Sequential algorithms
and
innocent strategies

share the same execution mechanism

Pierre-Louis Curien

(IRIF, 72, CNRS — Paris 7 — INRIA)

April 2019, Galop workshop, Prague

PLAN of the TALK

. Geometric abstract machine “in the abstract” : tree interaction and
pointer interaction (designed in the setting of Curien-Herbelin’s abs-
tract Bohm trees)

. Turbo-reminder on sequential algorithms (3 flavours, with focus on
two : as programs, and abstract)

. Geometric abstract machine in action

. Turbo-reminder on HO innnocent strategies for PCF types (2 fla-
vours, “meager and fat” = views versus plays)

. Geometric abstract machine in action

. (Inconclusive!) conclusion : the message is : “il y a quelque chose
a gratter”

Tree interaction

Setting of alternating 2-players’ games where Opponent starts.
Strategies as trees (or forests) branching after each Player’s move
Interaction by tree superposition :

STRATEGIES EXECUTION

cafyt wnafp¥e
. 4 ...

anf @ 2 {5

The trace of the interaction is the “common branch” x a b ¢ :

Step n of the machine played in one of the strategies always followed by
step (n + 1)’ in the same strategy. Next move (n + 1) is played in the
other strategy (choice of branch dictated by (n + 1)/).

Pointer interaction

Now, in addition, Player's moves are equipped with a pointer to an ancestor
Opponent’s move.

STRATEGIES EXECUTION

e a {b e, <] o1 a {(b, 3) [c, <]
b ¥,5) ...

a [b7 &] {2 [b’7 (l)] <a7 2> [b, &] {Elc, 4> [b/7 (i’]

If (n + 1)’ points to m, then (n + 1) should be played under m/.

Concrete data structures

A concrete data structure (or cds) M = (C, V, E, 1) is given by three sets
C,V,and E C CxV of cells, values, and events, and a relation - between
finite parts of E (or cardinal < 1 for simplicity) and elements of C, called
the enabling relation. We write simply e - ¢ for {e} + c. A cell ¢ such that
- cis called initial.

(+ additional conditions : well-foundedness, stability)

Proofs of cells ¢ are sequences in (C'V)* defined recursively as follows : If
c is initial, then it has an empty proof. If (¢1,v1) F ¢, and if p; is a proof of
c1, then p1 cq v1 Is a proof of c.

Configurations (or strategies, in the game semantics terminology)

A configuration is a subset x of E such that :

(1) (c,v1),(c,v0) € x = v = vo.

(2) If (¢,v) € z, then z contains a proof of c.

The conditions (1) and (2) are called consistency and safety, respectively.

The set of configurations of a cds M, ordered by set inclusion, is a partial
order denoted by (D(M), <) (or (D(M), Q)).

Some terminology

Let x be a set of events of a cds. A cell ¢ is called :

e filled (with v) in z iff (¢,v) € =,

e accessible from x iff x contains an enabling of ¢, and c is not filled in x
(notation ¢ € A(x)).

Some examples of cds’s

(1) Flat cpo’s : for any set X we have a cds
X, ={7hX {7 xX, {F7}) with D(X) = {0tu{(?,2) | z € X}

Typically, we have the flat cpo N ;| of natural numbers.

(2) Any first-order signature X gives rise to a cds My :
— cells are occurrences described by words of natural numbers,

— values are the symbols of the signature,
— all events are permitted,
— Feand (u, f) Fwuiforall 1 < i < arity(f).

Product of two cds’s

Let M and M’ be two cds’s. We define the product M x M’ = (C,V, E,I-)
of M and M’ by :

e C={cl|ceCpq}U{d.2]|d e},
o V="V U Vi,
o £E={(c1,v)]| (c,v) € Epjt U{(c.2,v") | (,v) € Eppl,

e (c1.1,v1),...,cn.1,vp) F c.1 & (c1,v1),...(cn,vn) F ¢ (and simi-
larly for M).

Fact : M x M’ generates D(M) x D(M/).

Sequential algorithms as programs

Morphisms between two cds’'s M and M’ are forests described by the
following formal syntax :

F..={Ty,...,Tn}
T ::= request ' U
U:=walof cis[...v— Uy...] | output v' F

satisfying some well-formedness conditions :

— A request ¢’ can occur only if the projection on M’ of the branch
connecting it with the root is a proof of ¢’.

— Along a branch, knowledge concerning the projection on M is ac-
cumulated in the form of a configuration x, and a valof ¢ can occur
only if c is accessible from the current z. In particular, no repeated
valof c!

10

Exponent of two cds’s

If M, M’ are two cds’s, the cds M — M’ is defined as follows :
— If z is a finite configuration of M and ¢’ € Cyy, then z¢’ is a cell of
M — M.
— The values and the events are of two types :
— If ¢ is a cell of M, then walof c is a value of M — M/, and
(zc, valof ¢) is an event of M — M’ iff ¢ is accessible from z;
— if v’ is a value of M/, then output v’ is a value of M — M/, and
(zc, output v") is an event of M — M iff (¢/,v’) is an event of

M.
— The enablings are given by the following rules :
- (Oc iff ¢
(yc', valof ¢) - zc iff z=yU{(c,v)}

(zd, output w') -z’ iff (d,w')F ¢
11

An example of a sequential algorithm

The following is the intepretation of

Af.case fTF [T — F] : (booli1 X boolis — booly) — boolc

15 valof 711 valof TL7?1 s valof 712 valof TF?1 {is output T1 output F.
request?c valof L. 171 < is valof 715 valof LF?1 {is valof ?11 valof TF?1 {is output T1 output Fe
18 output Ty output Fe

to be contrasted with the interpretation of the same term as a set of views
in HO semantics :
211 T

712 F1o
Tl Fe

?E ?1

12

An example of execution of sequential algorithms

F' : B x Ms — B explores successively the root of its second input, its
first input, and the first son of its second input (if of the form (f(£2,2)) to
produce F, while F' = (Fy, F>), where F; : My — B (resp. > : My —
M) produces F' without looking at its argument (resp. is the identity).

Branch of F”/ = F’ o F' : My — B being built :
{(’request 7, 1) valof € (is f,2) valof 1 {is f,3) output F
Branch of F’ being explored :
{(request ?,1.1) valof 2 (is f2,2.2) valof ?1 (is F1,2.4) valof 15 (is f2,3.2) output F
Branches of F' being explored :

(request 71,2.3) output F1
(request €2,1.2) valof € (is f,2.1) output fo (request 12,2.5) valof 1 (is f,3.1) output f>

Pointer interaction : 2.5’ points to (2.2), hence 2.5 is played under (2.2)". Pointers are
implicit in sequential algorithms, i.e., can be uniquely reconstructed : each valof c points
to is v, where is v follows valof d and (d,v) F c.

13

Equivalent definitions of sequential algorithms

We have 3 equivalent definitions of sequential algorithms :
1. as programs (our focus here) ~~ ABSTRACT MACHINE
2. as configurations of M — M’ ~ CART. CLOSED STRUCTURE

3. as abstract algorithms (or as pairs of a function and a computation
strategy for it). Abstract algorithms are the fat version of configura-
tions : if (yc',u) € a,y < z, and (zc’,u) € Ep_\p then we set
at () = w. If we spell this out (for y < z) :

(yc,valof ¢) € aand c € A(z) = a7t (zcd) = valof ¢
(yc, output v') € a = a1 (zd) = output v'

~ “CGONCEPTUAL” COMPOSITION

14

Composing abstract algorithms

Let M, M’ and M” be cds’s, and let f and f’ be two abstract algorithms
from M to M’ and from M’ to M, respectively. The function g, defined as
follows, is an abstract algorithm from M to M" :

p

output "' if f/((fex)") = output v

o) = valof c { f'((fex)d") = walof ¢’ and
f(zc") = wvalof c.

15

Perspective

Thus, sequential algorithms admit a meager form (as programs or as confi-
gurations) and a fat form (as abstract algorithms)

Similarly, innocent strategies as sets of plays are in fat form, while the
restriction to their set of views is their meager form

— Fat composition is defined synthetically.

— Meager composition is defined via an abstract machine : the same
for both = the Geometric Abstract Machine (with the proviso that the
execution of sequential algorithms uses an additional call-by-need
mechanism added to the machine).

16

PCF Bohm trees

M = N2 W (the length of & may be zero)
W:=n|caseaM [...m — Wy, ..]

Taking the syntax for PCF types o ::= nat | 0 — o, we have the following
typing rules :

[,x1:01,...2n : op W :nat

'Xxq...2p. W 071 — ... — op — nat

.hheiobEM; o, ..l xiob W, nat...

[+ n :nat M,z :0F caseaxMy...Mp [m1 — W1...mqg— Wy : nat

where, in the lastrule, c = 07 — ... = op — nat

17

PCF Bohm trees as strategies : an example

All PCF Bohm trees can be transcribed as trees. We decorate PCF types
A as [A] ¢, where each copy of nat is decorated with a word v € N* :

[A' = ... > A" s nat]u = [A 41 — ... — [A™]un — naty

All moves in the HO arenas for PCF types are of the form 7., or ny,.

Moreover 7, has polarity 0 (resp. P) if u is of even (resp. odd) length, while n,, has polarity
P (resp. O) if u is of even (resp. odd) length.

The PCF Bohm tree \f.case f3 [4 — 7,6 — 9] reads as follows :

, 0
(3) ; ?11[311, <]

Af.case f(4 =7 h =771, <] <41[7€7<i>]
0 6119, <]

18

PCF Bohm trees as strategies : full compilation

We need an auxiliary functions
arity(A,e) = n arity(A,iu) = arity(A,u) (A=Al - ... - A" — nat)

i , .
CLCCBSS(:U, (3‘3’7 u) . L7 ’L) — { [?uj, (—’] | if ¢ € ZU with x = T
access(x, L,7+ 1) otherwise

We translate M : Ato [[M]]E], where

DaEwlt =2, (W& "

[n]X = n, (pointer reconstructed by well-bracketing)
(.

ﬂMl]]ﬁﬂ

[case M [...m — Wy,..]]: = [?Uj,;] 9.

Myj I]:Wm]]g
€

where access(xz, L,0) = [7,;, <i>] and 1 <[< arity(A,vj).

19

An example of execution of HO strategies : the strategies

Kiersteadqy = \f.case f(Ax.case f(A\y.case x))

applied to

Ag.case g(casegT [T - T,F - F]|) [T — F,F — T]

((1
1 Th11|T
?11[?111,<—>]{ 111 11’<_17]
1 Fi11|F°
?11[71,] ¢ } 1111711,]
0 Th|T:
?6[?1’<_,]< 1[117<T]
| F1[F11, <]
1
Tl[T€a<_)]
1
\Fl[F&(_)]

?1[?11, ﬁ,] {

(0
?111[F111, <]

1

?111[?117<_)] Tll[Tlll’H]
1

Fll[Fllla <_)]

1
T11[F1, (—’]

1
(F11[T1, <]

20

An example of execution of HO strategies : the execution

(7, 1)[?1#&] 9

y

\

(

<?11> 3> [?17 <i)] <

(?11,7>[?17<i’] 9

1
711,9)[?111, <] {<T111, 15)[T11, <i’]
1
F]_, 17> [F].].) <_)]

1
?11,9)[?111, <] {<F111, 11)[F11, <i°]

K
K
(
(

| (T1,19)[T, &

i

<?1, 2> [?11, <3’] 9

)
T1,13)[T11, <]

\

<?111,6>[?11,<i>] {<?111,10> [F111,<3>]

1
<T11, 14> [T1117 <_’]

1
L <F117 18> [T17 <_)]

(?71,4)[?11, <£’] {(Tll, 16)[F1, <i’]

<?1, 8> [?11, <£’] {(Fll, 12>[T1, <i’]

21

A form of conclusion

Sequential algorithms and HO innocent strategies differ in at least two res-
pects :

— Sequential algorithms are intensional even for purely functional pro-
grams, cf. example A\f.case fTF [T — F]

— Sequential algorithms have memory (or work in call-by-need man-
ner), e.g. the model “normalises”

Ax.case x [3 — case x [3 — 4]]
into

request 7e valof 71 {z's 31 output 4¢

As for the second aspect, one could think of a multiset version of the ex-
ponent of two cds’ (cf. the two familiar “bangs” in the relational and coherent
semantics of linear logic).

22

