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Linear Logic seems to be everywhere.

How | met LL: as a natural structure of a model of sequential
computations (strong stability ~» hypercoherences in 1992).
The same thing happened
e carlier for Berry’s stable semantics (stability ~» coherence
spaces): this is how Girard discovered LL
® |ater for Scott semantics (Scott continuity ~» prime algebraic
complete lattices, Krivine, Huth, Winskel).
We know now dozens of models of programming languages which
can nicely be described as models of LL.



In what does it differ from usual logic?

® |ogic is usually thought of as a formalism to express and
prove properties of things.

® |n the 20th century one understood that proofs are programs
(Gentzen cut-elimination, Godel Dialectica, Curry Howard
correspondence). Logical formulas become types.
® Linear logic is a Curry Howard logic: LL formulas are types.
® LL shows up when one builds universes (categories) of spaces
and morphisms representing computations between them.
This talk: illustration on the example of probabilistic coherence
spaces.



The category of substochastic matrices

Example

For some reason, we want to build a simple theory of
subprobabilistic distributions and substochastic matrices acting on
them.

It can be described as a category:
® objects are sets /, J,. ..
® a morphism /| — J is a matrix s € (R>g)'*” such that
Viel ZjeJSiJ <1
So a matrix s : I — [ is a submarkovian chain (we accept loss of
mass: possibly diverging computations).



As a category

This simply means that we have objects (sets), morphisms
(matrices), a way of composing them:

Ifs:l—Jandt:J— Kthen ts: |/ — K is the product of
matrices

(ES)ik = Sijtik

Jjed

And identity matrices Id; : [ — 1, (Id;); v = 6, ir.



Matrices and vectors (distributions)

This seems very stupid, but there are interesting structures
behind. ..

The singleton set 1 = {x}.

® A matrix x : 1 — / is just a subprobability distribution on /,
x € D(1).

® up to trivial iso x € D(/) simply means x € (Rxg)’ with
2ierXi <1
e If s:/ — Jthen sx € D(J) is the image distribution of x:

(SX)J' = ZS,’JX,‘.

i€l



Codistributions and transpose

What is a matrix X" : | — 1, say x’ € D'(/)?
® It means x’ € (Rxo) with Vi€ [ x/ <1
e If s: J— | then the transpose st € (R>)”*! of s, defined
by s;; = 51, satisfies s* x’ € D'(J)
e If xe D(/), thatis x: 1 — /, then x’x : 1 — 1 is just an
element of [0, 1], notation

(x,x"y = (X'x) = Zx,-x,-’ €[0,1] (NB: / can be )
icl



Adjunction

(sx,x")y = (x, s x) Z x,s,J

iel,jed



Duality and linear negation

There is a duality between D(/) and D’(/) similar to the duality
between ¢! and £>° in Banach spaces.

D'(1) = {x' € (Rs0)' | ¥x € D(/) (x,x) < 1}
D(/) = {x € (Rx0)' | VX' € D'(I) (x,x") < 1}



A space of substochastic matrices

Let / and J be two sets.

Let Stoc(/, J) be the set of all s: / — J, so
StOC(/, J) g (Rzo)lx‘l.

Definition

If ue (Rzo)/ and v € (Rzo)"l let u®@v e (Rzo)lx"l be defined by
(u®v)ij = uv.

Fact

Stoc(/, J) =
{s€®Rx0)"! |¥xeD(l)y' eD'(J) (s, x®y) <1}



Indeed

s € Stoc(/,J) & Vx e D(/) sx € D(J)
& VxeD()Vy' eD'(J) (sx,y'y <1
S VxeD()Vy eD'(J) (s,xy') <1

since

(sx.y)=>_ (ZS,JX,>

JEJ iel
/
= E SijXiY;
i€l,jed
= (s, x®y")



A common pattern!

In all these cases we have defined a P C (Rxp)’ for some set /.

This P is characterized by
P={x€Rx) | eP (x,x) <1} =P+

for some P’ C (R>o)'. A predual of P.

The existence of such a P’ is equivalent to P = P+,
For all P, @ C (Rxp)’

e PCQ=0QtCPt

e pC Pt
So P+ = Pt always holds.



Probabilistic coherence spaces (PCS)

A PCS is a pair X = (| X|, PX) where
® |X|is a set (the web)
® PX C (Rx0)XI such that PX = PX1+

® we also assume
Vae|X| 0<sup{xs|x€ePX}<oo

so that all coeffs remain finite.
X+ = (|X],PX"*) is also a PCS.



Of course (/,D(/)) and (/,D'(1)) are PCS simply denoted D(/)
and D/(/). We have D'(/) = D(/)*.

Stoc(/, J) is an instance of a more general construction:
Definition

If X and Y are PCS, we define a PCS X — Y by
X — Y| =|X| x |Y]| and

P(X —o Y) = {s € (Rx0) XY | Vx € PX sx € PY}
={x®y' |xePXandy € PYl}l .

Just as in the special case of Stoc(/, J). By construction, it is a
PCS.

So we have Stoc(/, J) = (D(/) — D(J)).



LL multiplicative constructs

1 unit object, P1 =[0,1], and 1+ = 1.
X —o Y is linear implication.

X+ = (|X|,PX?), linear negation, and we have X+ = X as
in classical logic.

X®Y = (X — Y+)L, multiplicative conjuction, tensor
product, times. Then |[X ® Y| = |X]| x |Y] and

PX®Y)={x®y|xePXandyePYy}t

Think of AA B = —(A — =B) in classical logic.

X®Y =Xt —v=(xteYL)" multiplicative
disjunction, cotensor product, par. Think of
AV B=-A— B.



A category

We have now also a generalization of substochastic matrices: the
elements s of P(X — Y).

Remember: they are characterized by a simple property. Given
s € (Rso) XYl one has

SEP(X —Y)& VxePX sxePY

50 1dx) € P(X — X) and if s € P(X — Y) and t € P(Y —o 2)
then ts € P(X — Z). Because (ts)x = t(sx).



Matrices are linear maps

An element s of P(X — Y) is a linear morphism from X to Y.
And it is really linear (and continuous) in the sense that if
(x(i))ien are elements of PX such that } .y x(/) € PX, one has

sO_x() =) sx(i)
ieN ieN
and also s (Ax) = A(sx) for A € [0, 1].

X+ ~ (X —o 1) so X+ is the space of linear continuous forms on
X, exactly like E* (linear dual) in linear algebra. And here we have
X+ ~ X exactly like E** ~ E in finite dimensional vector spaces.

Here this reflexivity holds also in infinite dimension (when |X]| is
infinite). Very difficulte to achieve with vector spaces.



Tensor product and multilinear maps

We have them for free: let s € P(X1 ® -+ - ®@ Xk —o Y).
Then the map

k
§:HPX,-—>PY
=1

is k-linear, that is, separately linear in each argument.



A bilinear map

For instance, we can internalize matrix composition as a bilinear
map:

v E P(((Y—oZ)@(X—o Y))—O(X—O Y))
such that
VteP(Y = Z),VseP(X —Y) q(t,s)=v(t®@s)=ts

namely rY(b,C),(a,b’) = 6b'bl.



Categories

The right categorical setting for describing the situation is that of
a symmetric monoidal category (SMC), here the category Pcoh:

objects are the PCS X

morphisms from X to Y (Pcoh(X, Y)) are the elements of
P(X —o Y), identities and composition as described

together with ® which is a functor Pcoh? — Pcoh

and additional structures expressing that ® has 1 as neutral
element, is associative, commutative

and moreover it is closed, meaning that we have X — Y
such that Pcoh(Z ® X, Y) ~ Pcoh(Z, X — Y)

and X+ = (X —o 1) with X+t ~ X (x-autonomy).



Cartesian product

X ® Y is not the “cartesian product” (or categorical product) of
X1 and X5
e there are no projections p; € Pcoh(X; ® X3, X;) such that
pi (x(1) ® x(2)) = x(i) in general.
® and there is no duplication d € Pcoh(X, X ® X) such that
dx =x® x.

Take X3 = 1. Then for each x € PXy and A € PX; = [0, 1] we
should have p; (A ® x) = p1 (Ax) = X. This contradicts linearity
in x (take x = 0).



Projection as marginalization

In some cases, there are projections, for instance, we have a linear
morphisme 6, € Pcoh(D(/), 1) given by (6));« =1

9/1D(/)->]l

Does not work for D’(/)!



So by functoriality of ® we have
Ty =0, ®1d € Pcoh(D(/) ® D(J), D(Y)).

We have D(/) ® D(J) = D(/ x J). Given z € D(/ x J), we have

To Z = (Z Z,'J)
iel jed

the marginal distribution.

The existence of 6, is related to a crucial logical structure of
D(/): positivity.



Similarity with vector spaces

Again, strong similarity with vector spaces: there is a cartesian
product of vector space, the so-called direct product of vector
spaces £ x F (which coincides with direct sum E & F).

direct product vs. tensor product

But E x F does not coincide with the tensor product E ® F! A
linear map E x F — G is not the same thing as a bilinear map
ExF — G. AlsodmE ® F =dim E dim F whereas

dmE x F =dimE +dim F.

We also have a direct product X & Y and a direct sum X @ Y in
PCS, but they do not coincide.



If (Xi)ies is a family of PCS we can define X = &j¢; X; by

* [X]=Uig i} x |Xil
® and, for z € (Rxg)Xl, z € PX if for all i € / one has
7; z € PX; where m; € (R>0) X~ the ith projection is

(Wi)(j,a),a/ = 0j,j0a,a -

® so that PX ~ [[,, PX; by z — (m; 2);¢/ and
(x(i))ier = (x(i))ies given by Z; 5y = x(i)a-
By construction we do have now linear projections
T € PCOh(&jeJ XJ', X,‘).



We can use duality to define the coproduct:

o Xi=(& X/L)L
iel i€l

then we have

P(2 Xi) = {<>\,-x(i)>,-€, | X € D(/) and Vi x(i) € PX,-} CP(& X).



Beyond linearity: the exponential

A polynomial function on matrices

Given k € N imagine we want to consider the function

f1P(X —o X) = P(X —o X)
kX

k —

t—t=t---t

so that

f(t)ac = Z Eoo.by "+ " by by Ty, by -

This is not a linear function when k > 1: f(\s) = M*f(s).



An analytic function on matrices

Or even the function

g:P(X — X) = P(X — X)

0o 1

-1 k

t—e kE —k!t
=0



If m € Man(/) (finite multiset) and v € (R>p)’ we set

um = H U/m(i)

i€l
and u) € (Rso)Man() is defined by ulf) = u™,

Then we define a PCS IX by [1X]| = Mg, (|X|) and

P(1X) = {x" | x € PX}Ll .



Ift € (Rsg)"™=Y! one has

t € Pcoh(1X, Y) < Vx e PX tx) e PY

The function

t:PX > PY

X tx(!)

is an "analytic function”, t (the powerseries) is completely
determined by this function.



Examples of analytic functions

Let k € N. Take f € (Rxg)' (X—X)=(X=X) given by

1 if3bg, ..., bk€|X| bg = a, by = c and

fm,(a,c) = m = [(bo, b1), (b1, b2), ..., (bk—1, bk )]
0 otherwise.

Then given s € P(X — X) we have 7(s) = sX.



Let g € (Rxg)' X—X)=(X=X) given by

e—1

T if dbg, ..., bk€|X|, bg = a, by = c and

Im,(ac) = m = [(bo, b1), (b1, b2), ..., (bk—1, bk)]
0 otherwise.



[X—oX|

Let s € P(X — X) and t = g(s) € R>g , we have
~ el ,
Vx € PX  t(x) = ZWS (x) € PX
k=0

because Vk € N 3K(x) € PX and 35° &+ = 1.
Hence g(s) € P(X — X).

Since this holds for all s € P(X — X), we have
g € Pcoh(I(X — X), X —o X).



Example: stochastic automata

Let A (alphabet) and Q (states) be sets.
D(A) ® D(Q) — D(Q) is the space of stochastic automata.

The space of words is the “least” solution W of
W =1 (D(A)® W). Then it is easy to see that W = D(A<Y).

There is an analytic “iteration” function
r € Pcoh(W ® I(D(A) ® D(Q) — D(Q)), D(Q) — D(Q)).

1 ifw={a1, ..., Otk),

m = [(a1, bo, br), . .., (o, bx—1, bx)]

rw,m,(a,c) - bo =4 bk =C

0 otherwise.



So r defines a function

7:PD(W) x P(D(A) @ D(Q) — D(Q)) — P(D(Q) — D(Q))
(z,8)—r (z ® s(!))

linear in its first argument but not in the second argument.



Given

® 7z € PD(W), that is z is a subprobability distribution on
words

* s P(D(A) ® D(Q) — D(Q)) is a stochastic automaton

M29)=" > Zayays(a) - s(@)

keN aq,..., O{kGA
where s(a) € P(D(Q) — D(Q)) is given by s(ct)g.¢ = Sa.q.q': the
transition matrix associated with letter a.

If i, f € Q (initial and finite state), 7(z, s);.r € [0, 1] is the
probability that we can reach f starting from /.



Pcoh is a very expressive setting

Ifs € P(IX — X) thens : PX — PX is Scott continuous, that is

o x <y =75(x)<5(y) (where x <y simply means
Va e |X| xa < ya)

® and if (x(n))nen is @ monotone sequence in PX, we have

?(iggxw)) = iggg(X(n))-

As a consequence s has a least fixed point sup,cyS"(0) € PX.



And better, we have Y € Pcoh(!(!X — X), X) such that

Vs € P(IX — X)  Y(s) = sup3"(0).
neN

So we have general recursion in Pcoh.



A simple example of fixed point

For instance consider
tePcoh((1®1)® (11 —1),!1 — 1)

such that, for x e P(1 & 1), s € P(11 — 1),
s’ =t(x,s) € P(11 —o 1) is characterized by

S'(y) = xey + X3(y)?

For each x € P(1 @ 1), the function s+ s’ has a least fixed point
s which satisfies

Yy €10,1] 3(y) = xey + x3(y)?



We can solve this equation:

Xy if xr =0
s(y)=4q1—-1I- 4xexey

otherwise
2Xf

This can be written as a power series with > 0 coefficients in y,
X¢ and Xf.

Using ) we have defined an element f € Pcoh((1 @ 1) ®!1, 1)
such that

/f\(x, y) =Xy + Xf?(X, y)2



We can also solve general “recursive systems of type equations”,
for instance find a unique "minimal” PCS D such that

D=1&(!D—-D)=1&(?D*+ % D)

that is, a model of the pure A-calculus.



A simpler example of recursive type

There is a “minimal solution” to the equation
S=1&(Sa5)

|S| is obtained by iteration from () of the following operation on
sets:

E—={(1,x}u{(2,(1,a)lacE}tU{(2,(2,a)|acE}

so up to renaming
S| = {0, 1}



An antichain is a subset ¢’ of |S| such that
Va,be u a< b= a= b where < is the prefix order.

Then x € (R>0)!3! is in PS iff for any antichain ¢ one has
Zaeu’ Xa < 1.
For instance, if s € {0, 1}* then the x € (R>0)/®! such that

1 if ais a prefix of s
a — .
0 otherwise

isin PS.



More generally if u is a sub-probability measure wrt. the Borelian
o-algebra of the Cantor space {0, 1}*, we can define
X € (R20)|S| by

xa = p{s €{0,1}* | a prefix of s}

and then x € PS. Let us set x = r(u).

Idea: antichains ~ open subsets of the Cantor space.



Let t € (R>0)/°™°! be defined by

1 ifa=b0ora=>bl
ta,b - .
0 otherwise

We have t € Pcoh(S, S).

Simply because if ¢ is an antichain then {b0, b1 | a € v’} is again
an antichain.



Then for x € PS, we have t - x = x iff
Vb e |S| Xp = Xpo + Xp1

which is equivalent to the existence of a subprobability
distribution p on the Cantor space such that x = r(u).



What is so special about ! , logically?

If we have s € Pcoh(X ® X, Y'), which induces the bilinear
function

S:PX xPX —PY
(x(1),x(2)) = s (x(1) ® x(2))
we cannot “diagonalize”: the map f : PX — PY defined by
f(x) =35(x, x) is not linear (it is quadratic).

We obtain the “cone” of measures on the Cantor space as the
equalizer of t and the identity.



In contrast if s € Pcoh(!X ® !X, Y), which represents the
two-parameter analytic function

S:PXxPX —=PY
(x(1).x(2)) = s (x(1) @ x(2))
then we can diagonalize: there is a t € Pcoh(!.X, Y) such that

t(x) =3(x, x).



The deep reason is that we have cx : Pcoh(!.X, !X ® IX) such
that

namely (cx)m,(,,,) =0m+r. Then t =scx. Thisis Contraction,
allows to duplicate data.



Similarly if y € PY, the constant function

PX = PY
X=Yy

is not linear (unless y = 0). But there is s € Pcoh(!X, Y) such
that 5(x) =s-x() = y.

The deep reason is that we have wx € Pcoh(!X, 1) such that
wx x() = 1. This is Weakening, allows to erase data.

(Wx)mx = 5m,[]



And now, what is LL?

A possible answer
A logical formalization of this kind of situation, that is, of an
idealized multi-linear algebra with the following features:

® [t is non degenerate in the sense that ® and its dual % are
different operations, and similarly for direct product & and
direct sum .

e All objects are reflexive, in the sense that ALL = A.

® There is an exponential | allowing to write non-linear
proofs/programs.



LL can be split in 3 fragments:

® multiplicative: constants 1 (true), L (false), binary
connectives ® (conjunction) and % (disjunction)

® additive: constants T (true), O (false), binary connectives &
(conjuction) and @ (disjunction)
® exponentials: unary connectives ! and 7.



Linear negation is defined by induction

1t =1 1t=1
(Ao B): = AL 3 B+ (A% B): = At @ B+
0t =T TH=0
(ApB)t = AL & B (A& B)t = At @ B*
(1A)*F =7(AY) (?A)" =1(AY)
so that
At = A

We define A — B = A+ % B.



Interpretation of formulas in Pcoh

Then we define in an obvious way [A] as a PCS for each formula
A:

® [1] =[L] =1 as indeed 1+ = 1 in Pcoh

e [T]=[0] = T the PCS such that |T| = 0.

* [A® B] =[A] ® [B] etc

Example
[tel]l=1®1= {01}, {(x x) € (Rx0)? | x0 +x1 < 1})
[1&1] =1& 1 =({0,1}, {(x0, x1) € (R>0)? | x0, 31 < 1})
[[(1 & 1) D (1 & 1)]] = {(Xo,Xl,XQ,X3) € (R20)4
| X0 + X2, X0 + X3, X1 + X0, X1 + x3 < 1}



The LL sequent calculus is a logical system which allows to prove
sequents - I where I is a list (A1, ..., Ap) of formulas.

o

Intuitively, the “,

“won

where the “,

is a “meta” % connective. As in Gentzen LK,
in the sequent - F1, ..., Fx stands for a V.

A proof is a tree whose nodes are labeled by logical rules, written

in the format
Ty Ty

FA




If mis a proof of - Aq, ..., Ak, one defines (by induction on the
tree )

[7] € Pcoh(L, [A1]% - - B[A«])
or equivalently

[7] € Peoh([AT] ® - ® [A- ] @ [AL ] @ - @ [Ac]L [A])



Multiplicative rules

Multiplicative constants:

— e
-1 T, L
Multiplicative connectives:
FIMi, A1 FTs A T, AL A
FIi,le, A1 ® A FILAL % Ao

Juxtaposition of contexts



Additive rules

Additive constants:
no rule for O ET T

Additive connectives:
FTA; FTA FT, A
|—r,A1€BA2 |—r,A1&A2

Superposition of contexts



ENE

The “and” function of type
lel)e(lel) olol=((L&L)B(L&L)ZH(1a1)

F1 F1 F1 1
L, L1 [l I | [l O L, L1
FL 1,141 | FLlL 1l 1@l ' FLl 1 1®1 ' Fl 1,141
FL1l&1, 141 FL1l&1,141

Fl& Ll 1& 1,161
F(L&L) P (L&) 1a1
F(L&L) B (L& L) (1a1)

(n)



Interpreted by t € Pcoh((1®1)® (1@ 1),1® 1) such that

?(X, y) = Xeyeer + (Xeye + Xeve + Xevs)er

€ € (Rzo)/ defined by (6,')1' = 5,"1'.



Exponential rules

Weakening and contraction:

T FT,7A,7A
FI,7A FI7A

Dereliction and promotion:

T, A F A1, ..., ?A B
FT,7A F2A1,...,7A IB




The axiom

AL A

There is also an echange rule

where f:{1,..., k} —{1,..., k} is a bijection. We keep its use
implicit.



The cut rule

FILA AL A
FT,A

Theorem (Hauptsatz)

Any proof m of = T can be transformed (by rewriting) into a
cut-free proof mg of FT.

Moreover [r] = [mo].



We have built a proof 7 (the and function on booleans) of
F1l&1,1&1,161
We can “diagonalize” it as follows:

e

Flalleliel
Pl el el
er

FAL& L), (L& 1) 1®1
FAL& L), 1Dl

contr

This is a proof p and [p] =s € Pcoh(!(1 & 1),1 & 1) such that

S(x) = t(x, x) = X2 ex + (2xxs + X7 )es .



A simple use of promotion

This proof p represents a non-linear (actually quadratic) function
191 —-191.

We should be able to “compose it with itself”, this is exactly the
purpose of the promotion rule (combined with cut):

P
FAL& 1), 191 P
prom )
F(L& L), (1®1) FAL& L) 1@l
(L& L), 1@l

cut

getting an “homogeneous polynomial of degree 4" on booleans:

Xt4€t + (4Xt3yf + 6Xt2_yf2 + 4XtJ/f3 + J/f4)ef



The Girard translation: representing the CBN
A-calculus in LL



Types

Let ¢ be a ground type.
o,T, - =L]o=>T
We choose a formula ¢ of LL and we define o* as a formula of LL

by
(c=71)" =(lo" — 7%



Terms

MN, - =x | AT M | (M)N

Given a term M, a context ¥ = (x; : 01, .. ., Xk : 0k) and a type
T such that ¥ = M : 7, we can define My, a proof of



The translation is by induction on M.

If M = x;, sothat T =0;, M* is




If M = Xx° N so that T = 0 = @ and hence 7 = ?(c*)* & ©*,
then by inductive hypothesis we have a proof

M;,X:O’
F2(o1*)*, .., (o *)t, (o)t o

F2(o1*)* .., 2(ok*)t, (o)t B o




If M=(N)PwithEFN:@=7and T+ P:¢. Let

= (2(c1")*, ..., ?(ok*)t) then Mg is
P
T,
: % 7('0 prom — aX
. Ny - T lp* -7 () -
ol (7 i ETL7 1o @ (T7)+ .
cu
LT, T
-7

because all formulas of ' are of shape ?A. It is only for this
reason that we can use promotion and contraction.



This translation preserves B-reduction: if M 38 M’ then My
reduces to M’y by cut elimination.

The converse is morally true.



What can we compute in LL?

Nothing more than in the simply typed A-calculus. ..
But we can extend LL so as to make it more expressive:
® 2nd order (or more)
® |east and greatest fixed points of types

® extension allowing non-terminating “proofs”: “untyped” LL a
la Danos-Regnier, LL with a ground type of integers and
general recursion analog to PCF etc.



Conclusion (provisional)

LL allows to embed functional computations in a more symmetric
world, where the input/output or program/environment
dichotomy is transformed.

LL polarities are exactly about this dichotomy.



Polarities



To be continued!
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