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Introduction A constructive proof of DC Algebraic models of classical realizability

Part I

-

What is this thesis about?
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Introduction A constructive proof of DC Algebraic models of classical realizability

A tricky question

Every Ph.D. student has been asked a thousand times:

“What is the title of your thesis?”

In my case, the next questions:

classical?

realizability?

side-e�ects?

What does it have to do with logic/mathematics/computer

science?
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Proofs

A (very) old one:
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Proofs

A (very) old one: An easy one:

Plato is a cat.
All cats like fish.
Therefore, Plato likes fish .

Intuitively:

from a set of hypotheses

apply deduction rules

to obtain a theorem
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Programs
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Programs

Think of it as a recipe (algorithm) to draw a computation forward.

Intuitively:

from a set of inputs

apply instructions

to obtain the output
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So ?

Proof:

from a set of hypotheses

apply deduction rules

to obtain a theorem

Program:

from a set of inputs

apply instructions

to obtain the output

Curry-Howard

(On well-chosen subsets of mathematics and programs)

That’s the same thing!
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Proof trees

Sequent:

Γ ` A

Deduction rules:

A ∈ Γ
Γ ` A

(Ax)
Γ,A ` B

Γ ` A⇒ B

(⇒I )
Γ ` A⇒ B Γ ` A

Γ ` B
(⇒E )

Example:
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Γ ` B
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Example:

Plato is a cat.
If Plato is cat, Plato likes fish.
Therefore, Plato likes fish︸          ︷︷          ︸

Conclusion

.

(A⇒ B) ∈ Γ

Γ ` A⇒ B

(Ax)
B ∈ Γ
Γ ` B

(Ax)

Γ ` B
(⇒E )
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Proofs-as-programs

The Curry-Howard correspondence

Mathematics Computer Science

Proofs Programs

Propositions Types

Deduction rules Typing rules

Γ ` A⇒ B Γ ` A
Γ ` B

(⇒E )
Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
(→E )

Benefits:

Program your proofs! Prove your programs!
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Proofs-as-programs

Limitations p

Mathematics Computer Science

A ∨ ¬A

¬¬A⇒ A

All sets can

be well-ordered

Sets that have the

same elements are equal

try. . . catch . . .

x := 42

random()

stop

goto

#We want more !
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Extending Curry-Howard

Classical logic = Intuitionistic logic + A ∨ ¬A

1990: Gri�in discovered that call/cc can be typed by Peirce’s law

(well-known fact: Peirce’s law⇒ A ∨ ¬A)

Classical Curry-Howard:

λ-calculus + call/cc

Other examples:

quote instruction ∼ dependent choice

monotonic memory ∼ Cohen’s forcing

…

The mo�o

With side-effects come new reasoning principles.
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Teaser #1

The mo�o

With side-effects come new reasoning principles.

In Part II, we will use several computational features:

dependent types

streams

lazy evaluation

shared memory

to get a proof for the axioms of dependent and countable choice

that is compatible with classical logic.
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Theory vs Model

What is the status of axioms (e.g. A ∨ ¬A)?

# neither true nor false in the ambient theory

(here, true means provable)

There is another point of view:

Theory: provability in an axiomatic representation (syntax)

Model: validity in a particular structure (semantic)

Example:

A ∧ B

B

A
3 7

3 3 7

7 7 7

A ∨ B

B

A
3 7

3 3 3

7 3 7

A ¬A A ∨ ¬A

3 7 3

7 3 3
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Teaser #2

Classical realizability:

A 7→ {t : t 
 A}

(intuition: programs that share a common computational behavior given by A)

Great news

Classical realizability semantics gives surprisingly new models!

In Part III, we will study the algebraic structure of these models.
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Part II

-

A constructive proof of dependent choice

compatible with classical logic
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The axiom of choice

Axiom of Choice:

AC : ∀xA.∃yB.P (x ,y ) → ∃f A→B.∀xA.P (x , f (x ))
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The axiom of choice

Axiom of Choice:

AC : ∀xA.∃yB.P (x ,y ) → ∃f A→B.∀xA.P (x , f (x ))
:= λH.(λx .wit (H x ), λx .prf (H x ))

Computational content through dependent types:

Γ,x : T ` t : A

Γ ` λx .t : ∀xT.A
(∀I )

Γ ` p : A[t/x] Γ ` t : T

Γ ` (t,p) : ∃xT.A
(∃I )

Γ ` p : ∃xT.A(x )

Γ ` wit p : T
(wit)

Γ ` p : ∃xT.A(x )

Γ ` prf p : A(wit p)
(prf)
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Incompatibility with classical logic

Bad news

dependent sum + classical logic =A

One can define:

H0 := call/ccα (1,throwα (0,p)) : ∃x .P (x )

and reach a contradiction:

(witH0,prfH0) → (1,

P (0)︷︸︸︷
p )︸     ︷︷     ︸

���∃x .P (x )

We need to:

# share # restrict dependent types
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Introduction A constructive proof of DC Algebraic models of classical realizability

Toward a solution ?

Restriction to countable choice:

AC� : ∀x�.∃yB.P (x ,y ) → ∃f �→B.∀x�.P (x , f (x ))

Proof:

AC := λH.(λn.if n = 0 then wit(H 0) else

λn.if n = 1 then wit(H 1) else ... ,

λn.if n = 0 then prf(H 0) else

λn.if n = 1 then prf(H 1) else ... )
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AC� : ∀x�.∃yB.P (x ,y ) → ∃f �→B.∀x�.P (x , f (x ))

Proof:

AC� := λH.letH∞ = (H 0,H 1, . . . ,H n, . . .) in
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Toward a solution ?

Restriction to countable choice:

AC� : ∀x�.∃yB.P (x ,y ) → ∃f �→B.∀x�.P (x , f (x ))

Proof:

AC� := λH. letH∞ = cofix0

bn
(H n,b(S (n))) in

(λn. wit (nth n H∞),λn. prf (nth n H∞))
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dPA
ω

(Herbelin’s recipe)

A proof system:

classical:

p,q ::= ... | catchα p | throwα p

with stratified dependent types :

terms: t,u ::= ... | wit p

formulas: A,B ::= ... | ∀xT.A | ∃xT.A | Πa : A.B | t = u

proofs: p,q ::= ... | λx .p | (t,p) | λa.p

a syntactical restriction of dependencies to nef proofs

call-by-value and sharing:

p,q ::= ... | let a = q in p

with inductive and coinductive constructions:

p,q ::= ... | indt
bn
[p | p] | cofixt

bn
p

lazy evaluation for the cofix
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State of the art

Subject reduction

If Γ ` p : A and p→ q, then Γ ` q : A.

Normalization

If Γ ` p : A then p is normalizable.

r
e
q

u
i
r
e
s

Consistency

0dPA
ω ⊥
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Roadmap

dPAω [Herbelin’12]:

+ control operators

+ dependent types

+ co-fixpoints

+ sharing & laziness

dLPAω?

+ sequent calculus

+ dependent types

+ co-fixpoints

+ sharing & laziness

?-calculus

Subject reduction

Subject reduction

Normalization

typing/reduction preservation

CPS-translation?
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Introduction A constructive proof of DC Algebraic models of classical realizability

Classical call-by-need

The λ[lvτ?]-calculus (Ariola et al.):

a sequent calculus with explicit stores

Danvy’s method of semantics artifact:

1 derive a small-step reduction system

2 derive context-free small-step reduction rules

3 derive an (untyped) CPS

�estions:

# Does it normalize?

# Can the CPS be typed?

# Can we define a realizability interpretation?
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Danvy’s semantics artifacts

Syntax:

(Proofs) p ::= V | µα .c
(Weak values) V ::= v | a

(Strong values) v ::= λa.p

(Contexts) e ::= E | µ̃a.c
(Catchable contexts) E ::= α | F | µ̃[a].〈a || F 〉τ
(Forcing contexts) F ::= p · E

(Commands) c ::= 〈p || e〉

(Closures) l ::= cτ
(Store) τ ::= ϵ | τ [a := p]

Reduction rules:

(Lazy storage)

(Lookup)

(Forced eval.)

〈p || µ̃a.c〉τ → cτ [a := p]
〈µα .c || E〉τ → (c[E/α ])τ

〈a || F 〉τ [a := p]τ ′ → 〈p || µ̃[a].〈a || F 〉τ ′〉τ
〈V || µ̃[a].〈a || F 〉τ ′〉τ → 〈V || F 〉τ [a := V ]τ ′

〈λa.p || q · E〉τ → 〈q || µ̃a.〈p || E〉〉τ
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Danvy’s semantics artifacts

Small steps:

〈p || µ̃a.c〉
e
τ → ceτ [a := p]

〈p || E〉
e
τ → 〈p || E〉

p
τ

〈µα .c || E〉
p
τ → (c[E/α ])τ

〈V || E〉
p
τ → 〈V || E〉

E
τ

〈V || µ̃[a].〈a || F 〉τ ′〉
E
τ → 〈V || F 〉

V
τ [a := V ]τ ′

〈V || F 〉
E
τ → 〈V || F 〉

V
τ

〈a || F 〉
V
τ [a := p]τ ′ → 〈p || µ̃[a].〈a || F 〉τ ′〉

p
τ

〈λa.p || F 〉
V
τ → 〈λa.p || F 〉

F
τ

〈λa.p || q · E〉
F
τ → 〈q || µ̃a.〈p || E〉〉

e
τ
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Danvy’s semantics artifacts

CPS :

J〈p || e〉τ K := [[e]]e [[τ ]]τ [[p]]p

[[µ̃a.c]]e := λτp.JcKτ [a := p]
[[E]]e := λτp.p τ [[E]]E

[[µα .c]]p := λτE .([[c]]c τ )[E/α ]
[[V ]]p := λτE .E τ [[V ]]v

[[µ̃[a].〈a || F 〉τ ′]]E := λτV .V τ [a := V ]τ ′ [[F ]]F
[[F ]]E := λτV .V τ [[F ]]F

[[a]]v := λτF .τ (a) τ (λτV .V τ [a := V ]τ ′ [[F ]]F )
[[λa.p]]v := λτF .F τ (λqτE .[[p]]p τ [a := q] E )

[[q · E]]F := λτ v .v [[q]]p τ [[E]]E
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Introduction A constructive proof of DC Algebraic models of classical realizability

Realizability interpretation

Store extension: τ C τ ′

Term-in-store (t |τ ): closed store τ s.t. FV (t ) ⊆ dom(τ ).
(# generalizes closed terms)

Pole : set of closures ⊥⊥ which is:

saturated:

c
′τ ′ ∈ ⊥⊥ and cτ → c

′τ ′ implies cτ ∈ ⊥⊥

closed by store extension:

cτ ∈ ⊥⊥ and τ C τ ′ implies cτ ′ ∈ ⊥⊥

Compatible stores: τ � τ ′

Orthogonality (t |τ )⊥⊥(e|τ ′): τ � τ ′ and 〈t || e〉ττ ′ ∈ ⊥⊥.

Realizers: definitions derived from the small-step rules!
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Realizability interpretation

Adequacy

For all ⊥⊥, if τ 
 Γ and Γ `c c, then cτ ∈ ⊥⊥.

Normalization

If `l cτ then cτ normalizes.

Proof: The set ⊥⊥⇓ = {cτ ∈ C0 : cτ normalizes } is a pole.

(+ Bonus: typed CPS translation unveiling Kripke’s forcing.)
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A classical sequent calculus with dependent types

Can this work?

Πp

.

.

.

.

Γ,a : A ` p : B[a] | ∆

Γ ` λa.p : Πa : A.B | ∆
(→r )

Πq

.

.

.

.

Γ ` q : A | ∆

Πe
.
.
.
.

Γ | e : B[q] ` ∆ q ∈ V

Γ | q · e : Πa : A.B ` ∆
(→

l
)

〈λa.p || q · e〉 : (Γ ` ∆)
(Cut)

−→
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A classical sequent calculus with dependent types

Can this work?

Πp

.

.

.

.

Γ,a : A ` p : B[a] | ∆

Γ ` λa.p : Πa : A.B | ∆
(→r )

Πq

.

.

.

.

Γ ` q : A | ∆

Πe
.
.
.
.

Γ | e : B[q] ` ∆ q ∈ V

Γ | q · e : Πa : A.B ` ∆
(→

l
)

〈λa.p || q · e〉 : (Γ ` ∆)
(Cut)

−→

Πq

.

.

.

.

Γ ` q : A | ∆

Γ,a : A ` p :�
��

B[a] | ∆ Γ,a : A | e :���
B[q] ` ∆

〈p || e〉 : (Γ,a : A ` ∆)
Mismatch

Γ | µ̃a.〈p || e〉 : A ` ∆
(µ̃ )

〈q || µ̃a.〈p || e〉〉 : (Γ ` ∆)
(Cut)
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A classical sequent calculus with dependent types

Can this work? X

Πp

.

.

.

.

Γ,a : A ` p : B[a] | ∆

Γ ` λa.p : Πa : A.B | ∆
(→r )

Πq

.

.

.

.

Γ ` q : A | ∆

Πe
.
.
.
.

Γ | e : B[q] ` ∆ q ∈ V

Γ | q · e : Πa : A.B ` ∆
(→

l
)

〈λa.p || q · e〉 : (Γ ` ∆)
(Cut)

−→

Πq

.

.

.

.

Γ ` q : A | ∆

Γ,a : A ` p : B[a] | ∆ Γ,a : A | e : B[q] ` ∆; {·|p}{a|q}

〈p || e〉 : Γ,a : A ` ∆; {a|q}
(Cut)

Γ | µ̃a.〈p || e〉 : A ` ∆; {.|q}
(µ̃ )

〈q || µ̃a.〈p || e〉〉 : (Γ ` ∆); {·|·}
(Cut)
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Introduction A constructive proof of DC Algebraic models of classical realizability

dL

A type system with:

a list of dependencies:

Γ ` p : A | ∆;σ Γ | e : A′ ` ∆;σ {·|p} A
′ ∈ Aσ

〈p || e〉 : (Γ ` ∆;σ )
(Cut)

a value restriction

Is it enough?

subject reduction

normalization

consistency as a logic

suitable for CPS translation
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dL

A type system with:

a list of dependencies:

Γ ` p : A | ∆;σ Γ | e : A′ ` ∆;σ {·|p} A
′ ∈ Aσ

〈p || e〉 : (Γ ` ∆;σ )
(Cut)

a value restriction

Is it enough?

subject reductionX
normalizationX
consistency as a logicX
suitable for CPS translation 7

JqK Jµ̃a.〈p || e〉K = JqK︸︷︷︸
¬¬A

(λa. JpK︸︷︷︸
¬¬B(a)

JeK︸︷︷︸
¬B(q)

)
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Introduction A constructive proof of DC Algebraic models of classical realizability

Toward a CPS translation (1/2)

This is quite normal:

we observed a desynchronization

we compensated only within the type system

# we need to do this already in the calculus!

Who’s guilty ?

J〈q || µ̃a.〈p || e〉〉K = JqK (λa.JpKJeK)

Mo�o: JpK shouldn’t be applied to JeK before JqK has reduced

(JqK (λa.JpK))JeK

So, we’re looking for:
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Étienne Miquey Classical realizability and side-e�ects 25/ 47



Introduction A constructive proof of DC Algebraic models of classical realizability

Toward a CPS translation (1/2)

This is quite normal:

we observed a desynchronization

we compensated only within the type system

# we need to do this already in the calculus!

Who’s guilty ?

J〈q || µ̃a.〈p || e〉〉K = JqK (λa.JpKJeK)

Mo�o: JpK shouldn’t be applied to JeK before JqK has reduced

(JqK (λa.JpK))JeK

So, we’re looking for:

〈λa.p || q · e〉 → 〈µ t̂p.〈q || µ̃a.〈p || t̂p〉〉 || e〉
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Introduction A constructive proof of DC Algebraic models of classical realizability

Toward a CPS translation (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ?

2 Is this typable ?
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J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK
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1 Is any q compatible with such a reduction ?

If q eventually gives a value V :  Jp[V/a]KJeK 3

If JqK→ λ .t and drops its continuation:  tJeK 7
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Toward a CPS translation (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ?  q ∈ nef

If q eventually gives a value V :  Jp[V/a]KJeK 3

If JqK→ λ .t and drops its continuation:  tJeK 7

Negative-elimination free (Herbelin’12)

Values + one continuation variable + no application
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Toward a CPS translation (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ?  q ∈ nef

2 Is this typable ?

Naive a�empt:

( JqK︸︷︷︸
(A→⊥)→⊥

( λa.JpK︸ ︷︷ ︸
Π(a:A)¬¬B(a)

)) JeK︸︷︷︸
¬B[q]
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Introduction A constructive proof of DC Algebraic models of classical realizability

Toward a CPS translation (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ?  q ∈ nef

2 Is this typable ?

Be�er:

( JqK︸︷︷︸
∀R.(Π(a:A)R(a))→R(q)

( λa.JpK︸ ︷︷ ︸
Π(a:A)¬¬B(a)

))

︸                                     ︷︷                                     ︸
¬¬B(q)

JeK︸︷︷︸
¬B[q]

(Remark: not possible without q ∈ nef)
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Introduction A constructive proof of DC Algebraic models of classical realizability

dL
t̂p

An extension of dL with:

delimited continuations

dependent types restricted to the nef fragment

delimited scope of dependencies:

c : (Γ `d ∆, t̂p : A; {·|·})

Γ ` µ t̂p.c : A | ∆
t̂p

I

B ∈ Aσ

Γ | t̂p : A `d ∆, t̂p : B;σ {·|p}
t̂p

E

Mission accomplished?

subject reduction

normalization

consistency as a logic

CPS translation

(Bonus) embedding into

Lepigre’s calculus X

# realizability

interpretation
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Étienne Miquey Classical realizability and side-e�ects 27/ 47

Regular mode Dependent mode

Γ ` p : A | ∆ Γ | e : A ` ∆

〈p || e〉 : Γ ` ∆

Γ ` p : A | ∆ Γ | e : A `d ∆, t̂p : B;σ {·|p}

〈p || e〉 : Γ `d ∆, t̂p : B;σ



Introduction A constructive proof of DC Algebraic models of classical realizability

dLPAω

A classical sequent calculus with:

stratified dependent types :

terms: t,u ::= ... | wit p

formulas: A,B ::= ... | ∀xT.A | ∃xT.A | Πa : A.B | t = u

proofs: p,q ::= ... | λx .p | (t,p) | λa.p

a restriction to the nef fragment

arithmetical terms:

t,u ::= ... | 0 | S (t ) | rect
xy
[t0 | tS] | λx .t | t u

stores:

τ ::= ε | τ [a := pτ ] | τ [α := e]

inductive and coinductive constructions:

p,q ::= ... | indt
bn
[p | p] | cofixt

bn
p

a call-by-value reduction and lazy evaluation of cofix
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Introduction A constructive proof of DC Algebraic models of classical realizability

End of the road

dPAω
+ control operators

+ dependent types

+ co-fixpoints

+ sharing & laziness

dLPAω?

+ sequent calculus

+ dependent types

+ co-fixpoints

+ sharing & laziness

?-calculus

Subject reduction

Subject reduction

Normalization

?

?

Étienne Miquey Classical realizability and side-e�ects 29/ 47



Introduction A constructive proof of DC Algebraic models of classical realizability

End of the road

dPAω
+ control operators

+ dependent types

+ co-fixpoints

+ sharing & laziness

dLPAωX
+ sequent calculus

+ dependent types

+ co-fixpoints

+ sharing & laziness

Subject reduction

Subject reduction

Normalization

macrosX

realizability
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Introduction A constructive proof of DC Algebraic models of classical realizability

Realizability interpretation

Same methodology:

1 small-step reductions

2 derive the realizability interpretation

Resembles λ[lvτ?]-interpretation, plus:

dependent types from Lepigre’s calculus

co-inductive formulas
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Realizability interpretation

Same methodology:

1 small-step reductions

2 derive the realizability interpretation

Resembles λ[lvτ?]-interpretation, plus:

dependent types from Lepigre’s calculus:

Πa : A.B , ∀a.(a ∈ A→ B)

co-inductive formulas
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Realizability interpretation

Same methodology:

1 small-step reductions

2 derive the realizability interpretation

Resembles λ[lvτ?]-interpretation, plus:

dependent types from Lepigre’s calculus

co-inductive formulas: by finite approximations

‖ν t
Xx
A‖f ,

⋃
n∈� ‖F

n

A,t ‖f
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Introduction A constructive proof of DC Algebraic models of classical realizability

Realizability interpretation

Same methodology:

1 small-step reductions

2 derive the realizability interpretation

Resembles λ[lvτ?]-interpretation, plus:

dependent types from Lepigre’s calculus

co-inductive formulas: by finite approximations

Consequences of adequacy:

Normalization

If Γ `σ c, then c is normalizable.

Consistency

0dLPAω p : ⊥
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Introduction A constructive proof of DC Algebraic models of classical realizability

Conclusion and further work

Contributions of this part:

classical call-by-need:

realizability interpretation

typed continuation-and-store-passing style translation

dependent classical sequent calculus:

list of dependencies

use of delimited continuations for soundness

dependently-typed continuation-passing style translation

dLPAω :

soundness and normalization,

realizability interpretation of co-fixpoints
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Conclusion and further work

Contributions of this part:

classical call-by-need

dependent classical sequent calculus

dLPAω

Further work:

1 Can dLtp be related to:

Pédrot-Tabareau’s Baclofen Type Theory ?

Vákár’s categorical presentation ?

Bowman et. al. CPS for CC ?

2 Relation to Krivine’s realizability semantics of DC:

Compatible with quote?

Approximation of the limits required for bar recursion?

3 Algebraic counterpart of side-e�ects in realizability structures?
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Part III

-

Algebraic models of classical realizability
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Introduction A constructive proof of DC Algebraic models of classical realizability

Algebraization of classical realizability

Realizers:

t 
 A defined as t ∈ ‖A‖⊥⊥

Key elements:

the pole ⊥⊥ the la�ice (P (Π),⊇)

Observations:

this induces a semantic subtyping:

A ≤⊥⊥ B , ‖B‖ ⊆ ‖A‖

connectives/quantifiers:

∀ =
k

∧ = × Realizability

This is to be compared with:

∀ =
k
= ∧ Forcing
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Introduction A constructive proof of DC Algebraic models of classical realizability

Implicative structures

FormulasTypes

Proofsλ-terms

In particular, a 4 b reads:

a is a subtype of b

a is a realizer of b

the realizer a is more defined than b
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Introduction A constructive proof of DC Algebraic models of classical realizability

Implicative structures

Definition:

Complete meet-semila�ice (A,4,→) s.t.:

if a0 4 a and b 4 b0 then (a→ b) 4 (a0 → b0)c
b∈B (a→ b) = a→

c
b∈B b

Examples:

complete Heyting/Boolean algebras

classical realizability:

A , P (Π);
a 4 b , a ⊇ b

a→ b , a
⊥⊥ · b = {t · π : t ∈ a⊥⊥,π ∈ b}

Étienne Miquey Classical realizability and side-e�ects 34/ 47

Chapter 10



Introduction A constructive proof of DC Algebraic models of classical realizability

Interpretating of λ-terms

λ-terms:

a@b ,
c
{c ∈ A : a 4 (b → c)} λf ,

c
a∈A (a→ f (a))

call/cc:

cc ,
c

a,b∈A (((a→ b) → a) → a)

Adjunction: a 4 b → c ⇔ a@b 4 c

Adequacy: If ` t : A then t
A 4 A

A

In particular:

k
A =

c
a,b∈A (a→ b → a)

s
A =

c
a,b,c∈A ((a→ b → c) → (a→ b) → a→ c)

Étienne Miquey Classical realizability and side-e�ects 35/ 47



Introduction A constructive proof of DC Algebraic models of classical realizability

Interpretating of λ-terms

λ-terms:

a@b ,
c
{c ∈ A : a 4 (b → c)} λf ,

c
a∈A (a→ f (a))

call/cc:

cc ,
c

a,b∈A (((a→ b) → a) → a)

Adjunction: a 4 b → c ⇔ a@b 4 c

Adequacy: If ` t : A then t
A 4 A

A

In particular:

k
A =

c
a,b∈A (a→ b → a)

s
A =

c
a,b,c∈A ((a→ b → c) → (a→ b) → a→ c)
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Introduction A constructive proof of DC Algebraic models of classical realizability

Implicative algebras

Separator S:

1 k
A ∈ S, and s

A ∈ S (Combinators)

2 If a ∈ S and a 4 b, then b ∈ S. (Upwards closure)

3 If (a→ b) ∈ S and a ∈ S, then b ∈ S. (Modus ponens)

Implicative algebras:

(A,4,→) + separator S

Entailment:

a `S b , a→ b ∈ S.

Adjunction

a `S b → c if and only if a × b `S c
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Introduction A constructive proof of DC Algebraic models of classical realizability

Implicative tripos

Adjunction

a `S b → c if and only if a × b `S c

(# (A/S,`S ,×,+,→) is a Heyting algebra)

Tripos:

T :

{
Set

op → HA

I 7→ AI/S[I]

Collapse criteria

The following are equivalent:

1 T is isomorphic to a forcing tripos

2 S ⊆ A is a principal filter of A.

3 S ⊆ A is finitely generated and t ∈ S.
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Introduction A constructive proof of DC Algebraic models of classical realizability

Decomposing the arrow

Logic:

A→ B , ¬A ∨ B

Di�erent axiomatic:

S1 : (A ∨ A) → A

S2 : A→ (A ∨ B)
S3 : (A ∨ B) → (B ∨ A)
S4 : (A→ B) → ((C ∨ A) → (C ∨ B))

λ-calculus:

λx .t , µ̃ ([x],β ).〈t || β〉 : ¬A` B

L
`

fragment of Munch-Maccagnoni’s system L

embedding of the call-by-name λ-calculus
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Introduction A constructive proof of DC Algebraic models of classical realizability

Disjunctive structures

Complete meet-semila�ice (A,4,`,¬):
1 ¬ is anti-monotonic

2 ` is monotonic

3

c
b∈B (a` b) = a` (

c
b∈B b) and

c
b∈B (b` a) = (

c
b∈B b)` a

4 ¬
c

a∈A a =
b

a∈A ¬a

Examples:

complete Boolean algebras

classical realizability in L
`

:

A , P (Π)
a 4 b , a ⊇ b

a` b , (a,b)
¬a , [a⊥⊥]

Induced implication

(A,4,→̀) with a →̀ b , ¬a` b is an implicative structure
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Introduction A constructive proof of DC Algebraic models of classical realizability

Interpreting L
`

Contexts:

(a,b) , a` b

[a] , ¬a

µ+.c ,
b

a∈A {a : c(a) ∈ ⊥⊥}

Terms:

µ−.c ,
c

a∈A {a : c(a) ∈ ⊥⊥}

µ () .c ,
c

a,b∈A {a` b : c(a,b) ∈ ⊥⊥}

µ[].c ,
c

a∈A {¬a : c(a) ∈ ⊥⊥}

Adequacy

1 for any term t , if Γ ` t : A | ∆, then (t[σ ])A 4 A[σ ]A ;

2 for any context e, if Γ | e : A ` ∆, then (e[σ ])A < A[σ ]A ;

Besides:

λ-calculus L
`

(A→,4,→) (A`,4,`,¬)

J K

[ ]A
→

[ ]A
`

ι
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Introduction A constructive proof of DC Algebraic models of classical realizability

Disjunctive algebras

Bourbaki’s axioms:

s̀
1

,
c

a∈A [(a` a) → a]

s̀
2

,
c

a,b∈A [a→ (a` b)]

s̀
3

,
c

a,b∈A [(a` b) → (b ` a)]

s̀
4

,
c

a,b,c∈A [(a→ b) → (c ` a) → (c ` b)]

s̀
5

,
c

a,b,c∈A [(a` (b ` c)) → ((a` b) ` c)]

Separator S:

(1) If a ∈ S and a 4 b then b ∈ S (upward closure)

(2) s1, s2, s3, s4 and s5 are in S (combinators)

(3) If a →̀ b ∈ S and a ∈ S then b ∈ S (closure under modus

ponens)
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Introduction A constructive proof of DC Algebraic models of classical realizability

Internal logic

Recall:

a `S b , a →̀ b ∈ S

Sum type:

1. a` b `S a + b 2. a + b `S a` b

Negation:

1. ¬a `S a →̀ ⊥ 2. a →̀ ⊥ `S ¬a

Double-negation elimination:

1. a `S ¬¬a 2. ¬¬a `S a

Theorem

S is an implicative separator
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Introduction A constructive proof of DC Algebraic models of classical realizability

Conclusion

Disjunctive structures:

induced by classical realizability

allow to adequately embed L
`

are implicative structures

Disjunctive algebras:

are intrinsically classical

are implicative algebras

do not necessarily collapse to a forcing situation

Conclusion

Implicative algebras are more general.
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Introduction A constructive proof of DC Algebraic models of classical realizability

Conjunctive algebras

Same process:

1 Conjunctive structures (A,4,⊗,¬)
2 Adequate embedding of L

⊗

3 Conjunctive algebras

What we got:

Duality between conjunctive and disjunctive structures

Construction of conjunctive algebras from disjunctive algebras.

What we don’t:

Internal logic

Triposes

Construction of disjunctive algebras from conjunctive algebras.
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Introduction A constructive proof of DC Algebraic models of classical realizability

Final picture

Étienne Miquey Classical realizability and side-e�ects 45/ 47

Implicative algebras

⇒ ∧ ∀ M �
→ ×

c
∈ S

Disjunctive algebras

¬ ∨ ∀ M �
¬ ` c

∈ S`

Conjunctive algebras

¬ ∧ ∃ M �
¬ ⊗

b
∈ S⊗

Boolean algebras

¬ ∧ ∀ M �
¬ f

c
∈ F

a→ b = ¬a` b

a→ b = ¬ag b

` = g

a / b = b 4 a, S⊗ = ¬−1 (S`)

⊗ = f

(Bonus: proven in Coq )
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Introduction A constructive proof of DC Algebraic models of classical realizability

Further works

Several directions to explore:

1 Complete the duality:

Conjunctive triposes?

From conjunctive algebras to disjunctive algebras?

2 Combination of disjunctive and conjunctive algebras:

Would it collapse to a forcing situation?

Any chance to get call-by-push-value algebras?

3 Algebraic counterpart of strategy/side-e�ects:

Lazy algebras?

Algebraic counterpart of memory?

. . .
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Thank you for you a�ention.
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CbN CPS dLPA
ω

Implicative Alg. ⊗-algebra

Implicative tripos

Tripos:

T :

{
Set

op → HA

I 7→ AI/S[I]

For the product AI
, two possible separators:

SI ,
∏

i∈I S

S[I] , {a ∈ AI : ∃s ∈ S.∀i ∈ I.s 4 ai }

(product)

(uniform)

The diagram:

AI AI/S[I]

AI/SI (A/S)I

= T (I)

= T (1)I

[·]/S[I]

[·]/SI
ρIιI

ϱI

∼
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CbN CPS dLPA
ω

Implicative Alg. ⊗-algebra

Application in L
⊗

:

t u , µα .〈t || µ[β].〈(u, [α ]) || β〉〉

Application in conjunctive structures:

t@u =
k
{a : t 4

j
{¬b : u ⊗ ¬a 4 b}
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