformula property, i.e. all the formulas appearing in the
premise of a rule are subformulas of those appearing in the conclusion (see [4] for
general definitions). The (sub�) rule is not deterministic, because that uses the subtyping
relation�which has not a deterministic specification. The problem comes from the rules(refl�) and (trans�), that are not syntax-directed. Furthermore, the (trans�) rule does
not satisfy the subformula property.

The next lemma proves that the (trans�) and (refl�) rules are useless since they can
be derived from the remaining ones.

Lemma 8. A subtyping judgment is provable in the typing system containing the rules(trans�), and (refl�), if and only if it is provable without them.



5.1 Typing Algorithm

The subsumption rule is not the only problematic rule. In this calculus, we have higher-
order bounded polymorphism on kinds: the (rlab) rule can also be considered as a
subsumption rule on kinds. Thus, in order to obtain an algorithmic presentation for
λ�t

o , we need to eliminate both the (sub�) and (rlab) rules, and to modify the (eapp),(obj�ext), (search), and (erapp) rules. Let Γ `A e : σ � τ denote Γ `A e : σ and
Γ `A σ � τ.

Definition 9. The algorithmic system, `A, is defined from ` system in which:
1. remove the (trans�), (refl�), (sub�), and (rlab) rules;
2. modify the (eapp), (obj�ext), (search), and (erapp) rules as follows:

Γ `A e1 : σ!τ Γ `A e2 : σ0 Γ `A σ0 � σ

Γ `A e1e2 : τ
(eapp)

Γ `A e1 : class t:R0 � class t:R Γ; t:T `A R : [p] R∆ = fm:αg
Γ `A e2 : 8r:T[m;n]:[class t:hhrt j m:α; n:τ∆ii=t](t!τ) r not in τ n 2 fpg

Γ `A he1 � n=e2i : class t:hhR j n:τ∆ii (obj�ext)
Γ ` e : class t:hhR0 j n:τ∆ii R0∆ = fm:αg Γ ` R : T![p] fm; ng � fpg

Γ ` e
R  � n : [class t:hhRt j m:α; n:τ∆ii=t](t!τ) (search)

Γ `A e : 8r:Tp![m]:τ Γ `A R : Tp![n] fmg � fng
Γ `A eR : [R=r]τ (erapp)

Lemma 10.
1. (Uniqueness of Kinding) If Γ `A R : κ , then κ is unique.
2. (Uniqueness of Typing) If Γ `A e : τ, then τ is unique.
3. (Soundness) If Γ `A e : τ, then Γ ` e : τ.

The main theorem of this section states the completeness of the typing algorithm, namely
that every expression that is typeable by ` is typeable by `A .

Theorem 11 (Completeness). If Γ ` e : τ, then Γ `A e : σ and Γ `A σ � τ.

Corollary 12 (Minimum Type). If Γ `A e : τ, then τ = min�fτ0 j Γ ` e : τ0g.
Proposition 13. The `A type system defines a terminating algorithm.

We conclude this section with the decidability results.

Theorem 14. Given a closed expression e, and a closed type τ, the following proposi-
tions are decidable:
1. (Type Checking) the judgment ε `A e : τ is derivable.
2. (Type Reconstruction) there exists a type τ0, such that ε `A e : τ0.



6 Related Work
In [8], an interesting solution for adding subtyping to λo is proposed. The main novelty is
the introduction of a new type, the pro-type, denoted by pro t:R, which can be intended
as the class t:R type of [7]. If we can assign a pro-type to an object, then we can add
new methods or override existing ones. At this level, only trivial subtyping is possible.
Then we can “convert” the object into a different kind of object where methods cannot
be altered —i.e. the only operation on objects is message send— by “sealing” a pro-
type into a real object-type. Even if from the outside of the object the only operation
is message send, the internal methods can override other methods of their host object.
Preventing from the outside extension and override gives (mytype covariant) “width”
and “depth” subtyping. This solution gives a depth knowledge about how classes can be
understood, encapsulated and implemented, but there are programs which can be typed
in [2] and cannot be typed in [8] and vice versa.

An alternative approach to object-based languages is the Theory of Primitive Object
of Abadi and Cardelli [1] where the only operations allowed are method override and
message send (extension is missing). This calculus, based on fixed-size objects, instead
of open-ended extensible objects, features (mytype covariant) “width” subtyping, and
the type of self is modeled via a second order encoding. Recently, the first author has
developed a conservative extension of the Abadi and Cardelli calculus of objects which
provide for object extension and “width” subtyping [9].

Finally, we mentioned the possibility of integrating our calculus with λ&-calculus
of [5], by allowing multi-methods, and which is illustrated in a companion paper [6].

Acknowledgements. The authors wish to thank Mariangiola Dezani-Ciancaglini for her
precious technical support and encouragement and the anonymous referees for their
comments and suggestions.
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Appendix

1: Operational Semantics (error-propagation rules)(fail1) hi R  � n
ev! err (fail2) λa:A:B R  � n

ev! err(err � ) herr � m = ei ev! err (err  �) err  �n
ev! err(err abs) λx:τ:err

ev! err (err appl) err e
ev! err

2: ErasingE(eR) = E(e)E(λx:τ:e) = λx:E(e)E(λ r:κ :e) = E(e)E(e  �R
n) = E(e)  �n

E(8r:κ :τ) = E(τ)E(hhR j n:τ∆ii) = hhE(R) j n:E(τ)∆iiE(λ t:T:R) = λ t:E(R)
Otherwise, E is compositional or the identity.

3: Typing Rules

Let a, A, B, : : : range over terms, and let Tp![m] stand for T! : : :!T| {z }
p

![m].
Valid Signatures and Axioms; sig

(axΣ) ε ` � (ax) Σ sig ` A � B a 62 Dom (Σ)
Σ; a:A sig

(varΣ) 5

General Rules

Γ ` � a:A 2 Σ
Γ ` a : A

(pjΣ) Γ ` � a:A 2 Γ
Γ ` a : A

(pj)
Γ ` A : B Γ; Γ0 ` �

Γ; Γ0 ` A : B
(wk) Γ ` A : B a 62 Dom(Γ)

Γ; a:A ` � (var)
Rules for Types

Γ ` � t 62 Dom(Γ)
Γ; t:T ` � (tvar) Γ ` τ1 : T Γ ` τ2 : T

Γ ` τ1!τ2 : T
(tarr) Γ; t:T ` R : [m]

Γ ` class t:R : T
(class)

5 Where A � B denotes either c : ι, ι : T or ι1 � ι2, and c is a constant expression.



Type and Row Equality

Γ ` τ : T τ !β τ0
Γ ` τ0 : T

(tβ) Γ ` e : τ
Γ ` τ0 : T τ =β τ0

Γ ` e : τ0 (teq) Γ ` R : κ R!β R0
Γ ` R0 : κ

(rβ)
Rules for Rows

Γ ` � l fixed

Γ ` hhii : [l] (erow) Γ ` � r 62 Dom(Γ)
Γ; r:Tp![m] ` � (rvar)

Γ; t:T ` R : Tp![m]
Γ ` λ t:T :R : Tp+1![m] (rabs) Γ ` R : T!κ Γ ` τ : T

Γ ` Rτ : κ (rapp)
Γ ` R : [m; n] Γ ` τ : T

Γ ` hhR j n:τ∆ii : [m] (rext) Γ ` R : Tp![m] fng � fmg
Γ ` R : Tp![n] (rlab)

Rules for Expressions

Γ; x:τ1 ` e : τ2

Γ ` λx:τ1:e : τ1!τ2
(eabs) Γ ` e1 : σ!τ Γ ` e2 : σ

Γ ` e1e2 : τ
(eapp)

Γ; r:κ ` e : τ
Γ ` λ r:κ :e : 8r:κ :τ (erabs) Γ ` e : 8r:κ :τ Γ ` R : κ

Γ ` eR : [R=r]τ (erapp)
Γ ` e : σ Γ ` σ � τ

Γ ` e : τ
(sub�) Γ ` e : class t:hhR j n:τ∆ii

Γ ` e( n : [class t:hhR j n:τ∆ii=t]τ (send)
Γ ` e1 : class t:R Γ; t:T ` R : [n] R∆ = fm:αg
Γ ` e2 : 8r:T[m;n]:[class t:hhrt j m:α; n:τ∆ii=t](t!τ) r not in τ

Γ ` he1 � n=e2i : class t:hhR j n:τ∆ii (obj�ext)
Γ ` e1 : class t:hhR j n:τ∆ii R∆ = fm:αg
Γ ` e2 : 8r:T[m;n]:[class t:hhrt j m:α; n:τ∆ii=t](t!τ)

Γ ` he1 n=e2i : class t:hhR j n:τ∆ii (obj�over)
Γ ` e : class t:hhR0 j n:τ∆ii R0∆ = fm:αg Γ ` R : T[m;n]

Γ ` e
R  � n : [class t:hhRt j m:α; n:τ∆ii=t](t!τ) (search)

Rules of Subtyping

Γ ` σ : T
Γ ` σ � σ

(refl�) Γ ` σ � τ Γ ` τ � ρ
Γ ` σ � ρ

(trans�)
Γ ` σ0 � σ Γ ` τ � τ0

Γ ` σ!τ � σ0!τ0 (arrow�) Γ ` class t:hhm:α; n:βii : T n 62 L(α)
Γ ` class t:hhm:α; n:βii � class t:hhm:αii (width�)

This article was processed using the LATEX macro package with LLNCS style


