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a b s t r a c t

The main idea for interpreting concurrent processes as labelled precubical sets is that
a given set of n actions running concurrently must be assembled to a labelled n-cube,
in exactly one way. The main ingredient is the non-functorial construction called the
labelled directed coskeleton. It is defined as a subobject of the labelled coskeleton, the latter
coinciding in the unlabelled case with the right adjoint to the truncation functor. This non-
functorial construction is necessary since the labelled coskeleton functor of the category
of labelled precubical sets does not fulfil the above requirement. We prove in this paper
that it is possible to force the labelled coskeleton functor to be well behaved by working
with labelled transverse symmetric precubical sets. Moreover, we prove that this solution
is the only one. A transverse symmetric precubical set is a precubical set equipped with
symmetry maps and with a new kind of degeneracy map called transverse degeneracy.
Finally, we also prove that the two settings are equivalent from a directed algebraic
topological viewpoint. To illustrate, a new semantics of the calculus of communicating
systems (CCS), equivalent to the old one, is given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Presentation of the results

Directed algebraic topology is a field of research aiming at modelling time flows of concurrent processes and their
properties by various algebraic topological models [13,17,20,24,28,14,23] (see [36] for other references). In this work, we
are interested in concurrent processes arising from process algebras [38,31,6], andmore precisely in the labelling process of
these objects, which is related to combinatorics in a non-trivial way. By borrowing several ideas from [39,22] (see also
[34,8,36,11,12]), with several slight modifications, [18] presented a semantics of process algebras in terms of labelled
precubical sets. We consider in this paper only the case of Milner’s calculus of communicating systems (CCS). The adaptation
to other synchronization algebras and therefore to other process algebras is straightforward and is left to the reader.
The principle of this semantics is that the concurrent execution of n actions is abstracted by a full labelled n-cube. Each

coordinate corresponds to one of the n actions, and therefore two opposite faces are labelled by the same action (e.g., Fig. 1
represents the concurrent execution of two actions a and b). The core of the construction of [18] is the non-functorial
notion of a labelled directed coskeleton. It is applied to the fibered product of the 1-dimensional parts of two full labelled
cubes representing two higher-dimensional transitions. This construction is the key ingredient to defining the parallel
composition with synchronization of CCS in [18]. It is defined as a subobject of the labelled (1-dimensional) coskeleton.
The latter coincides with the usual coskeleton, i.e. the right adjoint to the truncation functor, when the set of labels is a
singleton. The labelled directed coskeleton construction

−→
coskΣ takes a particular kind of 1-dimensional labelled precubical
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Fig. 1. Concurrent execution of a and b.

set K (the set of vertices K0 must be a cube) to a higher-dimensional labelled precubical set
−→
coskΣ (K) such that each set of n

actions running concurrently is assembled to an n-cube, in exactly one way. This role cannot be played by the full labelled
1-dimensional coskeleton functor cosk�,Σ1 (see Proposition 2.3.4) of the category of labelled precubical sets since the latter
may add several different n-cubes for the same set of n actions running concurrently.
The purpose of this paper is to introduce the notion of a labelled transverse symmetric precubical set. A transverse

symmetric precubical set is a precubical set equipped with symmetry maps as in [21] and with a new kind of degeneracy
map called transverse degeneracy. To the best of our knowledge, the latter maps seem to be new. In this new category
of precubical sets, the labelled coskeleton functor is well behaved, as explained in Theorems 3.1.24 and 4.1.8. Indeed, the
labelled transverse symmetric precubical setL(

−→
coskΣ (K)) freely generated by the labelled directed coskeleton

−→
coskΣ (K) of

K is isomorphic to the labelled coskeleton functor cosk�̂,Σ1 (K) of the category of labelled transverse symmetric precubical
sets applied to K if K is the 1-dimensional part of an n-cube or a fibered product over a synchronization algebra. Since
the labelled transverse symmetric precubical set L(

−→
cosk(K)) and the labelled precubical set

−→
cosk(K) generate the same

topological space of execution paths by Proposition 2.2.10 and Fig. 3, this result gives a functorial interpretation of the
labelled directed coskeleton construction which is equivalent to the non-functorial construction from a directed algebraic
topological point of view.
The labelled coskeleton functor in the category of labelled transverse symmetric precubical sets is therefore a categorical

machinery allowing the understanding of the combinatorics of the labelling process in the parallel composition with
synchronization of CCS. The advantage of this labelled coskeleton functor is twofold: (1) it is a functorial construction; (2) it
is defined for any labelled 1-dimensional [transverse symmetric]1 precubical set, allowing future generalizations.
This enables us to give a semantics of CCS in terms of labelled transverse symmetric precubical sets which is equivalent

to the one of [18] in terms of labelled precubical sets from a directed algebraic topological point of view: see Theorem 4.3.3
and Fig. 3.

1.2. Outline of the paper and reading guide

The paper is divided into three parts:

(1) Section 2.1, Section 2.2 and Section 2.3 generalize notions previously introduced in [18] to any category of cubes.
(2) Section 3.1 contains the mathematical treatment. A reader only interested in computer-scientific applications will only
have to read the statement of Theorem 3.1.24.

(3) Section 4.1, Section 4.2 and Section 4.3 are the computer-scientific part of the paper.

The core of the paper is the categorical interpretation of the non-functorial labelled directed coskeleton construction
using a generalization of the notion of a labelled precubical set. The notion of the category of cubes, and the generalized
notion of labelled precubical sets are presented in Section 2.1. The main difficulty is the definition of the generalized
precubical set of labels. Section 2.2 proves that all the notions of labelled precubical sets are equivalent from a directed
algebraic topological point of view, in particular that they generate the same path space of execution paths. This section is
the only topological one of the paper. Proposition 2.2.10 is only used in Theorem 4.3.3 to conclude that the two semantics of
CCS generate the same spaces of execution paths. There is also a small application (Proposition 2.2.13) which is used inside
the proof of Theorem 4.1.8. The topological material of Section 2.2 is not necessary for the proof of Proposition 2.2.13 but
a pure combinatorial proof would be far more complicated. Section 2.3 generalizes the labelled coskeleton functor to all
categories of precubical sets. It is defined as a right adjoint of a truncation functor, as in the setting of labelled precubical
sets.
Section 3.1 is the mathematical core of the paper. It proves that all labelled coskeleton functors but one are defective.

Indeed, the labelled coskeleton of the 1-dimensional part of the n-cube is never contractible in a directed algebraic
topological sense, except for the unique shell-complete category of cubes, the maximal one containing all adjacency-
preserving maps. This is the key property to obtaining a well-behaved labelled coskeleton functor (see Theorem 3.1.24).
A presheaf over the unique shell-complete category of cubes is called a transverse symmetric precubical set.

1 The words ‘‘transverse symmetric’’ can be omitted here by Propositions 2.1.19 and 2.1.28.
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Section 4.1 is the first section of the computer-scientific part of the paper. It explains how one can use the preceding
constructions to represent the parallel composition in CCS of anm-transitionwith an n-transition,modelled by a full labelled
m-cube and a full labelled n-cube respectively. In other words, it studies parallel composition in the local case. It is shown
that the definition of the fibered product in CCSmust be slightly modified to allow the use of the labelled coskeleton functor
of the category of labelled transverse symmetric precubical sets. Section 4.2 then studies parallel composition in CCS in the
global case. It compares the two notions of synchronized tensor products in the category of labelled precubical sets and in
that of labelled transverse symmetric ones. It is then proved in Section 4.3 that the two semantics of CCS in terms of labelled
precubical sets and labelled transverse symmetric ones are equivalent from a directed algebraic topological point of view.
Finally, Section A.1 is an additional section treating the particular case of labelled symmetric precubical sets. This

formalism will enable us to establish a link between concurrent processes viewed as precubical sets and Cattani–Sassone
higher-dimensional transition systems in [19].

1.3. Prerequisites

The paper [18] contains an introduction to CCS for mathematicians which is sufficient to understand Sections 4.2 and 4.3
of this paper. Computer scientists might prefer [31,38]. For the rest of the paper, only general knowledge in category theory
[32,33] is required, in particular in presheaf theory and in the theory of locally presentable categories [3]. A few model
category techniques are used in Section 2.2. In fact, except for Section 2.2, the rest of the paper is purely combinatorial.
Possible references for model categories are [10,26,25].

2. About labelled precubical sets over categories of cubes

2.1. Labelled precubical set over a category of cubes

We want to generalize the notion of labelled precubical set introduced in [18] by working on a category of cubesA (see
Definition 2.1.7) instead on the reduced box category � (see Definition 2.1.2) as in [18]. The particular caseA = �will give
back the notion of a labelled precubical set.

Category of cubes (definition and examples)
The category of partially ordered sets or posets together with the strictly increasing maps (x < y implies f (x) < f (y))

is denoted by PoSet. It is worth noting that it is not the usual category of partially ordered sets since we restrict ourselves
to strictly increasing maps. Let [0] = {()} and [n] = {0, 1}n for n > 1. By convention, one has {0, 1}0 = [0] = {()}. The set
[n] is equipped with the product ordering {0 < 1}n: (ε1, . . . , εn) 6 (ε′1, . . . , ε

′
n) if and only if, for every 1 6 i 6 n, one has

εi 6 ε
′

i . The poset [n] is also called the n-cube.

Definition 2.1.1. Let δαi : [n − 1] → [n] be the set map defined for 1 6 i 6 n and α ∈ {0, 1} by δ
α
i (ε1, . . . , εn−1) =

(ε1, . . . , εi−1, α, εi, . . . , εn−1). These maps are called the face maps.

They satisfy the cocubical relations δβj δ
α
i = δ

α
i δ

β

j−1 for i < j and for all (α, β) ∈ {0, 1}
2.

Definition 2.1.2. The reduced box category, denoted by �, is the subcategory of PoSet with the set of objects {[n], n > 0}
and generated by the morphisms δαi .

It is well known that the face maps together with the cocubical relations give a presentation by generators and relations
of the small category � [21].

Proposition 2.1.3. Let n > 1. Let (ε1, . . . , εn) and (ε′1, . . . , ε
′
n) be two elements of the poset [n] with (ε1, . . . , εn) 6 (ε

′

1, . . . ,

ε′n). Then there exist i1 > · · · > in−r and α1, . . . , αn−r ∈ {0, 1} such that (ε1, . . . , εn) = δ
α1
i1
. . . δ

αn−r
in−r (0 . . . 0) and (ε

′

1, . . . , ε
′
n)

= δ
α1
i1
. . . δ

αn−r
in−r (1 . . . 1), where r > 0 is the number of 0s (resp. 1s) in the arguments 0 . . . 0 (resp. 1 . . . 1). In other words,

(ε1, . . . , εn) is the bottom element and (ε′1, . . . , ε
′
n) the top element of an r-dimensional subcube of [n].

Proof. The set {1, . . . , n} is equal to the disjoint union
{i ∈ {1, . . . , n}, εi = ε′i } t {i ∈ {1, . . . , n}, εi < ε′i }.

In the latter case, one necessarily has εi = 0 and ε′i = 1. �

Definition 2.1.4. Let n > 1. Let (ε1, . . . , εn) and (ε′1, . . . , ε
′
n) be two elements of the poset [n]. The integer r of Proposi-

tion 2.1.3 is called the distance between (ε1, . . . , εn) and (ε′1, . . . , ε
′
n). Let us denote this situation by r = d((ε1, . . . , εn),

(ε′1, . . . , ε
′
n)). By definition, one has

r =
i=n∑
i=1

|εi − ε
′

i |.

Definition 2.1.5. A set map f : [m] → [n] is adjacency preserving if it is strictly increasing and if d((ε1, . . . , εm),
(ε′1, . . . , ε

′
m)) = 1 implies d(f (ε1, . . . , εm), f (ε

′

1, . . . , ε
′
m)) = 1.
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An adjacency-preserving map does not necessarily preserve distance. For example, the map γ1 : [2] → [2] defined by
γ1(ε1, ε2) = (max(ε1, ε2),min(ε1, ε2)) is adjacency preserving and not distance preserving because γ1(1, 0) = γ1(0, 1) =
(1, 0). We shall later see that γ1 is an example of transverse degeneracy map (see Definition 3.1.11).

Proposition 2.1.6. For any n > 1, the set map δαi : [n − 1] → [n] is adjacency preserving. Any strictly increasing map from
{0 < 1}n to itself is adjacency preserving as well.

Proof. That the set map δαi : [n− 1] → [n] is adjacency preserving is clear. Let f be a strictly increasing map from {0 < 1}
n

to itself. Let x and y be two elements of {0 < 1}n with d(x, y) = 1 and, for example, x < y. Then there exists a strictly
increasing chain (0, . . . , 0) = x0 < x1 < · · · < xn = (1, . . . , 1) of {0 < 1}n with x = xi−1 and y = xi for some i > 1. Then
f (x0) < f (x1) < · · · < f (xn) is a strictly increasing chain of {0 < 1}n. Therefore one has f (x0) = x0 and f (xn) = xn. It is easy
to see that n = d(f (x0), f (xn)) =

∑n
i=1 d(f (xi−1), f (xi)). So for all i > 1, one has d(f (xi−1), f (xi)) = 1. Thus, f is adjacency

preserving. �

Definition 2.1.7. A category of cubesA is a subcategory of PoSet such that:

• the set of objects is {[n], n > 0},
• there is the inclusion � ⊂ A, and
• every morphism ofA is adjacency preserving.

The minimal category of cubes for inclusion is the reduced box category �.

Notation 2.1.8. Let us denote by �̂ the subcategory of PoSet containing all adjacency-preserving maps.
The category �̂ is the maximal category of cubes for inclusion. In other words, a small category C is a category of cubes

if and only there are the inclusions � ⊂ C ⊂ �̂.

Notation 2.1.9. In what follows,A always denotes a category of cubes.
Definition 2.1.10. [21] Let σi : [n] → [n] be the set map defined for 1 6 i 6 n − 1 and n > 2 by σi(ε1, . . . , εn) =
(ε1, . . . , εi−1, εi+1, εi, εi+2, . . . , εn). These maps are called the symmetry maps.

The symmetry maps are clearly adjacency preserving.

Notation 2.1.11. Let us denote by �S the smallest category of cubes containing the symmetry maps.
We have the inclusions of categories of cubes � ⊂ �S ⊂ �̂.

UnlabelledA-set
Definition 2.1.12. An (unlabelled)A-set is a presheaf overA. The corresponding category is denoted byAopSet.
Let K be an object ofAopSet. The set K([n]) will be also denoted by Kn. A map f : K → L ofAopSet will be also denoted

by (fn)n>0, where fn : Kn → Ln is the corresponding set map. For any map k : [m] → [n] of A and any A-set K , denote by
k∗ : Kn → Km the set map induced by k.
Let p > 0. The p-dimensionalA-cube or p-cubeA[p] is by definition the presheafA(−, [p]). In other words,A[p]k is the

set of maps from [k] to [p] in the category of cubes A. The boundary ∂A[p] of the p-dimensional A-cube is the presheaf
defined by ∂A[p]k = A[p]k if k < p and ∂A[p]p = ∅ otherwise. In particular, the boundary of the 0-dimensionalA-cube is
the empty presheaf.
Let An ⊂ A be the full subcategory of A whose set of objects is {[k], k 6 n}. The category of presheaves over An is

denoted by A
op
n Set. Its objects are called the n-dimensional A-sets. The category of n-dimensional A-sets can be identified

with the full subcategory of the category ofA-sets K such that Kp = ∅ for p > n.
Let K be an A-set. Let K6n be the A-set obtained from K by keeping the p-dimensional cubes of K only for p 6 n. In

particular, K60 = K0. Note that one has ∂A[n] = A[n]6n−1 for every n > 0 since our precubical sets contain no degeneracy
maps in the usual sense.

Definition 2.1.13. A �-set is called a precubical set [5]. A �S-set is called a symmetric precubical set [21]. A �̂-set is called a
transverse symmetric precubical set.2

The inclusion functor � ⊂ A induces a forgetful functor ωA : A
opSet→ �opSetwhich has both a left and a right adjoint

obtained respectively as a left and a right Kan extension along the inclusion�op ⊂ Aop. The right adjoint is denoted byRA :

�opSet→ AopSet. The left adjointLA : �
opSet→ AopSet is of special interest since it formally adds all additional operators

defining anA-set. The two following propositions state some elementary remarks aboutLA which will be reused later.

Proposition 2.1.14. Let K be a precubical set. Then one has the isomorphism
LA(K) ∼= lim

−→
�[n]→K

A[n].

In particular, there is the isomorphism ofA-setsLA(�[n]) ∼= A[n].

2 Note that the last notion is new.
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Proof. For every A-set K , one has Kn = (ωAK)n for all n > 0 since the inclusion functor � ⊂ A is the identity on objects.
So one has the bijections of sets

AopSet(LA(�[n]), K) ∼= �opSet(�[n], ωAK) = (ωAK)n = Kn = AopSet(A[n], K).
By the Yoneda lemma, one obtains the isomorphism LA(�[n]) ∼= A[n] for all n > 0. Since LA is a left adjoint, it preserves
colimits. So one obtains for every precubical set K

LA(K) = LA

(
lim
−→

�[n]→K

�[n]

)
∼= lim
−→

�[n]→K

A[n]. �

Proposition 2.1.15. Let K be a precubical set. The identity map IdLA(K) induces by adjunction an inclusion of presheaves
iK : K ⊂ ωALA(K).

Proof. Since the functor K 7→ Kp from precubical sets to sets is colimit preserving for every p > 0, one has the bijections

Kp ∼= lim
−→

�[n]→K

�[n]p

and

ωALA(K)p ∼= lim
−→

�[n]→K

ωAA[n]p = lim
−→

�[n]→K

A([p], [n]).

Each set map �[n]p → ωAA[n]p is one-to-one because of the inclusions of sets �([p], [n]) ⊂ A([p], [n]) for every p > 0.
For any map g : [n] → [n′] of �, one has the commutative diagram of sets

�[n]p
⊂ //

⊂

��

�[n′]p

⊂

��
ωAA[n]p = A([p], [n]) // ωAA[n′]p = A([p], [n′]).

The bottom map is one-to-one since it consists of composing by g which is one-to-one as any map of �. So each set
map ωAA[n]p → ωAA[n′]p of the diagram calculating ωALA(K)p is one-to-one as well. One deduces that the map
Kp → ωALA(K)p is one-to-one. �

Notation 2.1.16. Since K ⊂ ωALA(K) is an inclusion, iK (y) will be simply denoted by y for any y ∈ K.

The 1-dimensional case
This paragraph proves that the 1-dimensional case does not depend on the choice of the category of cubes. The crucial

facts are that a category of cubes contains all face maps and that all morphisms are adjacency preserving.

Proposition 2.1.17. For every m > n, one has A([m], [n]) = ∅. For every n > 0, the inclusion � ⊂ A implies the bijections
[n] ∼= �([0], [n]) ∼= A([0], [n]) and �([1], [n]) ∼= A([1], [n]).

Note that this implies thatA cannot have any degeneracies.

Proof. It is clear thatA([m], [n]) 6= ∅ impliesm 6 n. One has the inclusions

�([0], [n]) ⊂ A([0], [n]) ⊂ �̂([0], [n]) = �([0], [n]) = {δεnn . . . δ
ε1
1 , (ε1, . . . , εn) ∈ [n]};

hence the second assertion. For every n > 0, the inclusion �([1], [n]) ⊂ A([1], [n]) is a bijection since every map of A is
adjacency preserving by definition of a category of cubes; hence the third assertion. �

Proposition 2.1.18. Let K be a precubical set. Then the inclusion of precubical sets K ⊂ ωALA(K) induces the isomorphism of
1-dimensional precubical sets K61 ∼= ωALA(K)61.

Proof. We already know by Proposition 2.1.17 that, for every n > 0, the inclusions �([0], [n])
⊂ A([0], [n]) and �([1], [n]) ⊂ A([1], [n]) are bijective. So the inclusion of presheaves �[n]61 ⊂ ωAA[n]61 is an iso-
morphism for every n > 0. Since the forgetful functor ωA : A

opSet→ �opSet is a left adjoint, it is colimit preserving. Hence
the proof is complete. �

Proposition 2.1.19. The category of 1-dimensional precubical sets is equivalent to the category of 1-dimensionalA-sets.
Proof. The adjunction LA : �

opSet � AopSet : ωA induces an adjunction (LA)61 : �
op
1 Set � A

op
1 Set : (ωA)61 by

Proposition 2.1.14. We already know by Proposition 2.1.18 that there is the isomorphism (ωA)61(LA)61 ∼= Id�op1 Set. One
has (LA)61(ωA)61(A[0]) ∼= A[0] by Proposition 2.1.14 and (LA)61(ωA)61(A[1]) ∼= A[1] by Proposition 2.1.17 and
Proposition 2.1.14. Hence the isomorphism of functors (LA)61(ωA)61 ∼= IdAop1 Set. �
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LabelledA-set
We fix a non-empty setΣ of labels or of actions. It always contains a distinguished label denoted by τ . We want to label

the cubes of aA-set with the elements ofΣ . A labelledA-set will be a map ofA-sets K → L, where L is theA-set of labels.
Let us start by recalling the construction of the precubical set of labels.

Proposition 2.1.20 (Variant of Goubault’s Construction [22]). Let

• (!Σ)0 = {()} (the empty word),
• for n > 1, (!Σ)n = Σn, and
• ∂0i (a1, . . . , an) = ∂

1
i (a1, . . . , an) = (a1, . . . , âi, . . . , an), where the notation âi means that ai is removed.

Then these data generate a precubical set denoted by !Σ .

Definition 2.1.21. Let K be anA-set. Let x ∈ Kp with p > 1. The boundary of x is the composite map ∂x : ∂A[p] ⊂ A[p]
x
−→

K .

The main feature of the precubical set !Σ is that, for every p > 2, a p-cube of !Σ , which labels the concurrent execution
of p actions like in Fig. 1, is determined by its boundary. In other words, a commutative square of precubical sets of the form

∂�[p] //

⊂

��

!Σ

��
�[p] //

k

=={
{

{
{

{
{

{
{

{
1

with p > 2, where 1 is the terminal precubical set, admits at most one lift k. An equivalent mathematical formulation of the
preceding condition is that for every commutative square of precubical sets of the form

∂�[p]
⊂ //

⊂

��

�[p]

f

��
�[p]

g // !Σ,

one has f = g . So every commutative square of precubical sets of the form

�[p] t∂�[p] �[p]
(f ,g) //

��

!Σ

��
�[p] //

k

::v
v

v
v

v
v

v
v

v
v

1

with p > 2 admits exactly one lift k = f = g . In other words, the precubical set !Σ turns out to be orthogonal to the set of
maps {�[p] t∂�[p] �[p] → �[p], p > 2} in the sense of [3, Definition 1.32].
Because of the inclusion K ⊂ ωALA(K) for every precubical set K , we need more cubes for theA-set of labels as soon as

the inclusion � ⊂ A is strict. Indeed, we must be able to label all cubes ofLA(K) for every labelled precubical set K →!Σ .
The first candidate for theA-set of labels is then theA-setLA(!Σ) freely generated by !Σ . However, it is not well behaved.
Consider the two set involutions σ1 : [2] → [2] and Id[2] : [2] → [2]. Let us suppose that σ1 ∈ A. Then the two 2-cubes
(σ1)

∗(τ , τ ) and (τ , τ ) ofLA(!Σ) have the same boundary. This means that the commutative square ofA-sets

∂A[p]
∂(σ1)

∗(τ ,τ )=∂(τ ,τ ) //

⊂

��

LA(!Σ)

��
A[p] //

k

66nnnnnnnnnnnnnn
1
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has two distinct lifts k = (σ1)
∗(τ , τ ) and k = (τ , τ ). In other words, the A-set LA(!Σ) is never orthogonal to the set

of morphisms {A[p] t∂A[p] A[p] → A[p], p > 2} as soon as σ1 : [2] → [2] belongs to A. In fact, the A-set LA(!{τ })
is even not the terminal A-set in this case. Yet, the notion of A-set must coincide with the unlabelled notion if the set
of labels is equal to {τ }. The full subcategory {A[p] t∂A[p] A[p] → A[p], p > 2}⊥ of A-sets orthogonal to the set of
maps {A[p] t∂A[p] A[p] → A[p], p > 2} is a full reflective subcategory of the locally presentable category of A-sets by
[3, Theorem 1.39]. Let

ShA : A
opSet→ {A[p] t∂A[p] A[p] → A[p], p > 2}⊥

be the left adjoint to the inclusion functor {A[p] t∂A[p] A[p] → A[p], p > 2}⊥ ⊂ AopSet.

Definition 2.1.22. TheA-set of labels is theA-set ShALA(!Σ).

In ShALA(!Σ), the two 2-cubes (σ1)∗(τ , τ ) and (τ , τ ) are forced to be equal. Note that there is the isomorphism of
precubical sets Sh�L�(!Σ) ∼=!Σ .

Definition 2.1.23. A labelledA-set (overΣ) is an object of the comma category

AopSet↓ShALA(!Σ).

That is, an object is a map ofA-sets ` : K → ShALA(!Σ) and a morphism is a commutative diagram

K //

%%JJJJJJJJJJ L

zztttttttttt

ShALA(!Σ).

The `map is called the labelling map. TheA-set K is sometimes called the underlyingA-set of the labelledA-set.

The functorLA : �
opSet→ AopSet induces a functor (denoted in the same way)

LA : �
opSet↓!Σ → AopSet↓ShALA(!Σ)

which takes ` : K →!Σ to the compositeLA(K)
LA(`)
−→ LA(!Σ)→ ShALA(!Σ).

Proposition 2.1.24. Let K be anA-set. Then the map ofA-sets K → ShA(K) induces the isomorphism of 1-dimensionalA-sets
K61 ∼= ShA(K)61.

Proof. For every p > 2 and for every commutative diagram of solid arrows

A[p] t∂A[p] A[p] //

��

K

��
A[p]

k

::v
v

v
v

v
v

v
v

v
v

// 1,

there exists at most one lift k. So an A-set K is orthogonal to the set of morphisms {A[p] t∂A[p] A[p] → A[p], p > 2} if
and only if the canonical map K → 1 satisfies the right lifting property with respect to the same set of morphisms. So the
A-set ShA(K) can be obtained by a small object argument by factoring the map K → 1 as a composite K → ShA(K)→ 1,
where K → ShA(K) is a relative {A[p] t∂A[p] A[p] → A[p], p > 2}-cell complex and where the map ShA(K) → 1
satisfies the right lifting property with respect to the same set of morphisms. The small object argument is possible by
[4, Proposition 1.3] since the category ofA-sets is locally presentable, as every presheaf category. Since, for every p > 2, the
map ofA-setsA[p] t∂A[p] A[p] → A[p] induces an isomorphism(

A[p] t∂A[p] A[p]
)
61
∼= A[p]61,

one deduces that the canonical map K → ShA(K) induces an isomorphism K61 ∼= ShA(K)61. �

Proposition 2.1.25. There is the isomorphism ShALA(!{τ }) ∼= 1. Therefore, when Σ = {τ }, the category of labelled A-sets is
equivalent to the category of unlabelledA-sets.

Proof. Indeed, both the functors ShA andLA do not modify the set of 0-cubes and the set of 1-cubes by Proposition 2.1.18
and Proposition 2.1.24. Moreover, for any A-set K such that K1 is a singleton, it is clear by induction on p > 1 that the set
(ShAK)p is a singleton. So ShALA(!{τ }) ∼= 1 (the terminal object ofAopSet). �
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Notation 2.1.26. Let (a1, . . . , an) ∈ Σn with n > 1. The labelled precubical set �[a1, . . . , an] denotes the map ` : �[n] →!Σ
such that `(Id[n]) = (a1, . . . , an).

Fig. 1 gives the example of the labelled 2-cube �[a, b]. It represents the concurrent execution of a and b. It is important
to notice that two opposite faces of Fig. 1 have the same label.

Notation 2.1.27. Let (a1, . . . , an) ∈ Σn with n > 1. The labelled A-set A[a1, . . . , an] denotes the labelled A-set LA(�[a1,
. . . , an]).

Proposition 2.1.28. The category of labelled 1-dimensional precubical sets is equivalent to the category of labelled 1-dimensional
A-sets.

Proof. This is a consequence of Proposition 2.1.19 and Proposition 2.1.24. �

2.2. Geometric realization of a labelledA-set

The purpose of this section is to prove that the geometric realization functor�opSet↓!Σ → Flow↓?Σ of [18]which takes
a labelled precubical set to the corresponding labelled flow factors as a composite �opSet↓!Σ → AopSet↓ShALA(!Σ) →
Flow↓?Σ , where the left-hand functor is induced by LA. This result ensures that all the notions of labelled A-sets are
equivalent from a directed algebraic topological point of view. The results of this section are used only in Theorem 4.3.3 and
in Theorem 4.1.8.

Unlabelled flow
The category Top of compactly generated topological spaces (i.e. of weak Hausdorff k-spaces) is complete, cocomplete

and cartesian closed (more details for these kinds of topological spaces are in [7,30], the Appendix of [29] and also in the
preliminaries of [17]). In what follows, all topological spaces will be supposed to be compactly generated. A compact space
is always Hausdorff.

Definition 2.2.1 ([17]). A (time) flow X is a small topological category without identity maps. The set of objects is denoted
by X0. The topological space of morphisms from α to β is denoted by Pα,βX . The elements of X0 are also called the states of
X . The elements of Pα,βX are called the (non-constant) execution paths from α to β . A flow X is loopless if, for every α ∈ X0,
the space Pα,αX is empty.

Notation 2.2.2. Let PX =
⊔
(α,β)∈X0×X0 Pα,βX. The topological space PX is called the path space of X. The source map (resp. the

target map) PX → X0 is denoted by s (resp. t).

Definition 2.2.3. Let X be a flow, and let α ∈ X0 be a state of X . The state α is initial if α /∈ t(PX), and the state α is final if
α /∈ s(PX).

Definition 2.2.4. A morphism of flows f : X → Y consists in a set map f 0 : X0 → Y 0 and a continuous map Pf : PX → PY
such that s(Pf (x)) = f 0(s(x)), t(Pf (x)) = f 0(t(x)) and Pf (x ∗ y) = Pf (x) ∗ Pf (y) for every x, y ∈ PX . The corresponding
category is denoted by Flow.

The strictly associative composition law{
Pα,βX × Pβ,γ X −→ Pα,γ X
(x, y) 7→ x ∗ y

models the composition of non-constant execution paths. The composition law ∗ is extended in a usual way to states, that
is to constant execution paths, by x ∗ t(x) = x and s(x) ∗ x = x for every non-constant execution path x.
Here are two fundamental examples of flows:

(1) Let S be a set. The flow associated with S, still denoted by S, has S as a set of states and the empty space as path space.
This construction induces a functor Set → Flow from the category of sets to that of flows. The flow associated with a
set is loopless.

(2) Let (P,6) be a poset. The flow associated with (P,6), and still denoted by P is defined as follows: the set of states of P
is the underlying set of P; the space of morphisms from α to β is empty if α > β and equal to {(α, β)} if α < β and the
composition law is defined by (α, β) ∗ (β, γ ) = (α, γ ). This construction induces a functor PoSet → Flow from the
category of posets together with the strictly increasing maps to the category of flows. The flow associated with a poset
is loopless as well.3

There is an important model structure on Flowwhich is characterized as follows [17]:

3 And must be loopless! This is one of the reasons for working with small categories without identity maps.
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(̂0, 0̂)
(̂0,∗) //

(∗,̂0)

��

(∗,∗)

!!CC
CC

CC
CC

CC
CC

CC
CC

C (̂0, 1̂)

(∗,̂1)

��
(̂1, 0̂)

(̂1,∗) // (̂1, 1̂)
Fig. 2. The flow {̂0 < 1̂}2 (Note that (∗, ∗) = (̂0, ∗) ∗ (∗, 1̂) = (∗, 0̂) ∗ (̂1, ∗)).

• The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms of flows f : X −→ Y such that
f 0 : X0 −→ Y 0 is a bijection of sets and such that Pf : PX −→ PY is a weak homotopy equivalence.
• The fibrations are the morphisms of flows f : X −→ Y such that Pf : PX −→ PY is a Serre fibration.4

This model structure is cofibrantly generated. The cofibrant replacement functor is denoted by (−)cof.

Labelled flow
Definition 2.2.5 ([18]). The flow of labels ?Σ is defined as follows: (?Σ)0 = {0} and P?Σ is the discrete free commutative
semigroup generated by the elements ofΣ .

Definition 2.2.6 ([18]). A labelled flow is an object of the comma category Flow↓?Σ . That is an object is a map of flows
` : X →?Σ and a morphism is a commutative diagram

X //

!!BB
BB

BB
BB

Y

}}||
||

||
||

?Σ .

The `map is called the labelling map. The flow X is sometimes called the underlying flow of the labelled flow.

Geometric realization of a labelled precubical set
A state of the flow associated with the poset {̂0 < 1̂}n (i.e. the product of n copies of {̂0 < 1̂}) is denoted by an n-tuple of

elements of {̂0, 1̂}. By convention, {̂0 < 1̂}0 = {()}. The unique morphism/execution path from (x1, . . . , xn) to (y1, . . . , yn)
is denoted by an n-tuple (z1, . . . , zn) of {̂0, 1̂, ∗}with zi = xi if xi = yi and zi = ∗ if xi < yi. For example, in the flow {̂0 < 1̂}2
(see Fig. 2), one has the algebraic relation (∗, ∗) = (̂0, ∗) ∗ (∗, 1̂) = (∗, 0̂) ∗ (̂1, ∗).
Let � → PoSet ⊂ Flow be the functor defined on objects by the mapping [n] 7→ {̂0 < 1̂}n and on morphisms by the

mapping

δαi 7→ ((ε1, . . . , εn−1) 7→ (ε1, . . . , εi−1, α, εi, . . . , εn−1)) ,

where the εi are elements of {̂0, 1̂, ∗}. The functor [n] 7→ {̂0 < 1̂}n from � to Flow induces a bad realization functor from
�opSet to Flow defined by

|K |bad := lim
−→

�[n]→K

{̂0 < 1̂}n .

Theorem 2.2.7 ([18, Theorem 7.1] and [18, Proposition 8.1]). For all n > 3, the inclusion ∂�[n] ⊂ �[n] induces an isomorphism
of flows |∂�[n]|bad ∼= |�[n]|bad. One has the isomorphism of flows |!Σ |bad ∼= ?Σ .

Definition 2.2.8 ([18]). Let K be a precubical set. By definition, the geometric realization of K is the flow

|K | := lim
−→

�[n]→K

({̂0 < 1̂}n)cof .

The natural trivial fibrations ({̂0 < 1̂}n)cof −→ {̂0 < 1̂}n for n > 0 induce a natural map |K | −→ |K |bad for any precubical
set K . Let K →!Σ be a labelled precubical set. Then the composition |K | → |!Σ | → |!Σ |bad ∼=?Σ gives rise to a labelled
flow.

4 That is, a continuousmaphaving the right lifting propertywith respect to the inclusionDn×0 ⊂ Dn×[0, 1] for any n > 0,whereDn is the n-dimensional
disk.
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|K |
∼= //

��

|LA(K)|

��
|!Σ |

∼= //

��

|LA(!Σ)|

��

// |ShALA(!Σ)|

��
?Σ ∼= |!Σ |bad

∼= // |LA(!Σ)|bad
∼= // |ShALA(!Σ)|bad

Fig. 3. Labelled precubical sets and labelledA-sets equivalent from the directed algebraic topological point of view.

Geometric realization of a labelledA-set
Let A → PoSet ⊂ Flow be the functor defined on objects by the mapping [n] 7→ {̂0 < 1̂}n and on morphisms as

follows. Let f : [m] → [n] be a map of A with m, n > 0. Let (ε1, . . . , εm) ∈ {̂0, 1̂, ∗}m be an r-cube. Since f is adjacency
preserving, the two elements f (s(ε1, . . . , εm)) and f (t(ε1, . . . , εm)) are respectively the initial and final states of a unique
r-dimensional subcube denoted by f (ε1, . . . , εm) of [n] with f (ε1, . . . , εm) ∈ {̂0, 1̂, ∗}n. Note that the composite functor
� ⊂ A → PoSet ⊂ Flow is the functor defined above. The functor [n] 7→ {̂0 < 1̂}n from A to Flow induces a bad
realization functor fromAopSet to Flow defined by

|K |bad := lim
−→

A[n]→K

{̂0 < 1̂}n .

Definition 2.2.9. Let K be anA-set. By definition, the geometric realization of K is the flow

|K | := lim
−→

A[n]→K

({̂0 < 1̂}n)cof .

Note that the two geometric realizations of A-sets are colimit preserving. In fact, it is easy to prove that both are left
adjoints.

Proposition 2.2.10. Let K be a precubical set. Then there are the natural isomorphisms of flows |LA(K)|bad ∼= |K |bad and
|LA(K)| ∼= |K |.

Proof. Since all functors involved in the statement of the proposition are left adjoint and therefore colimit preserving, it
suffices to check the isomorphism for K = �[n]. The proof is complete after Proposition 2.1.14. �

Corollary 2.2.11. For all n > 3, the inclusion ∂A[n] ⊂ A[n] induces an isomorphism of flows |∂A[n]|bad ∼= |A[n]|bad.

Proof. SinceLA is colimit preserving, one hasLA(∂�[n]) ∼= ∂A[n]. So by Proposition 2.2.10 and Theorem2.2.7, one obtains
|∂A[n]|bad ∼= |∂�[n]|bad ∼= |�[n]|bad ∼= |A[n]|bad. �

Proposition 2.2.12. Let K be anA-set. The canonical map K → ShA(K) induces an isomorphism of flows |K |bad ∼= |ShA(K)|bad.

Proof. We already know that the map K → ShA(K) is obtained by factoring the canonical map K → 1 as the composite
K → ShA(K) → 1, where K → ShA(K) is a relative {A[p] t∂A[p] A[p] → A[p], p > 2}-cell complex and the map
ShA(K)→ 1 satisfies the right lifting property with respect to the same set of morphisms. So the map |K |bad → |ShA(K)|bad
is a relative {|A[2]|bad t|∂A[2]|bad |A[2]|bad → |A[2]|bad}-cell complex by Corollary 2.2.11. Fig. 2 explains why the map of
flows |A[2]|bad t|∂A[2]|bad |A[2]|bad → |A[2]|bad is in fact an isomorphism.

5 Hence the proof is complete. �

The commutative diagram of flows of Fig. 3 concludes the section. It proves that labelled precubical sets and labelled
A-sets are equivalent from a directed algebraic topological point of view, K being any labelled precubical set.

5 Intuitively, adding an algebraic relation is an idempotent operation.
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An application
We give now a small application of the notion of geometric realization of labelledA-set which will be reused later. The

following proposition could of course be proved without using the topological material of this section. However, the proof
would be more complicated (see the proof of [18, Theorem 7.1]).

Proposition 2.2.13. Let ` : A[p] → ShALA(!Σ) be a full labelled p-dimensional A-cube with p > 2. Then there exists
(a1, . . . , ap) ∈ Σp such that, for every maximal path (c1, . . . , cp) of A[p], i.e. for any p-tuple of 1-cubes of A[p] with
∂01 (c1) = (0, . . . , 0), ∂

1
1 (ci) = ∂

0
1 (ci+1) for 1 6 i 6 p− 1 and ∂

1
1 (cp) = (1, . . . , 1), one has `(c1) ∗ · · · ∗ `(cp) = a1 ∗ · · · ∗ ap.

Proof. Let (c1, . . . , cp) and (c ′1, . . . , c
′
p) be two maximal paths. Since there is a unique morphism from (̂0, . . . , 0̂) to

(̂1, . . . , 1̂) in |A[p]|bad (this is the key point!), one has `(c1) ∗ · · · ∗ `(cp) = `(c ′1) ∗ · · · ∗ `(c
′
p) in the flow |ShALA(!Σ)|bad.

But the semigroup P(|ShALA(!Σ)|bad) ∼= P(?Σ) is the free commutative semigroup generated by the elements ofΣ . Hence
the result. �

2.3. Labelled coskeleton over a category of cubes

In this sectionwe give the generalization of the notion of a labelled coskeleton to any category of labelled precubical sets.
The particular case A = � will give back the situation of [18]. The unlabelled version, i.e. when Σ = {τ }, is the classical
coskeleton functor, right adjoint to the truncation functor [5].

The unlabelled case
Proposition 2.3.1. Let n > 0.
(1) The functor K 7→ K6n from A

op
n+1Set to A

op
n Set has a right adjoint denoted by coskAn,n+1 : A

op
n Set → A

op
n+1Set. There is an

inclusion of presheaves

K ⊂ coskAn,n+1(K)

natural with respect to the n-dimensionalA-set K . This inclusion induces the isomorphism K ∼= coskAn,n+1(K)6n.
(2) The functor K 7→ K6n fromAopSet toA

op
n Set has a right adjoint denoted by coskAn : A

op
n Set→ AopSet. There is an inclusion

of presheaves K ⊂ coskAn (K) natural with respect to the n-dimensional A-set K . This inclusion induces the isomorphism
K ∼= coskAn (K)6n.

(3) Let coskAn,n+p = cosk
A
n+p−1,n+p ◦ · · · ◦ cosk

A
n,n+1 ◦ cosk

A
n,n, where the functor

coskAn,n : A
op
n Set→ Aopn Set

denotes the identity functor. Then there is an isomorphism of functors

coskAn ∼= lim−→ cosk
A
n,n+p.

Proof. Let us prove the first assertion. The functor K 7→ K6n fromA
op
n+1Set toA

op
n Set is induced by the inclusion of categories

A
op
n ⊂ A

op
n+1. Thus, the right adjoint is obtained by taking the right Kan extension along A

op
n ⊂ A

op
n+1. The isomorphism of

presheaves K6n ∼= K for an n-dimensionalA-set K induces by adjunction a natural map K → coskAn,n+1(K). Let p 6 n. There
is a bijectionAopSet(A[p], K) ∼= AopSet(A[p], coskAn,n+1(K)) because of the isomorphismA[p]6n ∼= A[p]. Hence we obtain
the desired inclusion. The proof of the second assertion is similar to the above proof. The third assertion is obvious. �

Definition 2.3.2. Let K be anA-set. An (n+ 1)-cube of coskAn,n+1(K6n), i.e. a map ∂A[n+ 1] → K , is called an n-dimensional
shell or n-shell of K .

The labelled case
Before giving the labelled version of Proposition 2.3.1, let us prove the following general categorical fact.

Proposition 2.3.3. Let L : C � D : R be a categorical adjunction, where L is the left adjoint and R the right one. Let us suppose
that C has all pullbacks. Let A be an object of C. Then the functor LA : C↓A→ D↓L(A) defined by LA(X → A) := L(X)→ L(A)
has a right adjoint RA defined by the following pullback diagram of C:

RA(Y )

��

// R(Y )

��
A // R(L(A))

,

where the map A→ R(L(A)) is the unit of the adjunction.
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Note that we are going to use Proposition 2.3.3 with C and D locally presentable. In this situation, the categories C↓A
andD↓L(A) are both locally presentable as well by [3, Proposition 1.57]. In particular, the categoryC↓A has a generator and
is co-wellpowered. The functor LA : C↓A→ D↓L(A) is colimit preserving since L is colimit preserving. So by the opposite
of the Special Adjoint Functor Theorem, the functor LA has a right adjoint.

Proof. Let X → A be an object of C↓A. Let Y → L(A) be an object ofD↓L(A). There is a bijection between the commutative
diagrams of the form

X //

��

RA(Y )

��
A A

and the commutative diagrams of the form

X //

��

R(Y )

��
A // R(L(A))

because of the universal property of pullback. And there is a bijection between the latter diagrams and the commutative
diagrams of the form

L(X) //

��

Y

��
L(A) L(A)

by universality of adjunction. Hence the result. �

Here is now the labelled analogue of Proposition 2.3.1.

Proposition 2.3.4. Let n > 0.

(1) The functor K 7→ K6n from A
op
n+1Set↓ShALA(!Σ) to A

op
n Set↓ShALA(!Σ) has a right adjoint denoted by cosk

A,Σ
n,n+1 :

A
op
n Set↓ShALA(!Σ)→ A

op
n+1Set↓ShALA(!Σ). There is an inclusion of presheaves

K ⊂ coskA,Σn,n+1(K)

natural with respect to the n-dimensional labelledA-set K . This inclusion induces the isomorphism K ∼= coskA,Σn,n+1(K)6n.

(2) The functor K 7→ K6n from AopSet↓ShALA(!Σ) to A
op
n Set↓ShALA(!Σ) has a right adjoint denoted by coskA,Σn :

A
op
n Set↓ShALA(!Σ) → AopSet↓ShALA(!Σ). There is an inclusion of presheaves K ⊂ coskA,Σn (K) natural with respect
to the n-dimensional labelledA-set K . This inclusion induces the isomorphism K ∼= coskA,Σn (K)6n.

(3) Let coskA,Σn,n+p = coskA,Σn+p−1,n+p ◦ · · · ◦ cosk
A,Σ
n,n+1 ◦ cosk

A,Σ
n,n , where the functor cosk

A,Σ
n,n : A

op
n Set↓ShALA(!Σ) →

A
op
n Set↓ShALA(!Σ) denotes the identity functor. Then there is an isomorphism of functors coskA,Σn ∼= lim

−→
coskA,Σn,n+p.

Proof. We note that the categories A
op
n Set↓ShALA(!Σ) and A

op
n Set↓(ShALA(!Σ))6n are isomorphic. So the theorem is a

consequence of Propositions 2.3.1 and 2.3.3. �
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Note that, for every n > 1 and for every n-dimensional labelledA-set K , one has the pullback diagram ofA-sets

coskA,Σn (K) //

��

coskAn (K)

��
ShALA(!Σ) // coskAn ((ShALA(!Σ))6n).

Intuitively, this means that the labelled coskeleton functor keeps from the unlabelled one only the shells which are
compatibly labelled. For example, the boundary of a square is compatibly labelled if and only if opposite sides are labelled
in the same way.

Definition 2.3.5. Let K be a labelledA-set. An (n+1)-cube of coskA,Σn,n+1(K6n) is called a labelled n-dimensional shell or n-shell
of K .
The following proposition generalizes [18, Definition 3.12 and Proposition 3.13].

Proposition 2.3.6. Let K be a labelled A-set. The set of labelled n-dimensional shells of K is in bijection with the set of
commutative diagrams of the form

∂A[n+ 1] //

��

K

��
A[n+ 1] // ShALA(!Σ).

Since ShALA(!{τ }) is the terminalA-set by Proposition 2.1.25, the caseΣ = {τ } coincides with the unlabelled notion of
Definition 2.3.2.
Proof. Let A[n + 1] → coskA,Σn,n+1(K6n) be a labelled n-shell of K . By adjunction, one obtains the commutative diagram of
labelledA-sets

∂A[n+ 1] //

��

K6n

��
A[n+ 1] // coskA,Σn,n+1(K6n).

By composing with the labelling map coskA,Σn,n+1(K6n)→ ShALA(!Σ), one obtains the commutative diagram ofA-sets

∂A[n+ 1] //

��

K

��
A[n+ 1] // ShALA(!Σ).

Conversely, from such a diagram, one obtains the commutative diagram ofA-sets

A[n+ 1]6n //

��

K6n

��
ShALA(!Σ) ShALA(!Σ);

hence the result by adjunction. �
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3. Mathematical treatment

3.1. Shell-complete category of cubes

The purpose of this combinatorial section is to address the following question. Is it possible to find a category of
cubes A such that coskA,Σ1 (A[a1, . . . , an]61) is exactly the labelled n-cube A[a1, . . . , an] for every n > 0 and every
a1, . . . , an ∈ Σ? Let us repeat onemore time that there is always a strict inclusion�[a1, . . . , an] ⊂ cosk

�,Σ
1 (�[a1, . . . , an]61)

for every n > 2 by [18, Proposition 3.15] and that this is the reason for introducing in [18] the non-functorial subobject of
cosk�,Σ1 (�[a1, . . . , an]61) called the labelled directed coskeleton of �[a1, . . . , an]61 (see Definition 3.1.22). ForΣ = {τ }, i.e.
for the unlabelled case, the previous equality reduces to finding a category of cubes A such that coskA1 (A[n]61) ∼= A[n]
for every n > 0. Such a category A will be called a shell-complete category of cubes. We will see in Theorem 3.1.24 that
such a category of cubes answers the question above. We will see in Theorem 3.1.15 that there exists one and only one such
category of cubes.

Definition and elementary properties
Proposition 3.1.1. Let p, q > 0. The natural bijection

AopSet(A[p],A[q]) ∼= A([p], [q])

induced by the mapping f 7→ fp(Id[p]) given by the Yoneda lemma takes f : A[p] → A[q] to f0 : [p] ∼= A([0], [p])→ A([0],
[q]) ∼= [q].

Proof. Let f : A[p] → A[q] be a map ofAopSet. The map δεpp . . . δ
ε1
1 : [0] → [p] induces a commutative square of sets

A([p], [p])
fp //

(δ
εp
p ...δ

ε1
1 )
∗

��

A([p], [q])

(δ
εp
p ...δ

ε1
1 )
∗

��
A([0], [p])

f0 // A([0], [q])

for any ε1, . . . , εp ∈ {0, 1} sinceA is a category of cubes. So

f0(δ
εp
p . . . δ

ε1
1 )
∗(Id[p]) = (δ

εp
p . . . δ

ε1
1 )
∗(fp(Id[p])).

Therefore f0 = fp(Id[p]). �

The following proposition motivates the notion of shell-complete category of cubes.

Proposition 3.1.2. For any q > 0, the canonical mapA[q] → coskA1 (A[q]61) induced by the isomorphismA[q]61 ∼= A[q]61 is
an inclusion of presheaves. For q = 0 or q = 1, this inclusion is always an equality for any category of cubesA.

Proof. Let x and y be two k-cubes ofA[q] having the same image by the map
A[q] −→ coskA1 (A[q]61).

So one has the commutative diagram ofA-sets

A[k]
x //
y

// A[q] // coskA1 (A[q]61).

By adjunction, one obtains the commutative diagram ofA-sets

A[k]61
x61 //
y61

// A[q]61
∼= // A[q]61.

In particular, the two set maps x0, y0 : [k] ⇒ [q] are equal. Thus, by Proposition 3.1.1, one obtains x = y. The last assertion
is a consequence of Proposition 2.3.1. �

Hence the definition:

Definition 3.1.3. A category of cubes A is shell complete if, for every p > 2, the canonical inclusion of presheaves A[p] ⊂
coskA1 (A[p]61) is an isomorphism.

The category of cubes � is of course not shell complete by [18, Proposition 3.15]. For example, the precubical set
cosk�1 (�[2]61) contains the 2-cube x : �[2] → cosk�1 (�[2]61) corresponding by adjunction to the map ∂x : ∂�[2] =
�[2]61 → �[2]61 characterized by x0(ε1, ε2) = (ε2, ε1). It is not a 2-cube of �[2] since the only 2-cube of the precubical set
�[2] is the identity of [2].
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In general, for any p, q > 2, there exists at most one lift x in the commutative diagram of solid arrows

∂A[p] x //

��

A[q]

��
A[p] //

x

<<z
z

z
z

z
z

z
z

z
1,

where 1 is the terminal object. Indeed, by Proposition 3.1.1, the bijection of sets

AopSet(A[p],A[q]) ∼= A([p], [q])

takes x to x0. Shell-completeness means that this lift always exists.

Theorem 3.1.4. LetA be a category of cubes. The following conditions are equivalent:

(1) The categoryA is shell complete.
(2) For any p, q > 2, for any map x : ∂A[p] → A[q], the set map x0 : [p] → [q] belongs toA.
(3) For any p, q > 2, any map x : ∂A[p] → A[q] factors uniquely as a composite x : ∂A[p] → A[p] → A[q].

Proof. Let us prove the implication (1) =⇒ (2). Let x : ∂A[p] → A[q] be a map ofA-sets with p, q > 2. One can suppose
that p 6 q by Proposition 2.1.17. Then x factors (uniquely) as a composite

x : ∂A[p] = A[p]6p−1 −→ A[q]6p−1 −→ A[q].

One has the isomorphisms

A[q]6p−1 ∼= coskA1 (A[q]61)6p−1 ∼= cosk
A
1,p−1(A[q]61)

sinceA is shell complete and by Proposition 2.3.1. So x factors as a composite

x : ∂A[p] −→ A[p] −→ coskAp−1,p(cosk
A
1,p−1(A[q]61)) = A[q]6p −→ A[q].

So x0 : [p] → [q] is a morphism ofA by Proposition 3.1.1.
Let us prove now the implication (2) =⇒ (1). Propositions 2.3.1 and 3.1.2 imply that there is an inclusion of presheaves

A[q]6p ⊂ (coskA1 (A[q]61))6p = cosk
A
1,p(A[q]61)

for any p > 1. This inclusion is trivially an equality for p = 1. Let us prove by induction on p that this inclusion is an
equality. This will establish the shell-completeness ofA. Let us suppose the equality proved for p > 1. Let x : A[p+ 1] →
coskA1,p+1(A[q]61) be a (p + 1)-dimensional A-cube of cosk

A
1,p+1(A[q]61). By adjunction and by induction hypothesis, one

obtains a map

∂x : A[p+ 1]6p = ∂A[p+ 1] −→ coskA1,p(A[q]61) ∼= A[q]6p ⊂ A[q].

By hypothesis, the map x0 : [p + 1] → [q] belongs to A. Thus, by Proposition 3.1.1, there is a commutative diagram of
A-sets

∂A[p+ 1]

��

// coskA1,p(A[q]61) ∼= A[q]6p

⊂

��
A[p+ 1] // A[q]6p+1.

Hence the equality for p+ 1.
The equivalence (2)⇐⇒ (3) is a consequence of Proposition 3.1.1. �

Examples of shell-complete categories of cubes
Theorem 3.1.5. The category of cubes �̂ (i.e. the maximal category of cubes containing all adjacency-preserving maps) is shell
complete.
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Proof. Let x : ∂�̂[p] → �̂[q] be a morphism of �̂opSet with p, q > 2. For all k such that 1 6 k 6 p − 1, one has the
commutative diagram of sets

�̂([k], [p])
xk //

∂
ε1
1 ...∂

εk
k

��

�̂([k], [q])

∂
ε1
1 ...∂

εk
k

��
�̂([0], [p])

x0 // �̂([0], [q])

for all ε1, . . . , εk ∈ {0, 1} since x : ∂�̂[p] → �̂[q] is a map of �̂opSet and where the set map ∂ε11 . . . ∂
εk
k is induced by the

morphism δεkk . . . δ
ε1
1 : [0] → [k] of �̂.Withφ ∈ �̂([k], [p]), thatmeans that xk(φ)(δ

εk
k . . . δ

ε1
1 ) = x0(φ(δ

εk
k . . . δ

ε1
1 )). Thus, one

obtains xk(φ)(ε1, . . . , εk) = x0(φ(ε1, . . . , εk)). So xk(φ) = x0φ with the identification �̂([0], [p]) ∼= [p]. Let (ε1, . . . , εp)
and (ε′1, . . . , ε

′
p) be two elements of [p] with εi = ε′i for all i but one denoted by i0. Suppose moreover that εi0 = 0 and

ε′i0 = 1. Since p > 2, there exists i1 ∈ {1, . . . , p}\{i0}. Consider δ
εi1
i1
: [p− 1] → [p]. Then xp−1(δ

εi1
i1
) = x0δ

εi1
i1
. The preceding

equality applied to (ε1, . . . , ε̂i1 , . . . , εp) gives

x0(ε1, . . . , εp) = xp−1(δ
εi1
i1
)(ε1, . . . , ε̂i1 , . . . , εp)

< xp−1(δ
εi1
i1
)(ε′1, . . . , ε̂i1 , . . . , ε

′

p)

= x0(ε′1, . . . , ε
′

p)

since the map xp−1(δ
εi1
i1
) : [p− 1] → [q] is a morphism of the small category �̂. So the set map x0 : [p] → [q] is adjacency

preserving, i.e. it belongs to the small category �̂. Thus, the small category �̂ is shell complete by Theorem 3.1.4. �
Proposition 3.1.6. Let A be a category of cubes. Let p, q > 2. The set AopSet(∂A[p],A[q]) is equal to the set of families
(f αi : A[p − 1] → A[q]) of morphisms of AopSet with 1 6 i 6 p and α ∈ {0, 1} with (f βj )0δ

α
i = (f αi )0δ

β

j−1 for any i < j
and any α, β ∈ {0, 1}.
Proof. Let f : ∂A[p] → A[q] be a morphism ofAopSet. The 2p inclusionsA[p− 1] ⊂ ∂A[p]with 1 6 i 6 p and α ∈ {0, 1}
induce 2p maps f αi : A[p − 1] ⊂ ∂A[p] → A[q] such that (f αi )0 = f0δ

α
i with 1 6 i 6 p and α ∈ {0, 1}. The equalities

(f βj )0δ
α
i = (f

α
i )0δ

β

j−1 for any i < j and any α, β ∈ {0, 1} are then a consequence of the cocubical relations.
Conversely, let (f αi : A[p − 1] → A[q]) be a family of morphisms of AopSet with 1 6 i 6 p and α ∈ {0, 1} such that

(f βj )0δ
α
i = (f

α
i )0δ

β

j−1 for any i < j and any α, β ∈ {0, 1}. Consider the set map g : [p] → [q] defined by g(ε1, . . . , εp) :=
(f εpp )0(ε1, . . . , εp−1). Then gδαp = (f

α
p )0 by definition of g , and for any 0 6 i < p, one has

gδαi (ε1, . . . , εp−1) = (f
εp−1
p )0δ

α
i (ε1, . . . , εp−2) = (f

α
i )0δ

εp−1
p−1 (ε1, . . . , εp−2) = (f

α
i )0(ε1, . . . , εp−1)

for any α, εp−1 ∈ {0, 1} thanks to the cocubical relations. So one obtains gδαi = (f αi )0 for 0 6 i 6 p and α ∈ {0, 1}. The
mapping φ 7→ gφ gives rise for each 0 6 k 6 p − 1 to a set map gk : ∂A[p]k := A([k], [p]) → A[q]k := A([k], [q]). For
any morphism ψ : [k′] → [k] ofAwith 0 6 k′ 6 k 6 p− 1, one obtains a diagram of sets

∂A[p]k //

��

A[q]k

��
∂A[p]k′ // A[q]k′

which is commutative since the two boundaries of the square take φ ∈ A[p]k to gφψ . �
Proposition 3.1.7. Let A and B be two categories of cubes such that A ⊂ B . Let p, q > 2. Then one has the inclusion
AopSet(∂A[p],A[q]) ⊂ BopSet(∂B[p],B[q]) by identifying the maps f with the corresponding set maps f0 from [p] to [q].
Proof. This is a corollary of Proposition 3.1.6 and of the fact thatA([p− 1], [q]) ⊂ B([p− 1], [q]). �
Theorem 3.1.8. There exists a smallest shell-complete category, denoted by �̃.
Proof. Let (�(i))i∈I be the class of all shell-complete small categories of cubes. This class is non-empty by Theorem 3.1.5, and
small since, for any i, there is the inclusion�(i) ⊂ PoSet. Consider the small category �̃ =

⋂
i∈I �

(i). Let f : ∂�̃[p] → �̃[q] be
a map of �̃opSetwith p, q > 2. By Proposition 3.1.7, the morphism of presheaves f gives rise for each i ∈ I to a morphism of
presheaves f (i) : ∂�(i)[p] → �(i)[q]. By Theorem 3.1.4, f0 = (f (i))0 is a morphism of �(i) for each i ∈ I . So, by Theorem 3.1.4
again, the category �̃ is shell complete. �
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Some combinatorial lemmas
Let us recall that σi : [n] → [n] is the set map defined for 1 6 i 6 n − 1 and n > 2 by σi(ε1, . . . , εn) = (ε1, . . . , εi−1,

εi+1, εi, εi+2, . . . , εn) (see Definition 2.1.10).

Proposition 3.1.9 ([21] p195). Let σi : [n] → [n] be the set map defined for 1 6 i 6 n − 1 and n > 2 by σi(ε1, . . . , εn) =
(ε1, . . . , εi−1, εi+1, εi, εi+2, . . . , εn). One has the relations σiδαj = δ

α
j σi−1 for j < i, σiδ

α
j = δ

α
i+1 for j = i, σiδ

α
j = δ

α
i for j = i+1

and σiδαj = δ
α
j σi for j > i+ 1.

Proposition 3.1.10. σi ∈ �̃.

Proof. Let us prove by induction on n > 2 that the set maps σi : [n] → [n] for 1 6 i 6 n − 1 belong to �̃. The composite
map ∂σ1 : ∂�[2] ⊂ �[2]

σ1
−→ �[2] induces a map ∂σ1 : ∂�̃[2] → �̃[2] by Proposition 3.1.7 since � ⊂ �̃. So σ1 : [2] → [2]

is a map of �̃ by Theorem 3.1.4 since �̃ is shell complete. Hence the proof is complete for n = 2. Now assume that n > 2. By
Proposition 3.1.9 and by induction hypothesis, the 2n set maps σiδαj : [n−1] ⊂ [n] → [n] belong to �̃. These 2nmorphisms
of �̃ induce a morphism ∂�̃[n] → �̃[n] by Proposition 3.1.6. So σi : [n] → [n] belongs to �̃ by shell-completeness. �

To our knowledge, the structure maps introduced below are new. They are related to the notion of connection in the
setting of cubical sets, see [1,2]; indeed, with their notation of εi for degeneracies andΓ α

i for connections, one hasΓ
+

i = εiγi
and Γ −i = εi+1γi. An example of use of these connections in directed algebraic topology can be found in [15,16].

Definition 3.1.11. Let γi : [n] → [n] be the set map defined for 1 6 i 6 n− 1 and n > 2 by

γi(ε1, . . . , εn) = (ε1, . . . , εi−1,max(εi, εi+1),min(εi, εi+1), εi+2, . . . , εn).

These maps are called the transverse degeneracy maps.

Proposition 3.1.12. One has the relations γjδαi = δ
α
i γj for j < i− 1, γjδ

α
i = δ

α
i γj−1 for j > i+ 1, γjδ

α
i = δ

α
i−α for j = i− 1 and

γjδ
α
i = δ

α
i+1−α for j = i.

Proof. The relation γjδαi = δ
α
i γj for j < i− 1 is obvious. One has

γjδ
α
i (ε1, . . . , εn−1) = γj(ε1, . . . , εi−1, α, εi, . . . , εn−1) = δ

α
i γj−1(ε1, . . . , εn−1)

for j > i+ 1. For j = i− 1, one has

γjδ
1
i (ε1, . . . , εn−1) = γj(ε1, . . . , εi−1, 1, εi, . . . , εn−1) = δ

1
i−1(ε1, . . . , εn−1)

and

γjδ
0
i (ε1, . . . , εn−1) = γj(ε1, . . . , εi−1, 0, εi, . . . , εn−1) = δ

0
i (ε1, . . . , εn−1).

Finally, for j = i, one has

γjδ
1
i (ε1, . . . , εn−1) = γj(ε1, . . . , εi−1, 1, εi, . . . , εn−1) = δ

1
i (ε1, . . . , εn−1)

and

γjδ
0
i (ε1, . . . , εn−1) = γj(ε1, . . . , εi−1, 0, εi, . . . , εn−1) = δ

0
i+1(ε1, . . . , εn−1). �

Proposition 3.1.13. γi ∈ �̃.

Proof. The proof is mutatis mutandis the one of Proposition 3.1.10. �

Proposition 3.1.14. Let 0 6 m 6 n. Every adjacency-preserving (resp. adjacency-preserving one-to-one) map f : [m] → [n]
factors uniquely as a composite [m]

ψ
−→ [m]

φ
−→ [n] with φ ∈ � and ψ adjacency preserving (resp. adjacency preserving

one-to-one).

Note that, by a cardinality argument, if ψ : [m] → [m] is one-to-one, then it is bijective.

Proof. One has d(f (0, . . . , 0), f (1, . . . , 1)) = m. So, by Proposition 2.1.3, f ([m]) is an m-subcube of [n]. So the assertion is
a consequence of Proposition 2.1.6. �

The uniqueness and a negative result
Theorem 3.1.15. The category of cubes �̂ is the unique shell-complete category of cubes.

Proof. It suffices to prove that the inclusion �̃ ⊂ �̂ is an equality since the category of cubes �̂ is the maximal category of
cubes.
For any p, q > 0, there is the inclusion �([p], [q]) ⊂ �̃([p], [q]) ⊂ �̂([p], [q]), and one wants to prove the equality

�̃([p], [q]) = �̂([p], [q]).
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(1, 0, 0) //

**UUUUUUUUUUUUUUUUUU (1, 1, 0)

**UUUUUUUUUUUUUUUUUU

(0, 0, 0) //

99ssssssssss

%%KKKKKKKKKK (0, 1, 0)

99ssssssssss

%%KKKKKKKKKK (1, 0, 1) // (1, 1, 1)

(0, 0, 1) //

44iiiiiiiiiiiiiiiiii
(0, 1, 1)

44iiiiiiiiiiiiiiiiii

Fig. 4. Poset of vertices of the 3-cube.

(0, 0, 1) //

**UUUUUUUUUUUUUUUUUU (0, 1, 1)

**UUUUUUUUUUUUUUUUUU

(0, 0, 0) //

99ssssssssss

%%KKKKKKKKKK (0, 0, 1)

99ssssssssss

%%KKKKKKKKKK (1, 0, 1) // (1, 1, 1).

(0, 0, 1) //

44iiiiiiiiiiiiiiiiii
(0, 1, 1)

44iiiiiiiiiiiiiiiiii

Fig. 5. Image of the vertices of the 3-cube by f .

For p > q, one has�([p], [q]) = �̃([p], [q]) = �̂([p], [q]) = ∅ by Proposition 2.1.17. One has �̃([0], [q]) = �̂([0], [q]) =
[q] and �̃([1], [q]) = �̂([1], [q]) by Proposition 2.1.17 again. It remains to prove the equality �̃([p], [q]) = �̂([p], [q]) for
2 6 p 6 q for a fixed q by induction on p.
First of all, let us treat the case p = 2. Let f ∈ �̂([2], [q]). By Proposition 3.1.14, the set map f factors uniquely as a

composite of set maps f : [2]
φ
−→ [2]

ψ
−→ [q] with φ ∈ �̂ and ψ ∈ �. It is easy to see that the set �̂([2], [2]) consists

of the four set maps Id[2] : (ε1, ε2) 7→ (ε1, ε2), σ1 : (ε1, ε2) 7→ (ε2, ε1), γ1 : (ε1, ε2) 7→ (max(ε1, ε2),min(ε1, ε2)) and
σ1γ1 : (ε1, ε2) 7→ (min(ε1, ε2),max(ε1, ε2)). So �̃([2], [2]) = �̂([2], [2]) by Propositions 3.1.10 and 3.1.13. Therefore one
obtains �̃([2], [q]) = �̂([2], [q]) for any q > 0.
Let us now treat the case p > 3. Every set map f ∈ �̂([p], [q]) for p > 3 gives rise to a map x : �̂[p] → �̂[q] such

that x0 = f by Proposition 3.1.1. By composition, one obtains a map ∂x : ∂�̂[p] ⊂ �̂[p] → �̂[q]. By Proposition 3.1.6,
one obtains 2p maps xαi : �̂[p − 1] → �̂[q] with 1 6 i 6 p and α ∈ {0, 1} such that (xβj )0δ

α
i = (xαi )0δ

β

j−1 for any i < j
and any α, β ∈ {0, 1}. By Proposition 3.1.1, the 2p set maps (xαi )0 : [p − 1] → [q] for 1 6 i 6 p and α ∈ {0, 1} belong
to �̂. So, by induction hypothesis, the latter set maps belong to �̃ as well. By Proposition 3.1.1 again, one obtains 2p maps
yαi : �̃[p− 1] → �̃[q] with 1 6 i 6 p and α ∈ {0, 1} such that (yβj )0δ

α
i = (y

α
i )0δ

β

j−1 for any i < j and any α, β ∈ {0, 1} and
such that (yαi )0 = (xαi )0 for all 1 6 i 6 p and α ∈ {0, 1}. So, by Proposition 3.1.6, one obtains a map ∂y : ∂�̃[p] → �̃[q]
such that (∂y)0δαi = y

α
i for all 1 6 i 6 p and α ∈ {0, 1}. By Theorem 3.1.4 and since �̃ is shell complete, the set map

(∂y)0 = x0 = f : [p] → [q] then belongs to �̃. The induction on p is complete. �

Theorem 3.1.16. The category of cubes � generated by the δαi , σi and γi operators is not shell complete. In other words, the
inclusion of small categories � ⊂ �̂ is strict.

Proof. It suffices to find a morphism of �̂which does not belong to �. Consider the set map f : [3] → [3] sending the poset
of vertices of the 3-cube (Fig. 4) to the poset depicted in Fig. 5.
It is clear that f is adjacency preserving, i.e. f ∈ �̂. One has

• f (0, 0, 0) = (0, 0, 0), f (0, 1, 0) = (0, 0, 1), f (0, 0, 1) = (0, 0, 1), f (0, 1, 1) = (0, 1, 1), so f δ01 = δ
0
1σ1γ1.

• f (1, 0, 0) = (0, 0, 1), f (1, 0, 1) = (1, 0, 1), f (1, 1, 0) = (0, 1, 1), f (1, 1, 1) = (1, 1, 1), so f δ11 = δ
1
3σ1.

• f (0, 0, 0) = (0, 0, 0), f (1, 0, 0) = (0, 0, 1), f (0, 0, 1) = (0, 0, 1), f (1, 0, 1) = (1, 0, 1), so f δ02 = δ
0
2σ1γ1.

• f (0, 1, 0) = (0, 0, 1), f (1, 1, 0) = (0, 1, 1), f (0, 1, 1) = (0, 1, 1), f (1, 1, 1) = (1, 1, 1), so f δ12 = δ
1
3σ1γ1.

• f (0, 0, 0) = (0, 0, 0), f (1, 0, 0) = (0, 0, 1), f (0, 1, 0) = (0, 0, 1), f (1, 1, 0) = (0, 1, 1), so f δ03 = δ
0
1σ1γ1.

• f (0, 0, 1) = (0, 0, 1), f (1, 0, 1) = (1, 0, 1), f (0, 1, 1) = (0, 1, 1), f (1, 1, 1) = (1, 1, 1), so f δ13 = δ
1
3 .

The six set maps f δ01 , f δ
1
1 , f δ

0
2 , f δ

1
2 , f δ

0
3 and f δ

1
3 belong to �, giving rise to a morphism of presheaves ∂�[3] → �[3] by

Proposition 3.1.6. Any set map g : [2] → [3] of �̂ factors uniquely as a composite [2]
g1
−→ [2]

g2
−→ [3] with g1 ∈ �̂ and

g2 ∈ � by Proposition 3.1.14. So the set map f0 = σ1γ1 : [2] → [2] is the unique set map of �̂ such that f δ01 = δ
0
1 f0. And the

set map f1 = σ1 : [2] → [2] is the unique set map of �̂ such that f δ11 = δ
1
3 f1. Since f0 6= f1, the set map f : [3] → [3] cannot

be a composite of σi : [3] → [3] and γi : [3] → [3]with i = 1, 2 by Propositions 3.1.9 and 3.1.12. Therefore f /∈ �. �

In fact, we do not knowany ‘‘small’’ presentation by generators and relations of the small category �̂. This is an interesting
and open question. It seems to be related to similar questions arising in combinatorics.
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Definition 3.1.17. An extremal path of [n] is an n-tuple (A1, . . . , An) of [n] such that A1 = 0n < A2 < · · · < An−1 < An = 1n.
The set of extremal paths of [n] is denoted by Pn.
Notation 3.1.18. Let eI be the element (ε1, . . . , εn) of [n] such that εi = 1 if and only if i ∈ I .
There is a bijection p : Σn → Pn from the n-th symmetric group Σn to Pn defined by p(σ ) = (e∅, e{σ(1)}, e{σ(1),σ (2)},

. . . , e{1,...,n}).
Proposition 3.1.19. Let σ ∈ Σn. Let si be the transposition (i i+ 1). Then one has the equalities

p(σ si) = (σi(e∅), σi(e{σ(1)}), σi(e{σ(1),σ (2)}), . . . , σi(e{1,...,n}))
and

p(σ .π i) = (γi(e∅), γi(e{σ(1)}), γi(e{σ(1),σ (2)}), . . . , γi(e{1,...,n})),
where π i are the elementary increasing bubble sort operators (see [27]) defined by σ .π i = σ if σ(i) < σ(i+ 1) and σ .π i = σ si
otherwise.
Proof. Trivial. �
As a corollary, the monoid �([n], [n]) is isomorphic to the monoid 〈si, π i〉i=1,...,n of set maps fromΣn to itself generated

by the operators si and π i. In particular, it satisfies the following relations.
Proposition 3.1.20. Let n > 1. Themonoid of setmaps from [n] to itself generated by theσi andγi operators satisfies the relations:

• σiσi = Id, σiσjσi = σjσiσj for i = j− 1 and σiσj = σjσi for i < j− 1 (the Moore relations for symmetry operators).
• γiγi = γi, γiγjγi = γjγiγj for i = j− 1 and γiγj = γjγi for i < j− 1 (the Moore relations for transverse degeneracy).
• γjσi = σiγj for j > i+ 1 and j < i− 1, γiσi = γi, σi+1γiσi+1 = σiγi+1σi.

Proof. The Moore relations for symmetry operators are explained for example in [21, Theorem 8.1]. Let us prove the Moore
relations for transverse degeneracy maps. The relations γiγi = γi and γiγj = γjγi for i < j − 1 are obvious. One wants to
prove that γiγi+1γi = γi+1γiγi+1. It suffices to prove the identity γ1γ2γ1(ε1, ε2, ε3) = γ2γ1γ2(ε1, ε2, ε3). One has

γ1γ2γ1(ε1, ε2, ε3) = γ1γ2(max(ε1, ε2),min(ε1, ε2), ε3)
= γ1(max(ε1, ε2),max(min(ε1, ε2), ε3),min(ε1, ε2, ε3))
= (max(ε1, ε2,min(ε1, ε2), ε3),min(max(ε1, ε2),max(min(ε1, ε2), ε3)),min(ε1, ε2, ε3))
= (max(ε1, ε2, ε3),min(max(ε1, ε2),max(min(ε1, ε2), ε3)),min(ε1, ε2, ε3))

and

γ2γ1γ2(ε1, ε2, ε3) = γ2γ1(ε1,max(ε2, ε3),min(ε2, ε3))
= γ2(max(ε1, ε2, ε3),min(ε1,max(ε2, ε3)),min(ε2, ε3))
= (max(ε1, ε2, ε3),max(min(ε1,max(ε2, ε3)),min(ε2, ε3)),min(ε1,max(ε2, ε3), ε2, ε3))
= (max(ε1, ε2, ε3),max(min(ε1,max(ε2, ε3)),min(ε2, ε3)),min(ε1, ε2, ε3)).

It remains to check the equality
min(max(ε1, ε2),max(min(ε1, ε2), ε3)) = max(min(ε1,max(ε2, ε3)),min(ε2, ε3))

for any (ε1, ε2, ε3) ∈ {0, 1}3. By distributivity of min and max over each other, one has

min(max(ε1, ε2),max(min(ε1, ε2), ε3)) = max(min(ε1, ε2),min(ε1, ε3),min(ε2, ε3))
= max(min(ε1,max(ε2, ε3)),min(ε2, ε3)).

The proof will be complete by establishing the relations between transverse degeneracy maps and symmetry operators.
The equalities γjσi = σiγj for j > i+1 and j < i−1 and γiσi = γi are obvious. Onewants to prove that σi+1γiσi+1 = σiγi+1σi.
It suffices to prove the identity σ2γ1σ2(ε1, ε2, ε3) = σ1γ2σ1(ε1, ε2, ε3). One has

σ2γ1σ2(ε1, ε2, ε3) = σ2γ1(ε1, ε3, ε2)

= σ2(max(ε1, ε3),min(ε1, ε3), ε2)
= (max(ε1, ε3), ε2,min(ε1, ε3))

and

σ1γ2σ1(ε1, ε2, ε3) = σ1γ2(ε2, ε1, ε3)

= σ1(ε2,max(ε1, ε3),min(ε1, ε3))
= (max(ε1, ε3), ε2,min(ε1, ε3)). �

[27, Conjecture 3.5 and Paragraph 3.1.1] suggest the following conjecture:
Conjecture 3.1.21. Proposition 3.1.20 gives a presentation by generators and relations of themonoid�([n], [n]) for every n > 2.
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Functorial interpretation of the labelled directed coskeleton
For n > 2, and for every a1, . . . , an ∈ Σ , the inclusion �[a1, . . . , an] ⊂ cosk�,Σ1 (�[a1, . . . , an]61) is strict by

[18, Proposition 3.15]. The strictness of the latter inclusion means that the concurrent execution of n actions always
assemble in cosk�,Σ1 (�[a1, . . . , an]61) to several labelled n-cubes. To remedy this problem, the labelled directed coskeleton
construction is introduced in [18]. Its main feature is to select one n-cube (the non-twisted one) for eachmultiset of n actions
running concurrently:
Definition 3.1.22. Let K be a 1-dimensional labelled precubical set with K0 = [p] for some p > 0. The labelled directed
coskeleton of K is the labelled precubical set

−→
coskΣ (K) defined as the subobject of cosk�,Σ1 (K) such that:

•
−→
coskΣ (K)61 = cosk

�,Σ
1 (K)61,

• for every n > 2, x ∈ cosk�,Σ1 (K)n is an n-cube of
−→
coskΣ (K) if and only if the set map x0 : [n] → [p] is non-twisted, i.e.

x0 : [n] → [p] is a composite6

x0 : [n]
φ
−→ [q]

ψ
−→ [p],

where ψ is a morphism of the small category � and where φ is of the form

(ε1, . . . , εn) 7→ (εi1 , . . . , εiq)

such that {1, . . . , n} ⊂ {i1, . . . , iq} and such that the first appearance of εi is before the first appearance of εi+1 in
(εi1 , . . . , εiq) for any 1 6 i 6 n by reading from the left to the right.

The fundamental property of the labelled directed coskeleton is then:
Theorem 3.1.23 ([18, Proposition 3.21]). Let n > 1. Let (a1, . . . , an) ∈ Σn. Then one has the isomorphism of labelled precubical
sets

−→
coskΣ (�[a1, . . . , an]61) ∼= �[a1, . . . , an].

The following theorem gives the functorial interpretation of the labelled directed coskeleton construction.
Theorem 3.1.24. The category of cubesA = �̂ (i.e. the maximal category of cubes containing all adjacency-preserving maps) is
the only category of cubes such that, for every n > 1 and every (a1, . . . , an) ∈ Σn, there is the isomorphism of labelledA-sets

LA(
−→
coskΣ (�[a1, . . . , an]61)) ∼= cosk

A,Σ
1 (A[a1, . . . , an]61)(∼= A[a1, . . . , an]).

Proof. This is a consequence of Theorem 3.1.23, Proposition 2.1.14 and Theorem 3.1.15. �
The commutative diagram of Fig. 3 proves that the labelled directed coskeleton construction and the labelled transverse

symmetric coskeleton functor are equivalent from a directed algebraic topological point of view.

4. Computer-scientific application

A short introduction to process algebra can be found in [38]. An introduction to CCS (Milner’s calculus of communicating
systems [31]) for mathematicians is available in [18].

4.1. Parallel composition (local case)

Wewant to explain in this section how it is possible to use the labelled transverse symmetric coskeleton functor tomodel
the parallel composition in CCS of two labelled cubes representing two higher-dimensional transitions.

The fibered product in CCS
Notation 4.1.1. L := L�̂, Sh := Sh�̂ and ω = ω�̂.

The setΣ\{τ }, which may be empty, is now supposed to be equipped with an involution a 7→ a. In Milner’s calculus of
communicating systems (CCS) [31], which is the only case treated of this paper, one has a 6= a. However, this mathematical
hypothesis is not used in this paper. The involution onΣ\{τ } is used only in Definition 4.1.2 of the fibered product (and in
the new definition given with the proof of Theorem 4.1.8) of two 1-dimensional labelled (transverse symmetric) precubical
sets overΣ . For other examples of fibered products over other synchronization algebras than the one of CCS, see [31,38].
Definition 4.1.2. Let K and L be two 1-dimensional labelled (transverse symmetric) precubical sets. The fibered product of
K and L overΣ is the 1-dimensional labelled precubical set K ×Σ L defined as follows:

• (K ×Σ L)0 = K0 × L0,
• (K ×Σ L)1 = (K1 × L0) t (K0 × L1) t {(x, y) ∈ K1 × L1, `(x) = `(y)},

6 The factorization is necessarily unique.
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a //

τjjjjjjjjj

44jjjjjjjjja���

??���

//
a���

??���
OO

//

b

OO

b

OO

a���

??��� τjjjjjjjjj

44jjjjjjjjj

a //

OO

a���

??���

Fig. 6. Representation of �[a, b]61 ×Σ �[a], labelled overΣ .

• ∂α1 (x, y) = (∂
α
1 (x), y) for any (x, y) ∈ K1 × L0,

• ∂α1 (x, y) = (x, ∂
α
1 (y)) for any (x, y) ∈ K0 × L1,

• ∂α1 (x, y) = (∂
α
1 (x), ∂

α
1 (y)) for any (x, y) ∈ K1 × L1,

• `(x, y) = `(x) for any (x, y) ∈ K1 × L0,
• `(x, y) = `(y) for any (x, y) ∈ K0 × L1,
• `(x, y) = τ for any (x, y) ∈ K1 × L1 with `(x) = `(y).

The 1-cubes (x, y) of (K ×Σ L)1 ∩ (K1 × L1) are called synchronizations of x and y.
The 1-dimensional labelled precubical setK×Σ L is the key ingredient in the definition of the synchronized tensor product

of labelled precubical sets given in [18], and recalled in Section 4.2. Fig. 6 describes �[a, b]61 ×Σ �[a].
We want to prove in this section that, for everym > 0 and n > 0, for every a1, . . . , am+n ∈ Σ , the labelled precubical set

−→
coskΣ (�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61) can be interpreted as a full labelled coskeleton in the category of labelled
transverse symmetric precubical sets.
Proposition 4.1.3. Let K be a precubical set. For any p-cube x of ωL(K) with p > 0, there exists a p-cube y of K ⊂ ωL(K) and
a map µ ∈ �̂([p], [p]) such that x = µ∗(y), where µ∗ : L(K)p → L(K)p is the image of µ by the presheafL(K) ∈ �̂opSet.
Proof. Let

x ∈ ωL(K)p ∼= lim
−→

�[n]→K

�̂[n]p ∼= lim
−→

�[n]→K

�̂([p], [n]).

Then there exists an n-cube z : �[n] → K and x ∈ �̂([p], [n]) (the copy corresponding to z) such that z ◦ x = x. By

Proposition 3.1.14, x : [p] → [n] factors as a composite [p]
µ
−→ [p]

φ
−→ [n]with µ ∈ �̂ and φ ∈ �. Then φ∗(z) is a p-cube

of K and µ∗(φ∗(z)) = x. So y = φ∗(z) is a solution. �
Note that the decomposition x = µ∗(y) is unique. But this fact will not be used in what follows. Indeed, let us consider

another decomposition x = µ′∗(y′), z ′ : �[n′] → K , z ′ ◦ x′ = x, where x′ : [p]
µ′

−→ [p]
φ′

−→ [n′] belongs to the copy
of �̂([p], [n′]) corresponding to z ′ and y′ = φ′∗(z ′). Since x ∈ �̂([p], [n]) and x′ ∈ �̂([p], [n′]) are equal in the colimit
calculating ωL(K)p, the two sets �̂([p], [n]) and �̂([p], [n′]) are related in the colimit by a zig-zag sequence of maps of �
(this is the crucial point) relating x and x′. We can suppose that there exists a map h : [n] → [n′] such that h ◦ x = x′

and such that z = z ′ ◦ h. Then the composite [p]
µ
−→ [p]

φ
−→ [n]

h
−→ [n′] gives the unique decomposition of x′ as the

composite of a map of �̂([p], [p]) followed by a map of � by Proposition 3.1.14. Thus, µ = µ′ and h ◦ φ = φ′. Therefore
y′ = φ′∗(z ′) = z ′ ◦ h ◦ φ = z ◦ φ = y.
We will need the following combinatorial lemma twice in what follows.

Proposition 4.1.4. Let x : [p] → [r] be a strictly increasing set map. Then there exists a unique decomposition of x as

[p]
µ
−→ [p′]

φ
−→ [q]

ψ
−→ [r]

such that φ is non-twisted, ψ ∈ � and µ = (g1, . . . , gp′), where the gi : [p] → [1] are non-constant and mutually distinct (i.e.
gi = gj implies i = j). Moreover, p 6 p′, µ is strictly increasing, and it is also adjacency preserving if and only if p = p′.

Proof. Let x = (x(1), . . . , x(r)), where the maps x(i) : [p] → [1] are the r projection maps. The map ψ is necessarily the
composite δα1i1 . . . δ

αs
is , where {i1 > · · · > is} = {i ∈ {1, . . . , r} | x

(i)
= 0 or x(i) = 1} and where x(ik)(ε1, . . . , εp) = αk for

all (ε1, . . . , εp) ∈ [p]. Let A ⊂ {1, . . . , r} be the subset of i such that x(i) is a non-constant map. Consider the equivalence
relation on the set A defined by i ∼ j if and only if x(i) = x(j). Let p′ = card(A/ ∼), where card(S) denotes the cardinality
of the set S. The map µ = (x(j1), . . . , x(jp′ )) is obtained by taking in each equivalence class of∼ the representative x(j) with
the smallest j and by imposing j1 < · · · < jp′ . The non-twisted map φ is then defined so that the repetitions encode the
equivalence relation ∼. Since x is strictly increasing, the set map µ is also strictly increasing. Therefore p 6 p′. Since none
of the set maps x(jk) are constant, one has µ(0, . . . , 0) = (0, . . . , 0) and µ(1, . . . , 1) = (1, . . . , 1). Thus, if p < p′, then µ
cannot be adjacency preserving. And if p = p′, then µ is adjacency preserving by Proposition 2.1.6. This decomposition is
clearly unique. �
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Theorem 4.1.5. Let �[a1, . . . , am] and �[am+1, . . . , am+n] be two labelled cubes with m > 0 and n > 0. Then there is an
inclusion of presheaves

L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
⊂ cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

)
.

Moreover, whenΣ\{τ } is non-empty, there exist two labelled cubes such that the above inclusion is strict.

Proof. Let K be a labelled precubical set. Consider the composite set map, natural with respect to K :(
�opSet↓!Σ

) (
K ,
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
→
(
�opSet↓!Σ

) (
K , cosk�,Σ1

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
∼=
(
�
op
1 Set↓!Σ

) (
K61,�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

)
∼=
(
�̂
op
1 Set↓ShL (!Σ)

) (
L (K)61 , �̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

)
∼=
(
�̂opSet↓ShL (!Σ)

) (
L (K) , cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

))
,

the first and last isomorphisms by adjunction and the second one by Proposition 2.1.28. TakeK =
−→
coskΣ (�[a1, . . . , am]61×Σ

�[am+1, . . . , am+n]61). The identity of K yields a map of labelled transverse symmetric precubical sets

f : L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
−→ cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

)
.

The case K = �[p] for p > 0 gives the injection of sets(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
p
⊂

(
cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

))
p
.

The setmap fp is therefore one-to-one for every p > 0 by Propositions 4.1.3 and 4.1.4. Suppose now thatΣ\{τ } is non-empty.
Let a ∈ Σ\{τ }. The transverse symmetric precubical set

cosk�̂,Σ1 (�̂[a, a]61 ×Σ �̂[a, a]61)

contains a 2-cube x such that x0(0, 0) = (0, 0, 0, 0), x0(0, 1) = (1, 0, 0, 1), x0(1, 0) = (1, 0, 1, 0) and x0(1, 1) = (1, 1, 1, 1)

since all 1-cubes of x are labelled by τ . The set map x0 : [2] → [4] cannot be written as a composite [2]
µ
−→ [2]

φ
−→ [4]

with µ ∈ �̂([2], [2]) and φ : [2] → [4] non-twisted (see Definition 3.1.22) since x0 = (x(1), x(2), x(3), x(4)), where the set
maps x(i) : [2] → [1] are four different set maps. So, by Proposition 4.1.3, one obtains

x /∈ L
(
−→
coskΣ (�[a, a]61 ×Σ �[a, a]61)

)
.

Therefore the inclusion of presheaves

L
(
−→
coskΣ

(
�[a, a]61 ×Σ �[a, a]61

))
⊂ cosk�̂,Σ1

(
�̂[a, a]61 ×Σ �̂[a, a]61

)
is strict. �

Functorial construction of the parallel composition
Theorem 4.1.5 does not mean that the labelled coskeleton functor of the category of labelled transverse symmetric

precubical sets is badly behaved. The coskeleton functor of �̂opSet does the job it is designed for: filling all compatibly
labelled shells. To avoid this problem, we have to keep the memory of what is synchronized by τ , as depicted in Fig. 7. By
labelling the 1-cube x(0, ∗) by (2, 3) instead of τ , the 1-cube x(1, ∗) by (2, 4) instead of τ , the 1-cube x(∗, 0) by (1, 3) instead
of τ and the 1-cube x(∗, 1) by (1, 4) instead of τ , it becomes impossible to fill the new shell since the opposite faces are not
labelled anymore in the same way. Hence the definition of the new labelling:

Notation 4.1.6. Let a1, . . . , am+n ∈ Σ with m > 0 and n > 0. LetΣ := Σ t (N∗ × N∗), where N∗ is the set of strictly positive
integers. Let us define the 1-dimensional labelled (transverse symmetric) precubical set �̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61
as follows (the boxed part is the only new part):

• The underlying 1-dimensional precubical set is the one of

�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

• The labelling map is defined by:
– `(x, y) = `(x) for any (x, y) ∈ �̂[a1, . . . , am]1 × �̂[am+1, . . . , am+n]0,
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a //
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Fig. 7. Representation of �[a, b]61×Σ�[a], labelled overΣ = Σ t (N∗ × N∗).

– `(x, y) = `(y) for any (x, y) ∈ �̂[a1, . . . , am]0 × �̂[am+1, . . . , am+n]1,
– `(x, y) = (r, s) ∈ N∗ × N∗ 7 for any (x, y) ∈ �̂[a1, . . . , am]1 × �̂[am+1, . . . , am+n]1 with `(x) = `(y), where
1 6 r 6 m and m+1 6 s 6 m+n are the unique integers such that (x0(α), y0(α)) = δαs δ

α
r (X) for some X ∈ [m+n−2]

and for α = 0, 1.

Lemma 4.1.7. Let c : �̂[1] → �̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61 be a 1-cube of �̂[a1, . . . , am]61×Σ �̂[am+1, . . . ,
am+n]61. Then the set map c0 : [1] → [m+ n] satisfies c0(0) < c0(1) and there are two mutually exclusive possibilities:

• d(c0(0), c0(1)) = 1 and c0(α) = δαr (X) for some X ∈ [m + n − 1] with 1 6 r 6 m + n and for α = 0, 1. In this case,
`(c) = ar ∈ Σ .
• d(c0(0), c0(1)) = 2 and c0(α) = δαs δ

α
r (X) for some X ∈ [m + n − 2] with 1 6 r 6 m and m + 1 6 s 6 m + n and for

α = 0, 1. In this case, `(c) = (r, s) ∈ N∗ × N∗.

Proof. Obvious. �

Note that Lemma 4.1.7 holds for �̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61 as well by replacing `(c) = (r, s) ∈ N∗ × N∗
in the last sentence by `(c) = τ .
We are now ready to give the categorical interpretation of the labelled directed coskeleton construction when applied

to the fibered product of two 1-dimensional labelled precubical sets.

Theorem 4.1.8. Let �[a1, . . . , am] and �[am+1, . . . , am+n] be two labelled cubes with m > 0 and n > 0. Then one has the
isomorphism of labelled transverse symmetric precubical sets

L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
∼= cosk�̂,Σ1

(
�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61

)
,

where the right-hand labelled transverse symmetric precubical set overΣ is viewed as labelled overΣ by composing its labelling
map with the morphism of transverse symmetric precubical sets ShL(!Σ) → ShL(!Σ), where the set map Σ → Σ is defined
as the identity onΣ and by the mapping (p, q) 7→ τ on the complement.

Note that, withm = 0 or n = 0, we have the isomorphism of Theorem 3.1.24.

Proof. Injectivity . There is an inclusion of presheaves

cosk�̂,Σ1
(
�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61

)
⊂ cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

)
since fewer shells are filled in the left-hand term than in the right-hand term because of the labelling overΣ . Moreover, one
has the equalities(

L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

)))
61

=

(
cosk�̂,Σ1

(
�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61

))
61

=

(
cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

))
61

by Propositions 2.3.4 and 2.1.18. Let

x ∈
(
L
(
−→
coskΣ (�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61)

))
p

7 Instead of `(x, y) = τ .
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with p > 2. Then x = µ∗(y), where µ : [p] → [p] is an adjacency-preserving map and where y is a p-cube of the labelled
precubical set

−→
coskΣ (�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61)

by Proposition 4.1.3. The map of 1-dimensional precubical sets

y61 : �[p]61 −→ (
−→
coskΣ (�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61))61

induces by Proposition 2.1.28 a map of transverse symmetric 1-dimensional precubical sets

y61 : �̂[p]61 → �̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61.

The latter induces a unique map y : �̂[p]61 → �̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61 of 1-dimensional precubical sets
which is this time labelled over Σ since the underlying precubical sets of �̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61 and
�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61 are equal. The map y induces by adjunction a unique p-dimensional transverse
symmetric cube of

cosk�̂,Σ1 (�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61).

Thus the inclusion

L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
⊂ cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

)
factors uniquely as a composite of inclusions

L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
⊂ cosk�̂,Σ1

(
�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61

)
⊂ cosk�̂,Σ1

(
�̂[a1, . . . , am]61 ×Σ �̂[am+1, . . . , am+n]61

)
.

Let us call f again the inclusion

L
(
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

))
⊂ cosk�̂,Σ1

(
�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61

)
.

It then remains to prove that, for every p > 2, the set map fp is onto.
Surjectivity . Let x : �̂[p] → cosk�̂,Σ1 (�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61) be a p-dimensional transverse

symmetric cube of cosk�̂,Σ1 (�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61) with p > 2. Let x0 = (x(1), . . . , x(m+n)), where the
x(i) : [p] → [1] are the m + n projections. Let us apply the decomposition of Proposition 4.1.4. Let µ = (x(j1), . . . , x(jp′ )).
If one had p < p′, then there would exist a 1-cube c : [1] → [p] such that d(µ(c(0)), µ(c(1))) > 1. By Lemma 4.1.7, one
would have

1 < d(µ(c(0)), µ(c(1))) 6 d(ψφµ(c(0)), ψφµ(c(1))) 6 2,

and therefore d(µ(c(0)), µ(c(1))) = 2. Thus, one would have µc(α) = δαv δ
α
u (X) for some u < v, X ∈ [p′ − 2] and for

α = 0, 1. By Lemma 4.1.7, one obtains ψφµc(α) = δαjvδ
α
ju(Z) for some cube Z ∈ [m+ n− 2] and for α = 0, 1,

8 and finally
`(ψφµc) = (ju, jv).
Use of the particular labelling of×Σ . The crucial point is that the labelling of×Σ implies x(ju) = x(jv), which contradicts

the definition of µ. By Proposition 2.2.13, the commutative word W = `(xc1) . . . `(xcp) of the free commutative monoid
without unit generated byΣ does not depend on the maximal path (c1, . . . , cp) of �̂[p]. And one of the labels is necessarily
(ju, jv). If (ε1, . . . , εp) = (0, . . . , 0), then x(ju)(ε1, . . . , εp) = x(jv)(ε1, . . . , εp) = 0. Let us suppose now that (ε1, . . . , εp) 6=
(0, . . . , 0). By Proposition 2.2.13, for every maximal path (c1, . . . , cr) of the r-subcube from (0, . . . , 0) to (ε1, . . . , εp), the
commutative word W ′ = `(xc1) . . . `(xcr) is a subword of W which does not depend on (c1, . . . , cr). If (ju, jv) belongs to
W ′, then x(ju)(ε1, . . . , εp) = x(jv)(ε1, . . . , εp) = 1. If (ju, jv) does not belong toW ′, then it belongs to the complement ofW ′

inW . So x(ju)(ε1, . . . , εp) = x(jv)(ε1, . . . , εp) = 0. Hence, x(ju) = x(jv), which is the desired contradiction.
End of the proof. Hence, one obtains the equality p = p′ thanks to the particular labelling of×Σ . The map µ is therefore

adjacency preserving by Proposition 2.1.6. Note that x0 has no reason to be adjacency preserving. By definition of the labelled
directed coskeleton, there exists a p-cube

y : �[p] −→
−→
coskΣ

(
�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61

)
8 So far, the particular labelling of×Σ has not been used in the surjectivity part of the proof. In the counterexample of Theorem 4.1.5, one has p = 2 and
p′ = 4. So we cannot yet conclude that p = p′ .
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such that y0 = ψφ. Then L(y) is a p-cube of the labelled transverse symmetric precubical set L(
−→
coskΣ (�[a1, . . . , am]61

×Σ �[am+1, . . . , am+n]61)) such that L(y)0 = ψφ. Then µ∗(L(y)) is a p-cube of the labelled transverse symmetric
precubical set

L
(
−→
coskΣ (�[a1, . . . , am]61 ×Σ �[am+1, . . . , am+n]61)

)
such that (µ∗(L(y)))0 = ψφµ. By construction of f , the p-cube f (µ∗(L(y))) of the labelled transverse symmetric precubical
set cosk�̂,Σ1 (�̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61) satisfies (f (µ∗(L(y))))0 = ψφµ = x0. Since there is at most one 1-
cube between two vertices of �̂[a1, . . . , am]61×Σ �̂[am+1, . . . , am+n]61, this implies (f (µ∗(L(y))))61 = x61, and therefore
f (µ∗(L(y))) = x by adjunction. So f is an isomorphism of labelled transverse symmetric precubical sets. �

Theorem 4.1.8 is of course false for any other category of cubes than �̂. Indeed, the particular case n = 0 and a1 = · · · =
am = τ gives back the inclusion of presheaves

A[m] ∼= LA

(
−→
coskΣ

(
�[m]61

))
⊂ coskA1

(
A[m]61

)
,

which is an equality if and only if the category of cubesA is shell complete, so if and only ifA = �̂ by Theorem 3.1.15. The
crucial point in the proof of Theorem 4.1.8 is that the map µ : [p] → [p]must belong toA. Therefore, it is really needed to
work with the whole category �̂ of all adjacency-preserving maps.

4.2. Parallel composition (global case)

We can now relate the synchronized tensor product of labelled precubical sets with the synchronized tensor product
of labelled transverse symmetric precubical sets. First of all, let us give the definition of these two synchronized tensor
products.

Definition
Definition 4.2.1 ([18]). Let K and L be two labelled precubical sets. The tensor product with synchronization (or synchronized
tensor product) of K and L is

K ⊗Σ L := lim
−→

�[m]→K

lim
−→
�[n]→L

−→
coskΣ (�[m]61 ×Σ �[n]61).

Definition 4.2.2. Let K and L be two labelled transverse symmetric precubical sets. The tensor product with synchronization
(or synchronized tensor product) of K and L is

K ⊗Σ L := lim
−→

�̂[m]→K

lim
−→
�̂[n]→L

cosk�̂,Σ1 (�̂[m]61×Σ �̂[n]61).

The two constructions coincide
In which follows, the category of small categories is denoted by Cat. Let H : I −→ Cat be a functor from a small category

I to Cat. The Grothendieck construction I
∫
H is the category defined as follows [35]: the objects are the pairs (i, a), where i is

an object of I and a is an object ofH(i); amorphism (i, a)→ (j, b) consists in amap φ : i→ j and in amap h : H(φ)(a)→ b.

Lemma 4.2.3. LetA be a category of cubes. Let I be a small category, and i 7→ K i be a functor from I to the category of labelled
A-sets. Let K = lim

−→i
K i. Let H : I → Cat be the functor defined by H(i) = A↓K i. Then the functor ι : I

∫
H → A↓K defined by

ι(i,A[m] → K i) = (A[m] → K) is final in the sense of [32]; that is to say the comma category k↓ι is non-empty and connected
for all objects k ofA↓K .

Proof. The proof is similar to the proof of [18, Lemma A.1]. �

Proposition 4.2.4. Let A be a category of cubes. Let F : A × A → C be a functor, where C is a cocomplete category. Let
F̂ : (AopSet↓ShALA(!Σ))× (A

opSet↓ShALA(!Σ))→ C be the functor defined by

F̂(K , L) := lim
−→

A[m]→K

lim
−→

A[n]→L

F([m], [n]).

Then, for any labelledA-set L, the two functors

F̂(L,−) : AopSet↓ShALA(!Σ) −→ C

and

F̂(−, L) : AopSet↓ShALA(!Σ) −→ C

are colimit preserving.
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Proof. The proof is similar to the proof of [18, Proposition A.2]. Let K = lim
−→i
K i be a colimit of labelledA-sets. By definition,

one has the isomorphism

lim
−→
i

F̂(K i, L) ∼= lim
−→
i

lim
−→

A[m]→K i
lim
−→

A[n]→L

F([m], [n]).

Consider the functor H : I −→ Cat defined by H(i) = A↓K i. Consider the functors Fi : H(i) −→ C defined by

Fi(A[m] → K i) = lim
−→

A[n]→L

F([m], [n]).

Consider the functor F : I
∫
H −→ C defined by

F(i,A[m] → K i) = lim
−→

A[n]→L

F([m], [n]).

Then the composite H(i) ⊂ I
∫
H → C is exactly Fi. Therefore one has the isomorphism

lim
−→
i

lim
−→

A[m]→K i
lim
−→

A[n]→L

F([m], [n]) ∼= lim
−→

(i,A[m]→K i)

lim
−→

A[n]→L

F([m], [n])

by [9, Proposition 40.2]. The functor ι : I
∫
H → A↓K defined by ι(i,A[m] → K i) = (A[m] → K) is final in the sense

of [32] by Lemma 4.2.3. Therefore, by [32, p. 213, Theorem 1] or [25, Theorem 14.2.5], one has the isomorphism

lim
−→

(i,A[m]→K i)

lim
−→

A[n]→L

F([m], [n]) ∼= lim
−→

A[m]→K

lim
−→

A[n]→L

F([m], [n]) =: F̂(K , L). �

Corollary 4.2.5. Let I be a small category. Let i 7→ K i be a functor from I to the category of labelled transverse symmetric
precubical sets, and let L be a labelled transverse symmetric precubical set. Then one has the natural isomorphism

(lim
−→
i

K i)⊗Σ L ∼= lim
−→
i

(K i ⊗Σ L).

Theorem 4.2.6. Let K and L be two labelled precubical sets. Then there is the natural isomorphismof labelled transverse symmetric
precubical sets

L(K ⊗Σ L) ∼= L(K)⊗Σ L(L).

Proof. One has

L(K ⊗Σ L) ∼= L

(
lim
−→

�[m]→K

lim
−→
�[n]→L

−→
coskΣ (�[m]61 ×Σ �[n]61)

)
∼= lim
−→

�[m]→K

lim
−→
�[n]→L

L
(
−→
coskΣ (�[m]61 ×Σ �[n]61)

)
sinceL is a left adjoint

∼= lim
−→

�[m]→K

lim
−→
�[n]→L

cosk�̂,Σ1 (�̂[m]61×Σ �̂[n]61) by Theorem 4.1.8

∼= lim
−→

�[m]→K

lim
−→
�[n]→L

�̂[m] ⊗Σ �̂[n] by definition of⊗Σ

∼= lim
−→

�[m]→K

lim
−→
�[n]→L

L(�[m])⊗Σ L(�[n]) by Proposition 2.1.14

∼=

(
lim
−→

�[m]→K

L(�[m])

)
⊗Σ

(
lim
−→
�[n]→L

L(�[n])

)
by Corollary 4.2.5

∼= L(K)⊗Σ L(L) sinceL is a left adjoint. �

Associativity
As in [18], it is also possible to prove that the synchronized tensor product of labelled transverse symmetric precubical

sets is associative.

Theorem 4.2.7. Let K , L and M be three labelled transverse symmetric precubical sets. Then there is a canonical isomorphism of
labelled transverse symmetric precubical sets

(K ⊗Σ L)⊗Σ M ∼= K ⊗Σ (L⊗Σ M).
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Proof. One has

K ⊗Σ (L⊗Σ M) ∼=

(
lim
−→
�̂[p]→K

�̂[p]

)
⊗Σ

(
lim
−→
�̂[q]→L

lim
−→

�̂[r]→M

�̂[q] ⊗Σ �̂[r]

)
∼= lim
−→
�̂[p]→K

lim
−→
�̂[q]→L

lim
−→

�̂[r]→M

�̂[p] ⊗Σ (�̂[q] ⊗Σ �̂[r]) by Corollary 4.2.5

∼= lim
−→
�̂[p]→K

lim
−→
�̂[q]→L

lim
−→

�̂[r]→M

L (�[p] ⊗Σ (�[q] ⊗Σ �[r])) by Theorem 4.2.6

∼= lim
−→
�̂[p]→K

lim
−→
�̂[q]→L

lim
−→

�̂[r]→M

L ((�[p] ⊗Σ �[q])⊗Σ �[r]) by [18, Proposition A.3]

∼= lim
−→
�̂[p]→K

lim
−→
�̂[q]→L

lim
−→

�̂[r]→M

(�̂[p] ⊗Σ �̂[q])⊗Σ �̂[r] by Theorem 4.2.6

∼= (K ⊗Σ L)⊗Σ M by Corollary 4.2.5. �

As already pointed out in [18], it is false in general that the two labelled precubical sets K⊗Σ L and L⊗Σ K are isomorphic
as labelled precubical sets. Indeed, let us suppose that Σ\{τ } contains an element a. Then �[a] ⊗Σ �[τ ] ∼= �[a, τ ] and
�[τ ] ⊗Σ �[a] ∼= �[τ , a]. Because of the lack of symmetry operators, the two labelled 2-cubes �[a, τ ] and �[τ , a] cannot
be isomorphic as labelled precubical sets. However, the two underlying precubical sets are of course isomorphic, as already
pointed out in [18]. In the category of transverse symmetric precubical sets, the situation is much better. Indeed, one has
the isomorphisms of labelled transverse symmetric precubical sets

�̂[a, τ ] ∼= L(�[a, τ ]) ∼= �̂[τ , a] ∼= L(�[τ , a]).
Proposition 4.2.8. Let K and L be two labelled transverse symmetric precubical sets. Then there is a natural isomorphism of
labelled transverse symmetric precubical sets K ⊗Σ L ∼= L⊗Σ K.
Proof (Sketch of proof). It suffices to use Corollary 4.2.5 together with the isomorphism

�̂[a1, . . . , am] ⊗Σ �̂[b1, . . . , bn] ∼= �̂[b1, . . . , bn] ⊗Σ �̂[a1, . . . , am]
(built using the symmetry operators) for all labelled full cubes �̂[a1, . . . , am] and �̂[b1, . . . , bn]. �

4.3. Comparison of the two semantics of CCS

Interpreting CCS as labelled precubical sets
The CCS process names are generated by the following syntax:
P ::= nil | a.P | (νa)P | P + P | P||P | rec(x)P(x),

where P(x) means a process name with one free variable x. The variable x must be guarded; that is, it must lie in a prefix
term a.P ′(x) for some a ∈ Σ .
Definition 4.3.1. A labelled precubical set ` : K →!Σ decorated by process names is a labelled precubical set together with
a set map d : K0 → ProcΣ called the decoration.
Let us define by induction on the syntax of the CCS process name P the decorated labelled precubical set �JPK (see [18]

for further explanations). The labelled precubical set �JPK has a unique initial state canonically decorated by the process
name P , and its other states will be decorated in an inductive way. Therefore, for every process name P , �JPK is an object of

the double comma category {i}↓�opSet↓!Σ . One has �JnilK := �[0], �Jµ.nilK := µ.nil
(µ)
−→ nil, �JP + Q K := �JPK⊕ �JQ K

with the binary coproduct taken in {i}↓�opSet↓!Σ , the pushout diagram of precubical sets

�[0] = {0} 07→nil //

07→P
��

�Jµ.nilK

��
�JPK // �Jµ.PK,

the pullback diagram of precubical sets

�J(νa)PK //

��

�JPK

��
!(Σ\{a, a}) // !Σ,

the formula giving the interpretation of the parallel composition with synchronization
�JP||Q K := �JPK⊗Σ �JQ K

and finally �Jrec(x)P(x)K defined as the least fixed point of P(−).
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The prefix operator, the direct sum and the restriction operator are ω-continuous; that is to say, they preserve the upper
bounds of ascending ω-chains of labelled precubical sets K 0 ⊂ K 1 ⊂ K 2 ⊂ . . . , since they are finitely accessible and since
the upper bound is given by the colimit of the chain. The synchronized tensor product is alsoω-continuous since it is colimit
preserving by [18, Proposition A.2]. Moreover, the condition imposed on P(x) implies that, for all process names Q1 and Q2
with �JQ1K ⊂ �JQ2K, one has �JP(Q1)K ⊂ �JP(Q2)K. Therefore the mapping P(−) is ω-continuous and non-decreasing.
Thus, the labelled precubical set

�Jrec(x)P(x)K := lim
−→
n

�JPn(nil)K ∼=
⋃
n>0

�JPn(nil)K

will be equal to the least fixedpoint of P(−). This is a particular case of theKleene fixed-point theoremonadirected complete
partial order.

Interpreting CCS as labelled transverse symmetric precubical sets
Let us give now the new semantics of CCS in terms of labelled transverse symmetric precubical sets.

Definition 4.3.2. A labelled transverse symmetric precubical set ` : K → ShL(!Σ) decorated by process names is a labelled
transverse symmetric precubical set together with a set map d : K0 → ProcΣ called the decoration.

The interpretation of a CCS process name P in terms of a decorated labelled transverse symmetric precubical set �̂JPK is
defined by induction on the syntax of P , as for the case of labelled precubical sets. The only differences with the latter case
are the pullback diagram

�̂J(νa)PK //

��

�̂JPK

��
ShL(!(Σ\{a, a})) // ShL(!Σ),

and the equation �̂JP||Q K := �̂JPK ⊗Σ �̂JQ K, where ⊗Σ is now the synchronized tensor product of labelled transverse
symmetric precubical sets. Corollary 4.2.5 enables us to construct the least fixed point of P(−) in the same way as in the
case of labelled precubical sets.

The two semantics have same geometric realization
Theorem 4.3.3. For every CCS process name P, there is an isomorphism of labelled transverse symmetric precubical sets �̂JPK ∼=
L(�JPK) and an isomorphism of (labelled) flows |̂�JPK| ∼= |�JPK|.

Proof. Let K be a labelled precubical set. Let a ∈ Σ\{τ }. Let (νa)K be the labelled precubical set defined by the pullback
diagram

(νa)K
⊂ //

��

K

��
!(Σ\{a, a}) // !Σ .

One obtains the commutative diagram of labelled transverse symmetric precubical sets

L((νa)K)
⊂ //

��

L(K)

��
L(!(Σ\{a, a})) //

��

L(!Σ)

��
ShL(!(Σ\{a, a})) // ShL(!Σ).
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The map (νa)K → K is an inclusion of presheaves: the labelled precubical set (νa)K is the subobject of K containing the
labelled cubes of K not containing a or a as label. By Proposition 2.1.14, the transverse symmetric precubical set L((νa)K)
is the subobject of L(K) containing the p-cubes of L(K) of the form µ∗(x), where µ : [p] → [p] is a map of �̂ and x is a
p-cube of (νa)K . Therefore the mapL((νa)K)→ L(K) is an inclusion of presheaves as well. Consider now a commutative
diagram of labelled transverse symmetric precubical sets

Z
k

&&MMMMMM f

((

  

L((νa)K)
⊂ //

��

L(K)

��
ShL(!(Σ\{a, a})) // ShL(!Σ)

Every p-cube x of Z is taken to a p-cube f (x) of L(K). By Proposition 4.1.3, f (x) = µ∗(y) for some p-cube y ∈ K and for
some mapµ : [p] → [p] of �̂. By construction, y does not use the labels a or a. Thus y ∈ (νa)K . Therefore f (x) is a p-cube of
L((νa)K). Hence k exists and is unique since the map L((νa)K)→ L(K) is an inclusion of presheaves. Thus, the diagram
of labelled transverse symmetric precubical sets

L((νa)K)
⊂ //

��

L(K)

��
ShL(!(Σ\{a, a})) // ShL(!Σ)

is a pullback. So the isomorphism �̂JPK ∼= L(�JPK) implies the isomorphism �̂J(νa)PK ∼= L(�J(νa)PK). Therefore, the
isomorphism of labelled transverse symmetric precubical sets �̂JPK ∼= L(�JPK) is proved by induction on the syntax of
the process name P , using Theorem 4.2.6 and the fact that the functor L preserves colimits since it is a left adjoint. The
isomorphism of labelled flows |̂�JPK| ∼= |�JPK| is a consequence of Proposition 2.2.10. �
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Appendix

A.1. The case of labelled symmetric precubical sets

By Theorem 3.1.15, the category of cubes�S is not shell complete. It is interesting anyway for the three following reasons.
(1) It is possible to give an explicit description of the symmetric precubical set of labels with Proposition A.1.3. Such a
description is still an open problem for the transverse symmetric precubical set of labels (see Conjecture 3.1.21). (2) The
category of cubes�S is the smallest category of cubesA such that the labelled cubesA[aσ(1), . . . , aσ(n)]with a1, . . . , an ∈ Σ
for σ running over the set of permutations of {1, . . . , n} belong to the same isomorphism class. Let us recall that the
labelled precubical sets �[aσ(1), . . . , aσ(n)] and �[aσ ′(1), . . . , aσ ′(n)] are not isomorphic as soon as (aσ(1), . . . , aσ(n)) 6=
(aσ ′(1), . . . , aσ ′(n)). (3) There is a strong link between labelled symmetric precubical sets and higher-dimensional transition
systems in the sense of Cattani and Sassone [8]; see [19]. Indeed, it turns out that the category of higher-dimensional
transition systems in the sense of Cattani and Sassone is equivalent to a full reflective subcategory of that of labelled
symmetric precubical sets.

Description of the symmetric precubical set of labels
The following combinatorial lemma is well known (see [37] for a survey).

Lemma A.1.1. Let p > 1. The group of automorphisms of the poset [p] is isomorphic to the symmetric group on {1, . . . , p}.
In other words, let f be an automorphism of the poset [p]. Then there exists a permutation π of the set {1, . . . , p} such that
f (ε1, . . . , εp) = (επ(1), . . . , επ(p)).
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Proof. Let I ⊂ {1, . . . , p}. Let eI be the element (ε1, . . . , εp) of [p] such that εi = 1 if and only if i ∈ I . Since f is
bijective and strictly increasing, it preserves the distance of Proposition 2.1.3. The distance between e∅ and f (e{i}) is 1.
So there exists a permutation π of {1, . . . , p} such that f (e{i}) = e{π(i)}. Let g(ε1, . . . , εp) = (επ−1(1), . . . , επ−1(p)). Then
g(f (e{i})) = g(e{π(i)}) = e{i}. It then suffices to prove by induction on the cardinality c of I that g(f (eI)) = eI . Let c > 2 with
c 6 p. Assume that g(f (eJ)) = eJ for all subsets J of {1, . . . , p} of cardinality c−1. Let I be a subset of {1, . . . , p} of cardinality
c. Then the distance between g(f (eI\{i})) and g(f (eI)) is 1 for all i ∈ I . By induction hypothesis, one has g(f (eI\{i})) = eI\{i}.
So the only possibility is g(f (eI)) = eI . �

Proposition A.1.2. An adjacency-preserving map f : [m] → [n] belongs to �S if and only if f is one-to-one.

Proof. It is clear that anymap of�S is one-to-one. Conversely, let f : [m] → [n] be a one-to-one adjacency-preservingmap.
Then, by Proposition 3.1.14, f factors uniquely as a composite [m]

ψ
−→ [m]

φ
−→ [n]with φ ∈ � andψ adjacency preserving

one-to-one. A cardinality argument implies that ψ is a bijection. Therefore f ∈ �S by Lemma A.1.1. �

As for precubical sets, let ∂αi = (δ
α
i )
∗. And let si = (σi)∗.

Proposition A.1.3. The symmetric precubical set of labels Sh�SL�S (!Σ) is isomorphic to the following symmetric precubical set,
denoted by !SΣ :

• (!SΣ)0 = {()} (the empty word)
• for n > 1, (!SΣ)n = Σn

• ∂0i (a1, . . . , an) = ∂
1
i (a1, . . . , an) = (a1, . . . , âi, . . . , an), where the notation âi means that ai is removed.

• si(a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an) for 1 6 i 6 n.

Proof. The category of cubes �S is the small category freely generated by the δαi and σi operators and by the cocubical
relations, the algebraic relations of Proposition 3.1.9, and the Moore relations for symmetry operators σiσi = Id, σiσjσi =
σjσiσj for i = j− 1 and σiσj = σjσi for i < j− 1 by [21, Theorem 8.1].
It is easy to prove that the si and ∂αi operators of !

SΣ satisfy the dual of these algebraic relations. So !SΣ together with
the ∂αi and si operators is a well-defined symmetric precubical set.
The identity of !Σ yields a map of precubical sets !Σ → ω�S (!

SΣ). Hence, by adjunction, one obtains a mapL�S (!Σ)→

!
SΣ . The symmetric precubical set !SΣ is orthogonal to the set of morphisms {�S[p] t∂�S [p] �S[p] → �S[p], p > 2} for the
same reason as !Σ is orthogonal to the set ofmorphisms {�[p]t∂�[p]�[p] → �[p], p > 2}. Hence, by adjunction, one obtains
amap of symmetric precubical sets f : Sh�SL�S (!Σ)→!

SΣ which is clearly onto: an inverse image of (a1, . . . , an) ∈ (!SΣ)n
for n > 1 is given by the image of (a1, . . . , an) ∈ L�S (!Σ)n by the canonical mapL�S (!Σ)→ Sh�SL�S (!Σ).
Let us prove by induction on p > 1 that the map f6p : (Sh�SL�S (!Σ))6p → (!SΣ)6p is one-to-one. The map induces the

isomorphism f61 : (Sh�SL�S (!Σ))61 → (!SΣ)61 by Propositions 2.1.18 and 2.1.24. Hence the proof is complete for p = 1.
Let us suppose that the map f6p : (Sh�SL�S (!Σ))6p → (!SΣ)6p is an isomorphism for p > 1. Let x, y ∈ (Sh�SL�S (!Σ))p+1
be two (p + 1)-cubes having the same image in !SΣ . Then they have the same boundary in (!SΣ)6p, and therefore x and y
have the same boundary ∂x = ∂y by induction hypothesis. One obtains a commutative square of solid arrows

�S[p+ 1] t∂�S [p+1] �S[p+ 1]
xt∂xy //

��

Sh�SL�S (!Σ)

��
�S[p+ 1]

k

77ooooooooooooo
// 1.

The lift k exists and is unique. So x = k = y. The induction hypothesis is therefore proved for p+ 1. �

The labelled directed symmetric coskeleton construction
The following proposition is similar to Proposition 4.1.3.

Proposition A.1.4. Let K be a precubical set. For any p-cube x of ω�SL�S (K) with p > 0, there exists a p-cube y of K ⊂
ω�SL�S (K) and a map µ ∈ �S([p], [p]) such that x = µ∗(y), where µ∗ : L�S (K)p → L�S (K)p is the image of µ by the
presheafL�S (K) ∈ �

op
S Set.

Note that, as in Proposition 4.1.3, the decomposition is actually unique.

Proof. With the notations of the proof of Proposition 4.1.3. By Propositions 3.1.14 and A.1.2, the set map x : [p] → [n]
factors as a composite [p]

µ
−→ [p]

φ
−→ [n]with µ ∈ �S and φ ∈ �. �
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By Proposition 2.3.4, the truncation functor

�
op
S Set↓Sh�SL�S (!Σ)→ (�S)

op
n Set↓Sh�SL�S (!Σ)

has a right adjoint

cosk�S ,Σn : (�S)
op
n Set↓Sh�SL�S (!Σ)→ �

op
S Set↓Sh�SL�S (!Σ).

Definition A.1.5. (Compare with Definition 3.1.22.) Let K be a 1-dimensional labelled symmetric precubical set with K0 =
[p] for some p > 0. The labelled symmetric directed coskeleton of K is the labelled precubical set

−→
coskΣS (K) defined as the

subobject of cosk�S ,Σ1 (K) such that

•
−→
coskΣS (K)61 = cosk

�S ,Σ
1 (K)61,

• for every n > 2, x ∈ cosk�S ,Σ1 (K)n is an n-cube of
−→
coskΣS (K) if and only if the set map x0 : [n] → [p] is non-twisted, i.e.

x0 : [n] → [p] is a composite9

x0 : [n]
φ
−→ [q]

ψ
−→ [p],

where ψ is a morphism of the small category � and where φ is of the form

(ε1, . . . , εn) 7→ (εi1 , . . . , εiq)

such that {1, . . . , n} ⊂ {i1, . . . , iq}.

The link with labelled precubical sets is as follows.

Proposition A.1.6. Let K be a 1-dimensional labelled (symmetric) precubical set with K0 = [p] for some p > 0. Then there is the
isomorphism of labelled symmetric precubical sets

L�S (
−→
coskΣ (K)) ∼=

−→
coskΣS (K).

Proof. By a proof similar to that of Theorem 4.1.5, one obtains the inclusion of presheaves

L�S (
−→
coskΣ (K)) ⊂ cosk�S ,Σ1 (K).

It is clear that the inclusion above factors as the composite of inclusions

L�S (
−→
coskΣ (K)) ⊂

−→
coskΣS (K) ⊂ cosk

�S ,Σ
1 (K).

The left-hand inclusion is an equality by Proposition A.1.4. �

Thanks to Proposition 2.2.10, one obtains the isomorphism of flows

|
−→
coskΣ (K)| ∼= |

−→
coskΣS (K)|.

Interpreting CCS as labelled symmetric precubical sets
Definition A.1.7. Let K and L be two labelled symmetric precubical sets. The tensor product with synchronization (or
synchronized tensor product) of K and L is

K ⊗Σ L := lim
−→

�S [m]→K

lim
−→

�S [n]→L

−→
coskΣS (�S[m]61 ×Σ �S[n]61).

One can then easily adapt the semantics of CCS to the case of labelled symmetric precubical sets. The interest of this
setting is that it is simpler than that of transverse symmetric precubical sets, and that, as in Proposition 4.2.8, there is an
isomorphism of labelled symmetric precubical sets K ⊗Σ L ∼= L ⊗Σ K for all labelled symmetric precubical sets K and L.
The synchronized tensor product of symmetric precubical sets is also colimit preserving by Proposition 4.2.4, and therefore
associative.
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